Clinical Trial Design Principles and Outcomes Definitions for Device-Based Therapies for Hypertension: A Consensus Document From the Hypertension Academic Research Consortium

David E Kandzari, Felix Mahfoud, Michael A Weber, Raymond Townsend, Gianfranco Parati, Naomi D L Fisher, Melvin D Lobo, Michael Bloch, Michael Böhm, Andrew S P Sharp, Roland E Schmieder, Michel Azizi, Markus P Schlaich, Vasilios Papademetriou, Ajay J Kirtane, Joost Daemen, Atul Pathak, Christian Ukena, Philipp Lurz, Guido Grassi, Martin Myers, Aloke V Finn, Marie-Claude Morice, Roxana Mehran, Peter Jüni, Gregg W Stone, Mitchell W Krucoff, Paul K Whelton, Konstantinos Tsioufis, Donald E Cutlip, Ernest Spitzer, David E Kandzari, Felix Mahfoud, Michael A Weber, Raymond Townsend, Gianfranco Parati, Naomi D L Fisher, Melvin D Lobo, Michael Bloch, Michael Böhm, Andrew S P Sharp, Roland E Schmieder, Michel Azizi, Markus P Schlaich, Vasilios Papademetriou, Ajay J Kirtane, Joost Daemen, Atul Pathak, Christian Ukena, Philipp Lurz, Guido Grassi, Martin Myers, Aloke V Finn, Marie-Claude Morice, Roxana Mehran, Peter Jüni, Gregg W Stone, Mitchell W Krucoff, Paul K Whelton, Konstantinos Tsioufis, Donald E Cutlip, Ernest Spitzer

Abstract

The clinical implications of hypertension in addition to a high prevalence of both uncontrolled blood pressure and medication nonadherence promote interest in developing device-based approaches to hypertension treatment. The expansion of device-based therapies and ongoing clinical trials underscores the need for consistency in trial design, conduct, and definitions of clinical study elements to permit trial comparability and data poolability. Standardizing methods of blood pressure assessment, effectiveness measures beyond blood pressure alone, and safety outcomes are paramount. The Hypertension Academic Research Consortium (HARC) document represents an integration of evolving evidence and consensus opinion among leading experts in cardiovascular medicine and hypertension research with regulatory perspectives on clinical trial design and methodology. The HARC document integrates the collective information among device-based therapies for hypertension to better address existing challenges and identify unmet needs for technologies proposed to treat the world's leading cause of death and disability. Consistent with the Academic Research Consortium charter, this document proposes pragmatic consensus clinical design principles and outcomes definitions for studies aimed at evaluating device-based hypertension therapies.

Keywords: clinical trials; hypertension; outcomes; renal denervation.

Figures

Figure 1.
Figure 1.
Change in systolic blood pressure (mm Hg) after renal denervation in 6 prospective, randomized, sham-controlled trials. ABPM indicates ambulatory blood pressure measurement; BP, blood pressure; RADIANCE HTN SOLO, Study of the ReCor Medical Paradise System in Clinical Hypertension in Absence of Hypertension Medications; RADIANCE-HTN TRIO, Study of the ReCor Medical Paradise System in Clinical Hypertension in the Presence of a Stabilized, Single Pill, Triple, Fixed Dose Antihypertensive Medication Regimen; SYMPLICITY HTN-3 trial, Renal Denervation in Patients With Uncontrolled Hypertension; SPYRAL HTN-OFF MED, Global Clinical Study of Renal Denervation With the Symplicity Spyral Multi-Electrode Renal Denervation System in Patients With Uncontrolled Hypertension in the Absence of Antihypertensive Medications; SPYRAL HTN-OFF PIVOTAL, Global Clinical Study of Renal Denervation With the Symplicity Spyral Multi-Electrode Renal Denervation System in Patients With Uncontrolled Hypertension in the Absence of Antihypertensive Medications Pivotal; and SPYRAL HTN ON MED, Global Clinical Study of Renal Denervation With the Symplicity Spyral Multi-Electrode Renal Denervation System in Patients With Uncontrolled Hypertension on Standard Medical Therapy. Adapted from references 15, 17–21.
