The Effects of 12-Week Beta-Hydroxy-Beta-Methylbutyrate Supplementation in Patients with Liver Cirrhosis: Results from a Randomized Controlled Single-Blind Pilot Study

Barbara Lattanzi, Angelo Bruni, Simone Di Cola, Alessio Molfino, Adriano De Santis, Maurizio Muscaritoli, Manuela Merli, Barbara Lattanzi, Angelo Bruni, Simone Di Cola, Alessio Molfino, Adriano De Santis, Maurizio Muscaritoli, Manuela Merli

Abstract

Background and aim: Sarcopenia is considered an important risk factor for morbidity and mortality in liver cirrhosis. Beta-hydroxy-beta-methylbutyrate (HMB) has the potential to increase muscle mass and performance by stimulating protein synthesis and reducing muscle catabolism. The present study aimed at evaluating the effect of HMB supplementation on muscle mass and function in patients with liver cirrhosis. Changes in frailty during the study were also estimated, and the safety of HMB supplementation was verified.

Methods: This is a randomized, single-blind, placebo-controlled pilot trial. Twenty-four patients (14 HMB and 10 placebo) affected by liver cirrhosis were enrolled in the study. Each patient received dedicated counseling, which included nutrition and physical activity recommendations for chronic liver disease patients. Patients were randomized to receive 3 g/day of HMB or placebo (sorbitol powder) for 12 consecutive weeks. A diet interview, anthropometry, electrical bioimpedance analysis (BIA), quadriceps ultrasound, physical performance battery, Liver Frailty Index (LFI), and cognitive tests were completed at enrolment (T0), at 12 weeks (T1), and 24 weeks after enrolment (T2).

Results: At baseline, the two groups were similar in demography, severity of liver disease, muscle mass, muscle function, and cognitive tests. LFI at baseline was higher in patients in the HMB group vs. those in the placebo group (4.1 ± 0.4 vs. 3.4 ± 0.6, p < 0.01). After treatment, a statistically significant increase in muscle function was seen in the HMB group (chair stand test: 14.2 ± 5 s vs. 11.7 ± 2.6 s, p < 0.05; six-minute walk test: 361.8 ± 68 m vs. 409.4 ± 58 m, p < 0.05). Quadriceps muscle mass measured by ultrasound also increased (4.9 ± 1.8 vs. 5.4 ± 1.8 mm, p < 0.05) after HMB, while LFI decreased (4.1 ± 0.4 vs. 3.7 ± 0.4, p < 0.05). HMB was well tolerated by patients, and no adverse events were documented.

Conclusions: Our study suggests the efficacy of 12-week beta-hydroxy-beta-methylbutyrate supplementation in promoting improvements in muscle performance in compensated cirrhotic patients. LFI was also ameliorated. Further studies with a greater number of patients are required to reinforce this hypothesis.

Keywords: beta-hydroxy-beta-methylbutyrate; frailty; liver cirrhosis; sarcopenia.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Modification of frailty during follow-up in patients of placebo and HMB group.

