Intrathecal Synthesis Index of Specific Anti- Treponema IgG: a New Tool for the Diagnosis of Neurosyphilis

Chloé Alberto, Christine Deffert, Nathalie Lambeng, Gautier Breville, Angèle Gayet-Ageron, Patrice Lalive, Laurence Toutous Trellu, Lionel Fontao, Chloé Alberto, Christine Deffert, Nathalie Lambeng, Gautier Breville, Angèle Gayet-Ageron, Patrice Lalive, Laurence Toutous Trellu, Lionel Fontao

Abstract

Neurosyphilis (NS) diagnosis is challenging because clinical signs are diverse and unspecific, and a sensitive and specific laboratory test is lacking. We tested the performance of an antibody index (AI) for intrathecal synthesis of specific anti-Treponema IgG by enzyme-linked immunosorbent assay (ELISA) for NS diagnosis. We conducted a retroprospective monocentric study including adults with neurological symptoms who had serum and cerebral spinal fluid (CSF) samples collected between 2006 and 2021. Two NS definitions were used. NS1 included patients with neurological symptoms, positive Treponema pallidum particle agglutination (TPPA) serology, and CSF-TPPA of ≥320, as well as CSF-leukocytes of >5 cells/mm3 and/or CSF-protein of >0.45 g/L and/or a reactive CSF-VDRL/RPR test. NS2 included patients with acute ocular and/or otologic symptoms, positive TPPA serology, and a response to NS treatment. Controls were patients with central nervous system disorders other than neurosyphilis. Anti-Treponema pallidum IgG were measured simultaneously in serum and CSF, and AI was calculated according to Reiber diagram. We assessed the AI test area under the curve (AUC), sensitivity/specificity, and estimated positive and negative predictive values. In total, 16 NS1 patients, 11 NS2 patients, and 71 controls were included. With an AI of ≥1.7 as a positive test for NS diagnostic, specificity was 98.6% (95% confidence interval [CI 95%] of 92.4 to 100.0) and sensitivity was 81.3% (CI 95% of 54.4 to 96.0) for NS1 and 98.6% (CI 95% 92.4 to 100.0) and 27.3% (CI 95% 6.0 to 61.0), respectively, for NS2. Positive and negative predictive values were >95% for NS1 and >85% for NS2, for prevalence above and below 20%. Measuring an AI for intrathecal synthesis of specific anti-Treponema pallidum IgG is a new promising tool highly specific for NS diagnosis. IMPORTANCE In the context of a lack of a gold standard for the diagnosis of neurosyphilis due to either nonspecific or nonsensitive tests, we present in this article a new promising tool highly specific for NS diagnosis. This new test involves measuring an intrathecal synthesis index of specific anti-Treponema IgG by ELISA.

Keywords: intrathecal synthesis; neurosyphilis; ocular syphilis; otosyphilis; specific anti-treponema IgG.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

FIG 1
FIG 1
Sensitivity/(1 − specificity) and AUC of AI test in cases of NS1.
FIG 2
FIG 2
PPV/PNV of AI test for the diagnostic of NS1 using the optimal threshold >1.7.