Figure 2.
Figure 2.
Clinical investigation recommendations for novel devices for hypertension management. ABPM indicates ambulatory blood pressure measurement; BP, blood pressure; CKD, chronic kidney disease; HF, heart failure; HTN, hypertension; LVH, left ventricular hypertrophy; and MI, myocardial infarction.

References

    1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005; 365:217–223. doi: 10.1016/S0140-6736(05)17741-1
    1. Egan BM, Li J, Hutchison FN, Ferdinand KC. Hypertension in the United States, 1999 to 2012: progress toward Healthy People 2020 goals. Circulation. 2014; 130:1692–1699. doi: 10.1161/CIRCULATIONAHA.114.010676
    1. Muntner P, Carey RM, Gidding S, Jones DW, Taler SJ, Wright JT, Jr, Whelton PK. Potential US population impact of the 2017 ACC/AHA High Blood Pressure Guideline. Circulation. 2018; 137:109–118. doi: 10.1161/CIRCULATIONAHA.117.032582
    1. Muntner P, Hardy ST, Fine LJ, Jaeger BC, Wozniak G, Levitan EB, Colantonio LD. Trends in blood pressure control among US adults with hypertension, 1999-2000 to 2017-2018. JAMA. 2020; 324:1190–1200. doi: 10.1001/jama.2020.14545
    1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, et al. ; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012; 125:e2–e220. doi: 10.1161/CIR.0b013e31823ac046
    1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al. ; GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 Study. J Am Coll Cardiol. 2020; 76:2982–3021. doi: 10.1016/j.jacc.2020.11.010
    1. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, Chalmers J, Rodgers A, Rahimi K. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016; 387:957–967. doi: 10.1016/S0140-6736(15)01225-8
    1. Blood Pressure Lowering Treatment Trialists’ Collaboration. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet. 2021; 397:1625–1636. doi: 10.1016/S0140-6736(21)00590-0
    1. Wright JT, Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, Reboussin DM, Rahman M, Oparil S, Lewis CE, et al. ; SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015; 373:2103–2116. doi: 10.1056/NEJMoa1511939
    1. Zhang W, Zhang S, Deng Y, Wu S, Ren J, Sun G, Yang J, Jiang Y, Xu X, Wang TD, et al. ; STEP Study Group. Trial of intensive blood-pressure control in older patients with hypertension. N Engl J Med. 2021; 385:1268–1279. doi: 10.1056/NEJMoa2111437
    1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, et al. ; ESC Scientific Document Group. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018; 39:3021–3104. doi: 10.1093/eurheartj/ehy339
    1. Whelton PK, Carey RM, Aronow WS, Casey DE, Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, et al. . 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018; 138:e426–e483. doi: 10.1161/CIR.0000000000000597
    1. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M; Symplicity HTN-2 Investigators. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010; 376:1903–1909. doi: 10.1016/S0140-6736(10)62039-9
    1. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, et al. . Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009; 373:1275–1281. doi: 10.1016/S0140-6736(09)60566-3