References

    1. Bot D., Droop A., Lucassen C.J., van Veen M.E., van Vugt J.L.A., Shahbazi Feshtali S., Leistra E., Tushuizen M.E., van Hoek B. Both muscle quantity and quality are predictors of waiting list mortality in patients with end-stage liver disease. Clin. Nutr. ESPEN. 2021;42:272–279. doi: 10.1016/j.clnesp.2021.01.022.
    1. Paternostro R., Bardach C., Hofer B.S., Scheiner B., Schwabl P., Asenbaum U., Ba-Ssalamah A., Scharitzer M., Bucscis T., Simbrunner B., et al. Prognostic impact of sarcopenia in cirrhotic patients stratified by different severity of portal hypertension. Liver Int. 2021;41:799–809. doi: 10.1111/liv.14758.
    1. Lattanzi B., Nardelli S., Pigliacelli A., Di Cola S., Farcomeni A., D’Ambrosio D., Gioia S., Ginanni Corradini S., Lucidi C., Mennini G., et al. The additive value of sarcopenia, myosteatosis and hepatic encephalopathy in the predictivity of model for end-stage liver disease. Dig. Liver Dis. 2019;51:1508–1512. doi: 10.1016/j.dld.2019.09.004.
    1. Nardelli S., Lattanzi B., Merli M., Farcomeni A., Gioia S., Ridola L., Riggio O. Muscle Alterations Are Associated With Minimal and Overt Hepatic Encephalopathy in Patients With Liver Cirrhosis. Hepatology. 2019;70:1704–1713. doi: 10.1002/hep.30692.
    1. Lucidi C., Lattanzi B., Di Gregorio V., Incicco S., D’Ambrosio D., Venditti M., Riggio O., Merli M. A low muscle mass increases mortality in compensated cirrhotic patients with sepsis. Liver Int. 2018;38:851–857. doi: 10.1111/liv.13691.
    1. Montano-Loza A.J., Duarte-Rojo A., Meza-Junco J., Baracos V.E., Sawyer M.B., Pang J.X.Q., Beaumont C., Esfandiari N., Myers R.P. Inclusion of Sarcopenia Within MELD (MELD- Sarcopenia) and the Prediction of Mortality in Patients with Cirrhosis. Clin. Transl. Gastroenterol. 2015;16:e102. doi: 10.1038/ctg.2015.31.
    1. Lai J.C., Ganger D.R., Volk M.L., Dodge J.L., Dunn M.A., Duarte-Rojo A., Kappus M.R., Rahimi R.S., Ladner D.P., Boyarsky B., et al. Association of Frailty and Sex with Wait List Mortality in Liver Transplant Candidates in the Multicenter Functional Assessment in Liver Transplantation (FrAILT) Study. JAMA Surg. 2021;156:256–262. doi: 10.1001/jamasurg.2020.5674.
    1. Shah S., Goldberg D.S., Kaplan D.E., Sundaram V., Taddei T.H., Mahmud N. Patient Frailty Is Independently Associated with the Risk of Hospitalization for Acute-on-Chronic Liver Failure. Liver Transpl. 2021;27:16–26. doi: 10.1002/lt.25896.
    1. Soto R., Díaz L.A., Rivas V., Fuentes-López E., Zalaquett M., Bruera M.J., Gonzalez C., Mezzano G., Benìtez C. Frailty and reduced gait speed are independently related to mortality of cirrhotic patients in long-term follow-up. Ann. Hepatol. 2021;25:100327. doi: 10.1016/j.aohep.2021.100327.
    1. Lai J.C., Dodge J.L., Kappus M.R., Dunn M.A., Volk M.L., Duarte-Rojo A., Ganger D.R., Rahimi R., McCulloch C., Haugen C.E., et al. Changes in frailty are associated with waitlist mortality in patients with cirrhosis. J. Hepatol. 2020;73:575–581. doi: 10.1016/j.jhep.2020.03.029.
    1. Lai J.C., Covinsky K., Dodge J., Boscardin W.J., Segev D.L., Roberts J.P., Feng S. Development of a novel frailty index to predict mortality in patients with end-stage. Hepatology. 2017;66:564–574. doi: 10.1002/hep.29219.
