Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections

Zhenli Diao, Dongsheng Han, Rui Zhang, Jinming Li, Zhenli Diao, Dongsheng Han, Rui Zhang, Jinming Li

Abstract

Metagenomic next-generation sequencing (mNGS) has changed the diagnosis landscape of lower respiratory tract infections (LRIs). With the development of newer sequencing assays, it is now possible to assess all microorganisms in a sample using a single mNGS analysis. The applications of mNGS for LRIs span a wide range of areas including LRI diagnosis, airway microbiome analyses, human host response analyses, and prediction of drug resistance. mNGS is currently in an exciting transitional period; however, before implementation in a clinical setting, there are several barriers to overcome, such as the depletion of human nucleic acid, discrimination between colonization and infection, high costs, and so on. Aim of Review: In this review, we summarize the potential applications and challenges of mNGS in the diagnosis of LRIs to promote the integration of mNGS into the management of patients with respiratory tract infections in a clinical setting. Key Scientific Concepts of Review: Once its analytical validation, clinical validation and clinical utility been demonstrated, mNGS will become an important tool in the field of infectious disease diagnosis.

Keywords: ARGs, antibiotic resistance genes; CAP, Community-acquired pneumonia; CSF, Cerebrospinal fluid; DASH, Depletion of Abundant Sequences by Hybridization; DNBs, DNA nanoballs; DNase, Deoxyribonuclease; Fil, 5-μM filtration; IQC, Internal quality control; IQR, Interquartile range; LDTs, Laboratory-developed tests; LRIs, Lower respiratory tract infections; MTB, M. tuberculosis; Metagenomics; Mol, MolYsis™ Basic; NCBI, National Center for Biotechnology Information; NEB, NEBNext® Microbiome DNA Enrichment Kit; NPA, nasopharyngeal aspirate; Next generation sequencing; PMA, Propidium monoazide; PT, Proficiency testing; Pneumonia; QIA, QIAamp DNA Microbiome Kit; RMB, renminbi; RT-PCR, Reverse-transcription PCR; RVP, respiratory virus panel; Respiratory; RoC, Receiver-operating curve; SMRT, single-molecule real-time sequencing; TATs, Typical turnaround times; WGS, Whole-genome sequencing; mNGS; mNGS, Metagenomic next-generation sequencing.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

© 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Applications of mNGS in the area of lower respiratory tract infections.
Fig. 2
Fig. 2
The possible contaminations sources of mNGS and the tips for eliminating the contaminations. The sources of contaminations mainly include four components: (1) Laboratory environment and operators’ bodies (2) Consumables and reagents (3) Cross contamination and (4) Reference database contamination. It is necessary to adopt some strategies to minimize the impact of contamination.