References

    1. Dombrowski JC, Pedersen R, Marra CM, Kerani RP, Golden MR. 2015. Prevalence estimates of complicated syphilis. Sex Transm Dis 42:702–704. doi:10.1097/OLQ.0000000000000368.
    1. New York City Department of Health and Mental Hygiene, New York City STD Prevention Training Center. 2019. The diagnosis, management and prevention of syphilis: an update and review. .
    1. European Centre for Disease Prevention and Control. 2019. Syphilis and congenital syphilis in Europe: a review of epidemiological trends (2007–2018) and options for response. .
    1. Ghanem KG, Ram S, Rice PA. 2020. The modern epidemic of syphilis. N Engl J Med 382:845–854. doi:10.1056/NEJMra1901593.
    1. Marra CM. 2009. Update on neurosyphilis. Curr Infect Dis Rep 11:127–134. doi:10.1007/s11908-009-0019-1.
    1. Ghanem KG. 2010. REVIEW: neurosyphilis: a historical perspective and review. CNS Neurosci Ther 16:e157–e168. doi:10.1111/j.1755-5949.2010.00183.x.
    1. Workowski KA, Bolan GA. 2015. Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep 64:1–137.
    1. Janier M, Unemo M, Dupin N, Tiplica GS, Potočnik M, Patel R. 2021. 2020 European guideline on the management of syphilis. J Eur Acad Dermatol Venereol 35:574–588. doi:10.1111/jdv.16946.
    1. Izzat NN, Bartruff JK, Glicksman JM, Holder WR, Knox JM. 1971. Validity of the VDRL test on cerebrospinal fluid contaminated by blood. Br J Vener Dis 47:162–164. doi:10.1136/sti.47.3.162.
    1. Harding AS, Ghanem KG. 2012. The performance of cerebrospinal fluid treponemal-specific antibody tests in neurosyphilis: a systematic review. Sex Transm Dis 39:291–297. doi:10.1097/OLQ.0b013e31824c0e62.
    1. Castro R, Prieto ES, João Águas M, José Manata M, Botas J, Araújo C, Borges F, Aldir I, Exposto FD. 2006. Evaluation of the Treponema pallidum particle agglutination technique () in the diagnosis of neurosyphilis. J Clin Lab Anal 20:233–238. doi:10.1002/jcla.20147.
    1. Guarner J, Jost H, Pillay A, Sun Y, Cox D, Notenboom R, Workowski K. 2015. Evaluation of treponemal serum tests performed on cerebrospinal fluid for diagnosis of neurosyphilis. Am J Clin Pathol 143:479–484. doi:10.1309/AJCPWSL3G8RXMCQR.
    1. Luger AF, Schmidt BL, Kaulich M. 2000. Significance of laboratory findings for the diagnosis of neurosyphilis. Int J STD AIDS 11:224–234. doi:10.1258/0956462001915750.
    1. Marra CM. 2021. Alternatives to the cerebrospinal fluid venereal disease research laboratory test for neurosyphilis diagnosis. Sex Transm Dis 48:S54–S57. doi:10.1097/OLQ.0000000000001450.
    1. Shiva F, Goldmeier D, Lane P, Ethiopia H, Winston A. 2020. Cerebrospinal fluid TPPA titres in the diagnosis of neurosyphilis. Sex Transm Infect 96:389–390. doi:10.1136/sextrans-2019-054198.
    1. Gayet-Ageron A, Ninet B, Toutous-Trellu L, Lautenschlager S, Furrer H, Piguet V, Schrenzel J, Hirschel B. 2009. Assessment of a real-time PCR test to diagnose syphilis from diverse biological samples. Sex Transm Infect 85:264–269. doi:10.1136/sti.2008.034314.
    1. Castro R, Águas MJ, Batista T, Araújo C, Mansinho K, Pereira FLM. 2016. Detection of Treponema pallidum Sp. Pallidum DNA in cerebrospinal fluid (CSF) by two PCR techniques. J Clin Lab Anal 30:628–632. doi:10.1002/jcla.21913.
    1. Vanhaecke C, Grange P, Benhaddou N, Blanche P, Salmon D, Parize P, Lorholary O, Caumes E, Pelloux I, Epaulard O, Guinard J, Dupin N, Neurosyphilis Network. 2016. Clinical and biological characteristics of 40 patients with neurosyphilis and evaluation of Treponema pallidum nested polymerase chain reaction in cerebrospinal fluid samples. Clin Infect Dis 63:1180–1186. doi:10.1093/cid/ciw499.
    1. Marra CM, Maxwell CL, Dunaway SB, Sahi SK, Tantalo LC. 2017. Cerebrospinal fluid Treponema pallidum particle agglutination assay for neurosyphilis diagnosis. J Clin Microbiol 55:1865–1870. doi:10.1128/JCM.00310-17.
    1. Marks M, Lawrence D, Kositz C, Mabey D. 2018. Diagnostic performance of PCR assays for the diagnosis of neurosyphilis: a systematic review. Sex Transm Infect 94:585–588. doi:10.1136/sextrans-2018-053666.
    1. Zhou C, Zhang X, Zhang W, Duan J, Zhao F. 2019. PCR detection for syphilis diagnosis: status and prospects. J Clin Lab Anal 33:e22890. doi:10.1002/jcla.22890.
    1. Levchik N, Ponomareva M, Surganova V, Zilberberg N, Kungurov N. 2013. Criteria for the diagnosis of neurosyphilis in cerebrospinal fluid: relationships with intrathecal immunoglobulin synthesis and blood-cerebrospinal fluid barrier dysfunction. Sex Transm Dis 40:917–922. doi:10.1097/OLQ.0000000000000049.
    1. Lo Sasso B, Agnello L, Bivona G, Bellia C, Ciaccio M. 2019. Cerebrospinal fluid analysis in multiple sclerosis diagnosis: an update. Medicina (Mex) 55:245. doi:10.3390/medicina55060245.
    1. Bonnan M, Barroso B, Demasles S, Krim E, Marasescu R, Miquel M. 2015. Compartmentalized intrathecal immunoglobulin synthesis during HIV infection — a model of chronic CNS inflammation? J Neuroimmunol 285:41–52. doi:10.1016/j.jneuroim.2015.05.015.
    1. Marra CM, Maxwell CL, Smith SL, Lukehart SA, Rompalo AM, Eaton M, Stoner BP, Augenbraun M, Barker DE, Corbett JJ, Zajackowski M, Raines C, Nerad J, Kee R, Barnett SH. 2004. Cerebrospinal fluid abnormalities in patients with syphilis: association with clinical and laboratory features. J Infect Dis 189:369–376. doi:10.1086/381227.
    1. Dersch R, Singh AE. 2021. Neurosyphilis and lyme neuroborreliosis. Curr Opin Neurol 34:403–409. doi:10.1097/WCO.0000000000000923.
    1. Lu Y, Ke W, Yang L, Wang Z, Lv P, Gu J, Hao C, Li J, Cai Y, Gu M, Liu H, Chen W, Zhang X, Wang L, Liu Y, Yang B, Zou H, Zheng H. 2019. Clinical prediction and diagnosis of neurosyphilis in HIV-negative patients: a case-control study. BMC Infect Dis 19:1017. doi:10.1186/s12879-019-4582-2.
    1. O’donnell JA, Emery CL. 2005. Neurosyphilis: a current review. Curr Infect Dis Rep 7:277–284. doi:10.1007/s11908-005-0060-7.
    1. Reiber H, Peter JB. 2001. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci 184:101–122. doi:10.1016/S0022-510X(00)00501-3.
    1. Bellon M, Schweblin C, Lambeng N, Cherpillod P, Vazquez J, Lalive PH. 2020. Cerebrospinal fluid features in SARS-CoV-2 RT-PCR positive patients. Clin Infect Dis 73:e3102–e3105. doi:10.1093/cid/ciaa1165.
    1. Shamier MC, Bogers S, Yusuf E, van Splunter M, ten Berge JCEM, Titulaer M, van Kampen JJA, GeurtsvanKessel CH. 2021. The role of antibody indexes in clinical virology. Clin Microbiol Infect 27:P1207–1211.

Source: PubMed

3
Subscribe