    1. Tandon P., Low G., Mourtzakis M., Zenith L., Myers R.P., Abraldes J.G., Shaheen A.A.M., Qamar H., Mansoor N., Carbonneau M., et al. A model to identify Sarcopenia in Patients with Cirrhosis. Clin. Gastroenterol. Hepatol. 2016;14:1473–1480. doi: 10.1016/j.cgh.2016.04.040.
    1. Cruz-Jentoft A.J. Sarcopenia: What should a pharmacist know? Farm. Hosp. 2017;41:543–549.
    1. Gerlinger-Romero F., Guimarães-Ferreira L., Giannocco G., Nunes M.T. Chronic supplementation of beta- hydroxy-beta methylbutyrate (HMβ) increases the activity of the GH/IGF-I axis and induces hyperinsulinemia in rats. Growth Horm. IGF Res. 2011;21:57–62. doi: 10.1016/j.ghir.2010.12.006.
    1. Wilson G.J., Wilson J.M., Manninen A.H. Effects of betahydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review. Nutr. Metab. 2008;23:145–150.
    1. Fiorotto M.L., Schwartz R.J., Delaughter M.C. Persistent IGF-1 overexpression in skeletal muscle transiently enhances DNA accretion and growth. FASEB J. 2003;17:59–60. doi: 10.1096/fj.02-0289fje.
    1. Barton-Davis E., Shoturma D.I., Musaro A., Rosenthal N., Sweeney H.L. Viral mediated expression of IGF-I blocks the aging-related loss of skeletal muscle function. Proc. Natl. Acad. Sci. USA. 1998;95:15603. doi: 10.1073/pnas.95.26.15603.
    1. Smith H.J., Mukerji P., Tisdale M.J. Attenuation of proteasome-induced proteolysis in skeletal muscle by {beta}-hydroxy-{beta}-methylbutyrate in cancer-induced muscle loss. Cancer Res. 2005;65:277–283.
    1. Aversa Z., Alamdari N., Castillero E., Muscaritoli M., Rossi Fanelli F., Hasselgren P. β-Hydroxy-β-methylbutyrate (HMB) prevents dexamethasone-induced myotube atrophy. Biochem. Biophys. Res. Commun. 2012;423:739–743. doi: 10.1016/j.bbrc.2012.06.029.
    1. Girón M.D., Vílchez J.D., Salto R., Manzano M., Sevillano N., Campos N., Argilès J.M., Rueda R., Lòpez-Pedrosa J.M. Conversion of leucine to β-hydroxy-β-methylbutyrate by α-keto isocaproate dioxygenase is required for a potent stimulation of protein synthesis in L6 rat myotubes. J. Cachexia Sarcopenia Muscle. 2016;7:68–78. doi: 10.1002/jcsm.12032.
    1. Kornasio R., Riederer I., Butler-Browne G., Mouly V., Uni Z., Halevy O. Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways. Biochim. Biophys. Acta. 2009;1793:755–763. doi: 10.1016/j.bbamcr.2008.12.017.
    1. Oktaviana J., Zanker J., Vogrin S., Duque G. The Effect of β-hydroxy-β-methylbutyrate (HMB) on Sarcopenia and Functional Frailty in Older Persons: A Systematic Review. J. Nutr. Health Aging. 2019;23:145–150. doi: 10.1007/s12603-018-1153-y.
    1. Lattanzi B., Giusto M., Albanese C., Mennini G., D’Ambrosio D., Farcomeni A., Ginanni Corradini S., Rossi M., Merli M. The Effect of 12 Weeks of β-Hydroxy-β-Methyl-Butyrate Supplementation after Liver Transplantation: A Pilot Randomized Controlled Study. Nutrients. 2019;11:2259. doi: 10.3390/nu11092259.
    1. Merli M., Berzigotti A., Zelber-Sagi S., European Association for the Study of the Liver EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J. Hepatol. 2019;70:172–193. doi: 10.1016/j.jhep.2018.06.024.
    1. Carnovale E.M. Tabella di Composizione Degli Alimenti. Istituto Nazionale della Nutrizione. EDRA; Milano, Italy: 1997.
    1. Salvini S., Parpinel M., Gnagnarella P., Maisonneuve P., Turrini A. Banca Dati di Composizione degli Alimenti per Studi Epidemiologici in Italia. Istituto Europeo di Oncologia; Reggio Calabria, Italy: 1988.