    1. Sievert H, Schofer J, Ormiston J, Hoppe UC, Meredith IT, Walters DL, Azizi M, Diaz-Cartelle J, Cohen-Mazor M. Renal denervation with a percutaneous bipolar radiofrequency balloon catheter in patients with resistant hypertension: 6-month results from the REDUCE-HTN clinical study. EuroIntervention. 2015; 10:1213–1220. doi: 10.4244/EIJY14M12_01
    1. Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT, Malaiapan Y, Papademetriou V. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J. 2013; 34:2132–2140. doi: 10.1093/eurheartj/eht197
    1. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, et al. ; SYMPLICITY HTN-3 Investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014; 370:1393–1401. doi: 10.1056/NEJMoa1402670
    1. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, Flack JM, Katzen BT, Lea J, Lee DP, et al. . Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015; 36:219–227. doi: 10.1093/eurheartj/ehu441
    1. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, Ewen S, Tsioufis K, Tousoulis D, Sharp ASP, et al. ; SPYRAL HTN-OFF MED T. rial I. nvestigators*. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017; 390:2160–2170. doi: 10.1016/S0140-6736(17)32281-X
    1. Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, Tsioufis K, Tousoulis D, Choi JW, East C, et al. ; SPYRAL HTN-ON MED Trial Investigators. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018; 391:2346–2355. doi: 10.1016/S0140-6736(18)30951-6
    1. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, Basile J, Kirtane AJ, Wang Y, Lobo MD, et al. ; RADIANCE-HTN Investigators. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018; 391:2335–2345. doi: 10.1016/S0140-6736(18)31082-1
    1. Böhm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE, Tsioufis K, Pocock S, Konstantinidis D, Choi JW, et al. ; SPYRAL HTN-OFF MED Pivotal Investigators. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet. 2020; 395:1444–1451. doi: 10.1016/S0140-6736(20)30554-7
    1. Azizi M, Sanghvi K, Saxena M, Gosse P, Reilly JP, Levy T, Rump LC, Persu A, Basile J, Bloch MJ, et al. ; RADIANCE-HTN investigators. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet. 2021; 397:2476–2486. doi: 10.1016/S0140-6736(21)00788-1
    1. Spiering W, Williams B, Van der Heyden J, van Kleef M, Lo R, Versmissen J, Moelker A, Kroon A, Reuter H, Ansel G, et al. ; CALM-FIM_EUR investigators. Endovascular baroreflex amplification for resistant hypertension: a safety and proof-of-principle clinical study. Lancet. 2017; 390:2655–2661. doi: 10.1016/S0140-6736(17)32337-1
    1. Kalarus Z, Merkely B, Neužil P, Grabowski M, Mitkowski P, Marinskis G, Erglis A, Kaźmierczak J, Sturmberger T, Sokal A, et al. . Pacemaker-based cardiac neuromodulation therapy in patients with hypertension: a pilot study. J Am Heart Assoc. 2021; 10:e020492. doi: 10.1161/JAHA.120.020492
    1. Krucoff MW, Mehran R, van Es GA, Boam AB, Cutlip DE. The academic research consortium governance charter. JACC Cardiovasc Interv. 2011; 4:595–596. doi: 10.1016/j.jcin.2011.03.008
    1. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, Luft FC, Haller H, Menne J, Engeli S, et al. . Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010; 56:1254–1258. doi: 10.1016/j.jacc.2010.03.089
    1. FDA Executive Summary. Circulatory System Devices Panel Meeting. December 5, 2018 General Issues Panel Clinical Evaluation of Anti-Hypertensive Devices. Accessed December 1, 2021.