    1. Lee P.H., Macfarlane D.J., Lam T.H., Stewart S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Acta. 2011;8:115. doi: 10.1186/1479-5868-8-115.
    1. Campagna F., Montagnese S., Ridola L., Senzolo M., Schiff S., De Rui M., Pasquale C., Nardelli S., Pentassuglio I., Merkel C., et al. The animal naming test: An easy tool for the assessment of hepatic encephalopathy. Hepatology. 2017;66:198–208. doi: 10.1002/hep.29146.
    1. Weissenborn K., Ennen J.C., Schomerus H., Rückert N., Hecker H. Neuropsychological characterization of hepatic encephalopathy. J. Hepatol. 2001;34:768–773. doi: 10.1016/S0168-8278(01)00026-5.
    1. Courel-Ibáñez J., Vetrovsky T., Dadova K., Pallarès J.G., Steffl M. Health Benefits of β-Hydroxy-β-Methylbutyrate (HMB) Supplementation in Addition to Physical Exercise in Older Adults: A Systematic Review with Meta- Analysis. Nutrients. 2019;11:2082. doi: 10.3390/nu11092082.
    1. Dasarathy S., Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J. Hepatol. 2016;65:1232–1244. doi: 10.1016/j.jhep.2016.07.040.
    1. Román E., García-Galcerán C., Torrades T., Herrera S., Marìn A., Donate M., Alvarado-Tapias E., Malouf J., Nàcher L., Serra-Grima R., et al. Effects of an Exercise Programme on Functional Capacity, Body Composition and Risk of Falls in Patients with Cirrhosis: A Randomized Clinical Trial. PLoS ONE. 2016;11:e0151652. doi: 10.1371/journal.pone.0151652.
    1. West J., Gow P.J., Testro A., Chapman B., Sinclair M. Exercise physiology in cirrhosis and the potential benefits of exercise interventions: A review. J. Gastroenterol. Hepatol. 2021 doi: 10.1111/jgh.15474.
    1. Vallejo J., Spence M., Cheng A.L., Brotto L., Edens N.K., Garvey S.M., Brotto M. Cellular and physiological effects of dietary supplementation with β-hydroxy-β-methylbutyrate (HMB) and β-alanine in late middle-aged mice. PLoS ONE. 2016;11:e0150066. doi: 10.1371/journal.pone.0150066.
    1. Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J. Cachexia Sarcopenia Muscle. 2017;8:529–541. doi: 10.1002/jcsm.12208.
    1. Din U.S.U., Brook M.S., Selby A., Quinlan J., Boereboom C., Abdulla H., Franchi M., Narici M.V., Phillips B.E., Williams J.W., et al. A double-blind placebo controlled trial into the impacts of HMB supplementation and exercise on free-living muscle protein synthesis, muscle mass and function, in older adults. Clin. Nutr. 2019;38:2071–2078. doi: 10.1016/j.clnu.2018.09.025.
    1. Stout J.R., Smith-Ryan A.E., Fukuda D.H., Kendall K.L., Moon J.R., Hoffman J.R., Wilson J.M., Oliver J.S., Mustad V.A. Effect of calcium β-hydroxy-β-methylbutyrate (CaHMB) with and without resistance training in men and women 65+ yrs: A randomized, double- blind pilot trial. Exp. Gerontol. 2013;48:1303–1310. doi: 10.1016/j.exger.2013.08.007.
    1. Tateyama M., Naoe H., Tanaka M., Tanaka K., Narahara S., Tokunaga T. Loss of skeletal muscle mass affects the incidence of minimal hepatic encephalopathy: A case control study. BMC Gastroenterol. 2020;20:371. doi: 10.1186/s12876-020-01501-x.
    1. Merli M., Giusto M., Lucidi C., Giannelli G., Pentassuglio I., Di Gregorio V., Lattanzi B., Riggio O. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: Results of a prospective study. Metab. Brain Dis. 2013;28:281–284. doi: 10.1007/s11011-012-9365-z.

Source: PubMed

3
Subscribe