    1. Lauder L, da Costa BR, Ewen S, Scholz SS, Wijns W, Lüscher TF, Serruys PW, Edelman ER, Capodanno D, Böhm M, et al. . Randomized trials of invasive cardiovascular interventions that include a placebo control: a systematic review and meta-analysis. Eur Heart J. 2020; 41:2556–2569. doi: 10.1093/eurheartj/ehaa495
    1. Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, Midulla M, Mounier-Véhier C, Courand PY, Lantelme P, et al. ; Renal Denervation for Hypertension (DENERHTN) I. nvestigators. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet. 2015; 385:1957–1965. doi: 10.1016/S0140-6736(14)61942-5
    1. Wan SH, Hart M, Hajjar I. A novel measurement index for antihypertensive medication burden and its use. Hypertension. 2009; 54:e135–e136. doi: 10.1161/HYPERTENSIONAHA.109.140681
    1. Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Lobo MD, Sharp ASP, Bloch MJ, Basile J, Wang Y, et al. . Six-month results of treatment-blinded medication titration for hypertension control following randomization to endovascular ultrasound renal denervation or a sham procedure in the RADIANCE-HTN SOLO Trial. Circulation. 2019; 139:2542–2553. doi: 10.1161/CIRCULATIONAHA.119.040451
    1. Chowdhury R, Khan H, Heydon E, Shroufi A, Fahimi S, Moore C, Stricker B, Mendis S, Hofman A, Mant J, et al. . Adherence to cardiovascular therapy: a meta-analysis of prevalence and clinical consequences. Eur Heart J. 2013; 34:2940–2948. doi: 10.1093/eurheartj/eht295
    1. Kolandaivelu K, Leiden BB, O’Gara PT, Bhatt DL. Non-adherence to cardiovascular medications. Eur Heart J. 2014; 35:3267–3276. doi: 10.1093/eurheartj/ehu364
    1. Gupta P, Patel P, Štrauch B, Lai FY, Akbarov A, Gulsin GS, Beech A, Marešová V, Topham PS, Stanley A, et al. . Biochemical screening for nonadherence is associated with blood pressure reduction and improvement in adherence. Hypertension. 2017; 70:1042–1048. doi: 10.1161/HYPERTENSIONAHA.117.09631
    1. Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, Myers MG, Ogedegbe G, Schwartz JE, Townsend RR, et al. . Measurement of blood pressure in humans: a scientific statement from the American Heart Association. Hypertension. 2019; 73:e35–e66. doi: 10.1161/HYP.0000000000000087
    1. Giorgini P, Weder AB, Jackson EA, Brook RD. A review of blood pressure measurement protocols among hypertension trials: implications for “evidence-based” clinical practice. J Am Soc Hypertens. 2014; 8:670–676. doi: 10.1016/j.jash.2014.07.024
    1. Mancia G, Verdecchia P. Clinical value of ambulatory blood pressure: evidence and limits. Circ Res. 2015; 116:1034–1045. doi: 10.1161/CIRCRESAHA.116.303755
    1. Patel HC, Hayward C, Ozdemir BA, Rosen SD, Krum H, Lyon AR, Francis DP, di Mario C. Magnitude of blood pressure reduction in the placebo arms of modern hypertension trials: implications for trials of renal denervation. Hypertension. 2015; 65:401–406. doi: 10.1161/HYPERTENSIONAHA.114.04640
    1. Staessen JA, Thijs L, Fagard R, O’Brien ET, Clement D, de Leeuw PW, Mancia G, Nachev C, Palatini P, Parati G, et al. . Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. Systolic Hypertension in Europe Trial Investigators. JAMA. 1999; 282:539–546. doi: 10.1001/jama.282.6.539
    1. Dolan E, Stanton A, Thijs L, Hinedi K, Atkins N, McClory S, Den Hond E, McCormack P, Staessen JA, O’Brien E. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension. 2005; 46:156–161. doi: 10.1161/01.HYP.0000170138.56903.7a
    1. Sega R, Facchetti R, Bombelli M, Cesana G, Corrao G, Grassi G, Mancia G. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population: follow-up results from the Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study. Circulation. 2005; 111:1777–1783. doi: 10.1161/01.CIR.0000160923.04524.5B
    1. Kario K, Weber MA, Mahfoud F, Kandzari DE, Schmieder RE, Kirtane AJ, Bohm M, Hettrick DA, Townsend RR, Tsioufis KP. Changes in 24-hour patterns of blood pressure in hypertension following renal denervation therapy. Hypertension. doi: 10.1161/HYPERTENSIONAHA.119.13081
    1. Mahfoud F, Azizi M, Ewen S, Pathak A, Ukena C, Blankestijn PJ, Böhm M, Burnier M, Chatellier G, Durand Zaleski I, et al. . Proceedings from the 3rd European Clinical Consensus Conference for clinical trials in device-based hypertension therapies. Eur Heart J. 2020; 41:1588–1599. doi: 10.1093/eurheartj/ehaa121
    1. Kandzari DE, Townsend RR, Bakris G, Basile J, Bloch MJ, Cohen DL, East C, Ferdinand KC, Fisher N, Kirtane A, et al. . Renal denervation in hypertension patients: proceedings from an expert consensus roundtable cosponsored by SCAI and NKF. Catheter Cardiovasc Interv. 2021; 98:416–426. doi: 10.1002/ccd.29884
    1. Parati G, Stergiou G, O’Brien E, Asmar R, Beilin L, Bilo G, Clement D, de la Sierra A, de Leeuw P, Dolan E, et al. ; European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens. 2014; 32:1359–1366. doi: 10.1097/HJH.0000000000000221
    1. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, Ramirez A, Schlaich M, Stergiou GS, Tomaszewski M, et al. . 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension. 2020; 75:1334–1357. doi: 10.1161/HYPERTENSIONAHA.120.15026
    1. Stergiou GS, Palatini P, Parati G, O’Brien E, Januszewicz A, Lurbe E, Persu A, Mancia G, Kreutz R; European Society of Hypertension Council and the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. 2021 European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J Hypertens. 2021; 39:1293–1302. doi: 10.1097/HJH.0000000000002843
    1. Bobrie G, Weber JL, Postel-Vinay N, Menard J, Plouin PF. Teletransmission of home blood pressure monitoring: making it easier. J Hypertens. 2008; 26:1046–1047. discussion 1048. doi: 10.1097/HJH.0b013e3282f76792
    1. Sheikh S, Sinha AD, Agarwal R. Home blood pressure monitoring: how good a predictor of long-term risk? Curr Hypertens Rep. 2011; 13:192–199. doi: 10.1007/s11906-011-0193-z
    1. Shimbo D, Abdalla M, Falzon L, Townsend RR, Muntner P. Studies comparing ambulatory blood pressure and home blood pressure on cardiovascular disease and mortality outcomes: a systematic review. J Am Soc Hypertens. 2016; 10:224–234.e17. doi: 10.1016/j.jash.2015.12.013
    1. Garcia-Garcia HM, McFadden EP, Farb A, Mehran R, Stone GW, Spertus J, Onuma Y, Morel MA, van Es GA, Zuckerman B, et al. ; Academic Research Consortium. Standardized end point definitions for coronary intervention trials: the Academic Research Consortium-2 Consensus Document. Eur Heart J. 2018; 39:2192–2207. doi: 10.1093/eurheartj/ehy223
    1. Hicks KA, Mahaffey KW, Mehran R, Nissen SE, Wiviott SD, Dunn B, Solomon SD, Marler JR, Teerlink JR, Farb A, et al. ; Standardized Data Collection for Cardiovascular Trials Initiative (SCTI). 2017 Cardiovascular and stroke endpoint definitions for clinical trials. Circulation. 2018; 137:961–972. doi: 10.1161/CIRCULATIONAHA.117.033502
    1. Lansky AJ, Messé SR, Brickman AM, Dwyer M, van der Worp HB, Lazar RM, Pietras CG, Abrams KJ, McFadden E, Petersen NH, et al. . Proposed standardized neurological endpoints for cardiovascular clinical trials: an Academic Research Consortium Initiative. J Am Coll Cardiol. 2017; 69:679–691. doi: 10.1016/j.jacc.2016.11.045
    1. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD; Executive Group on Behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth universal definition of myocardial infarction (2018). Circulation. 2018; 138:e618–e651. doi: 10.1161/CIR.0000000000000617
    1. Kappetein AP, Head SJ, Généreux P, Piazza N, van Mieghem NM, Blackstone EH, Brott TG, Cohen DJ, Cutlip DE, van Es GA, et al. . Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. Eur Heart J. 2012; 33:2403–2418. doi: 10.1093/eurheartj/ehs255
    1. Spitzer E, McFadden E, Vranckx P, Garcia-Garcia HM, Seltzer JH, Held C, de Vries T, Menon V, Brown KJ, Soliman OII, et al. . Critical appraisal of contemporary clinical endpoint definitions in coronary intervention trials: a guidance document. JACC Cardiovasc Interv. 2019; 12:805–819. doi: 10.1016/j.jcin.2018.12.031
    1. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, Rokkedal J, Harris K, Aurup P, Dahlöf B. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004; 292:2350–2356. doi: 10.1001/jama.292.19.2350
    1. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Böhm M, Hoppe UC. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012; 59:901–909. doi: 10.1016/j.jacc.2011.11.034
    1. Mahfoud F, Urban D, Teller D, Linz D, Stawowy P, Hassel JH, Fries P, Dreysse S, Wellnhofer E, Schneider G, et al. . Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J. 2014; 35:2224–31b. doi: 10.1093/eurheartj/ehu093
    1. Tsioufis C, Papademetriou V, Dimitriadis K, Tsiachris D, Thomopoulos C, Kasiakogias A, Kordalis A, Kefala A, Koutra E, Lau EO, et al. . Effects of multielectrode renal denervation on cardiac and neurohumoral adaptations in resistant hypertension with cardiac hypertrophy: an EnligHTN I substudy. J Hypertens. 2015; 33:346–353. doi: 10.1097/HJH.0000000000000408
    1. Kordalis A, Tsiachris D, Pietri P, Tsioufis C, Stefanadis C. Regression of organ damage following renal denervation in resistant hypertension: a meta-analysis. J Hypertens. 2018; 36:1614–1621. doi: 10.1097/HJH.0000000000001798
    1. Ott C, Mahfoud F, Schmid A, Toennes SW, Ewen S, Ditting T, Veelken R, Ukena C, Uder M, Böhm M, et al. . Renal denervation preserves renal function in patients with chronic kidney disease and resistant hypertension. J Hypertens. 2015; 33:1261–1266. doi: 10.1097/HJH.0000000000000556
    1. Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood-pressure variability. Nat Rev Cardiol. 2013; 10:143–155. doi: 10.1038/nrcardio.2013.1
    1. Persu A, Gordin D, Jacobs L, Thijs L, Bots ML, Spiering W, Miroslawska A, Spaak J, Rosa J, de Jong MR, et al. ; European Network COordinating research on Renal Denervation (ENCOReD). Blood pressure response to renal denervation is correlated with baseline blood pressure variability: a patient-level meta-analysis. J Hypertens. 2018; 36:221–229. doi: 10.1097/HJH.0000000000001582
    1. Fatani N, Dixon DL, Van Tassell BW, Fanikos J, Buckley LF. Systolic blood pressure time in target range and cardiovascular outcomes in patients with hypertension. J Am Coll Cardiol. 2021; 77:1290–1299. doi: 10.1016/j.jacc.2021.01.014
    1. Ukena C, Mahfoud F, Spies A, Kindermann I, Linz D, Cremers B, Laufs U, Neuberger HR, Böhm M. Effects of renal sympathetic denervation on heart rate and atrioventricular conduction in patients with resistant hypertension. Int J Cardiol. 2013; 167:2846–2851. doi: 10.1016/j.ijcard.2012.07.027
    1. Böhm M, Mahfoud F, Townsend RR, Kandzari DE, Pocock S, Ukena C, Weber MA, Hoshide S, Patel M, Tyson CC, et al. . Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN-OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur Heart J. 2019; 40:743–751. doi: 10.1093/eurheartj/ehy871
    1. Böhm M, Tsioufis K, Kandzari DE, Kario K, Weber MA, Schmieder RE, Townsend RR, Kulenthiran S, Ukena C, Pocock S, et al. . Effect of heart rate on the outcome of renal denervation in patients with uncontrolled hypertension. J Am Coll Cardiol. 2021; 78:1028–1038. doi: 10.1016/j.jacc.2021.06.044
    1. Kandzari DE, Mahfoud F, Bhatt DL, Böhm M, Weber MA, Townsend RR, Hettrick DA, Schmieder RE, Tsioufis K, Kario K. Confounding factors in renal denervation trials: revisiting old and identifying new challenges in trial design of device therapies for hypertension. Hypertension. 2020; 76:1410–1417. doi: 10.1161/HYPERTENSIONAHA.120.15745
    1. Mahfoud F, Townsend RR, Kandzari DE, Kario K, Schmieder RE, Tsioufis K, Pocock S, David S, Patel K, Rao A, et al. . Changes in plasma renin activity after renal artery sympathetic denervation. J Am Coll Cardiol. 2021; 77:2909–2919. doi: 10.1016/j.jacc.2021.04.044
    1. Kindermann I, Wedegärtner SM, Mahfoud F, Weil J, Brilakis N, Ukena J, Ewen S, Linz D, Fahy M, Mancia G, et al. ; Global SYMPLICITY Registry Investigators. Improvement in health-related quality of life after renal sympathetic denervation in real-world hypertensive patients: 12-month outcomes in the Global SYMPLICITY Registry. J Clin Hypertens (Greenwich). 2017; 19:833–839. doi: 10.1111/jch.13007
    1. Schmieder RE, Kandzari DE, Wang TD, Lee YH, Lazarus G, Pathak A. Differences in patient and physician perspectives on pharmaceutical therapy and renal denervation for the management of hypertension. J Hypertens. 2021; 39:162–168. doi: 10.1097/HJH.0000000000002592
    1. Reed Johnson F, Lancsar E, Marshall D, Kilambi V, Mühlbacher A, Regier DA, Bresnahan BW, Kanninen B, Bridges JF. Constructing experimental designs for discrete-choice experiments: report of the ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force. Value Health. 2013; 16:3–13. doi: 10.1016/j.jval.2012.08.2223
    1. van der Wardt V, Harrison JK, Welsh T, Conroy S, Gladman J. Withdrawal of antihypertensive medication: a systematic review. J Hypertens. 2017; 35:1742–1749. doi: 10.1097/HJH.0000000000001405
    1. Fu J, Liu Y, Zhang L, Zhou L, Li D, Quan H, Zhu L, Hu F, Li X, Meng S, et al. . Nonpharmacologic interventions for reducing blood pressure in adults with prehypertension to established hypertension. J Am Heart Assoc. 2020; 9:e016804. doi: 10.1161/JAHA.120.016804
    1. Harrison TG, Tam-Tham H, Hemmelgarn BR, Elliott M, James MT, Ronksley PE, Jun M. Change in proteinuria or albuminuria as a surrogate for cardiovascular and other major clinical outcomes: a systematic review and meta-analysis. Can J Cardiol. 2019; 35:77–91. doi: 10.1016/j.cjca.2018.10.014
    1. Townsend RR, Walton A, Hettrick DA, Hickey GL, Weil J, Sharp ASP, Blankestijn PJ, Böhm M, Mancia G. Review and meta-analysis of renal artery damage following percutaneous renal denervation with radiofrequency renal artery ablation. EuroIntervention. 2020; 16:89–96. doi: 10.4244/EIJ-D-19-00902
    1. Mahfoud F, Bakris G, Bhatt DL, Esler M, Ewen S, Fahy M, Kandzari D, Kario K, Mancia G, Weber M, et al. . Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. Eur Heart J. 2017; 38:93–100. doi: 10.1093/eurheartj/ehw325
    1. Mahfoud F, Mancia G, Schmieder R, Narkiewicz K, Ruilope L, Schlaich M, Whitbourn R, Zirlik A, Zeller T, Stawowy P, et al. . Renal denervation in high-risk patients with hypertension. J Am Coll Cardiol. 2020; 75:2879–2888. doi: 10.1016/j.jacc.2020.04.036
    1. Fengler K, Rommel KP, Lapusca R, Blazek S, Besler C, Hartung P, von Roeder M, Kresoja KP, Desch S, Thiele H, et al. . Renal denervation in isolated systolic hypertension using different catheter techniques and technologies. Hypertension. 2019; 74:341–348. doi: 10.1161/HYPERTENSIONAHA.119.13019
    1. Ott C, Franzen KF, Graf T, Weil J, Schmieder RE, Reppel M, Mortensen K. Renal denervation improves 24-hour central and peripheral blood pressures, arterial stiffness, and peripheral resistance. J Clin Hypertens (Greenwich). 2018; 20:366–372. doi: 10.1111/jch.13193
    1. Lurz P, Kresoja KP, Rommel KP, von Roeder M, Besler C, Lücke C, Gutberlet M, Schmieder RE, Mahfoud F, Thiele H, et al. . Changes in stroke volume after renal denervation: insight from cardiac magnetic resonance imaging. Hypertension. 2020; 75:707–713. doi: 10.1161/HYPERTENSIONAHA.119.14310
    1. Smith PA, Graham LN, Mackintosh AF, Stoker JB, Mary DA. Sympathetic neural mechanisms in white-coat hypertension. J Am Coll Cardiol. 2002; 40:126–132. doi: 10.1016/s0735-1097(02)01931-9
    1. Grassi G, Seravalle G, Trevano FQ, Dell’oro R, Bolla G, Cuspidi C, Arenare F, Mancia G. Neurogenic abnormalities in masked hypertension. Hypertension. 2007; 50:537–542. doi: 10.1161/HYPERTENSIONAHA.107.092528
    1. Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, Linz D, Schmieder R, Rump LC, Kindermann I, et al. . Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012; 60:419–424. doi: 10.1161/HYPERTENSIONAHA.112.193870
    1. Ukena C, Becker N, Pavlicek V, Millenaar D, Ewen S, Linz D, Steinberg JS, Böhm M, Mahfoud F. Catheter-based renal denervation as adjunct to pulmonary vein isolation for treatment of atrial fibrillation: a systematic review and meta-analysis. J Hypertens. 2020; 38:783–790. doi: 10.1097/HJH.0000000000002335
    1. Verloop WL, Spiering W, Vink EE, Beeftink MM, Blankestijn PJ, Doevendans PA, Voskuil M. Denervation of the renal arteries in metabolic syndrome: the DREAMS-study. Hypertension. 2015; 65:751–757. doi: 10.1161/HYPERTENSIONAHA.114.04798
    1. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995; 96:1897–1904. doi: 10.1172/JCI118235
    1. Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, Böhm M, Lambert EA, Krum H, Sobotka PA, et al. . Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol. 2013; 168:2214–2220. doi: 10.1016/j.ijcard.2013.01.218
    1. Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, Hamady M, Hughes AD, Sever PS, Sobotka PA, et al. . First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013; 162:189–192. doi: 10.1016/j.ijcard.2012.09.019
    1. Pocock SJ, Bakris G, Bhatt DL, Brar S, Fahy M, Gersh BJ. Regression to the mean in SYMPLICITY HTN-3: implications for design and reporting of future trials. J Am Coll Cardiol. 2016; 68:2016–2025. doi: 10.1016/j.jacc.2016.07.775
    1. Verbeeck J, Spitzer E, de Vries T, van Es GA, Anderson WN, Van Mieghem NM, Leon MB, Molenberghs G, Tijssen J. Generalized pairwise comparison methods to analyze (non)prioritized composite endpoints. Stat Med. 2019; 38:5641–5656. doi: 10.1002/sim.8388
    1. Kandzari DE, Hickey GL, Pocock SJ, Weber MA, Böhm M, Cohen SA, Fahy M, Lamberti G, Mahfoud F. Prioritised endpoints for device-based hypertension trials: the win ratio methodology. EuroIntervention. 2021; 16:e1496–e1502. doi: 10.4244/EIJ-D-20-01090

Source: PubMed

3
Subscribe