References

    1. Estimates of the global regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis. 2017 Nov;17(11):1133–1161. doi: 10.1016/s1473-3099(17)30396-1.
    1. Jain S, Self WH, Wunderink RG, et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. The New England journal of medicine. 2015 Jul 30;373(5):415-27. doi: 10.1056/NEJMoa1500245. PubMed PMID: 26172429; PubMed Central PMCID: PMCPMC4728150. eng.
    1. Charalampous T., Kay G.L., Richardson H., Aydin A., Baldan R., Jeanes C., et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol. 2019;37(7):783–792. doi: 10.1038/s41587-019-0156-5.
    1. Wilson M.R., Naccache S.N., Samayoa E., Biagtan M., Bashir H., Yu G., et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. The New England journal of medicine. 2014;370(25):2408–2417. doi: 10.1056/NEJMoa1401268.
    1. Li H., Gao H., Meng H., Wang Q.i., Li S., Chen H., et al. Detection of Pulmonary Infectious Pathogens From Lung Biopsy Tissues by Metagenomic Next-Generation Sequencing. Front Cell Infect Microbiol. 2018;8 doi: 10.3389/fcimb.2018.0020510.3389/fcimb.2018.00205.s001.
    1. Chen X., Cao K.e., Wei Y.u., Qian Y., Liang J., Dong D., et al. Metagenomic next-generation sequencing in the diagnosis of severe pneumonias caused by Chlamydia psittaci. Infection. 2020;48(4):535–542. doi: 10.1007/s15010-020-01429-0.
    1. Wang J., Han Y., Feng J. Metagenomic next-generation sequencing for mixed pulmonary infection diagnosis. BMC Pulmonary Medicine. 2019;19(1) doi: 10.1186/s12890-019-1022-4.
    1. Miao Q, Ma Y, Wang Q, et al. Microbiological Diagnostic Performance of Metagenomic Next-generation Sequencing When Applied to Clinical Practice. Clin Infect Dis. 2018 Nov 13;67(suppl_2):S231-S240. doi: 10.1093/cid/ciy693. PubMed PMID: 30423048.
    1. Langelier C, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proceedings of the National Academy of Sciences of the United States of America. 2018 Dec 26;115(52):E12353-e12362. doi: 10.1073/pnas.1809700115. PubMed PMID: 30482864; PubMed Central PMCID: PMCPMC6310811. eng.
    1. Zhu N.a., Zhang D., Wang W., Li X., Yang B.o., Song J., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England journal of medicine. 2020;382(8):727–733. doi: 10.1056/NEJMoa2001017.
    1. Charles P.P., Whitby M., Fuller A., Stirling R., Wright A., Korman T., et al. The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy. Clin Infect Dis. 2008;46(10):1513–1521. doi: 10.1086/58946510.1086/586749.
    1. Gu L., Liu W., Ru M., Lin J., Yu G., Ye J., et al. The application of metagenomic next-generation sequencing in diagnosing Chlamydia psittaci pneumonia: a report of five cases. BMC Pulm Med. 2020;20(1) doi: 10.1186/s12890-020-1098-x.
    1. Shi C.-L., Han P., Tang P.-J., Chen M.-M., Ye Z.-J., Wu M.-Y., et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis. J Infect. 2020;81(4):567–574. doi: 10.1016/j.jinf.2020.08.004.
    1. Chen H, Yin Y, Gao H, et al. Clinical Utility of In-house Metagenomic Next-generation Sequencing for the Diagnosis of Lower Respiratory Tract Infections and Analysis of the Host Immune Response. Clin Infect Dis. 2020 Dec 23;71(Suppl 4):S416-s426. doi: 10.1093/cid/ciaa1516. PubMed PMID: 33367583; eng.
    1. Babiker A, Bradley HL, Stittleburg VD, et al. Metagenomic sequencing to detect respiratory viruses in persons under investigation for COVID-19. Journal of clinical microbiology. 2020 Oct 16. doi: 10.1128/JCM.02142-20. PubMed PMID: 33067271.
    1. Ramos-Sevillano E, Wade WG, Mann A, et al. The Effect of Influenza Virus on the Human Oropharyngeal Microbiome. Clin Infect Dis. 2019 May 30;68(12):1993-2002. doi: 10.1093/cid/ciy821. PubMed PMID: 30445563; PubMed Central PMCID: PMCPMC6541733.
    1. Langelier C, Zinter MS, Kalantar K, et al. Metagenomic Sequencing Detects Respiratory Pathogens in Hematopoietic Cellular Transplant Patients. Am J Respir Crit Care Med. 2018 Feb 15;197(4):524-528. doi: 10.1164/rccm.201706-1097LE. PubMed PMID: 28686513; PubMed Central PMCID: PMCPMC5821905. eng.
    1. Ciuffreda L., Rodríguez-Pérez H., Flores C. Nanopore sequencing and its application to the study of microbial communities. Comput Struct Biotechnol J. 2021;19:1497–1511. doi: 10.1016/j.csbj.2021.02.020.
    1. van Boheemen S., van Rijn A.L., Pappas N., Carbo E.C., Vorderman R.H.P., Sidorov I., et al. Retrospective Validation of a Metagenomic Sequencing Protocol for Combined Detection of RNA and DNA Viruses Using Respiratory Samples from Pediatric Patients. J Mol Diagn. 2020;22(2):196–207. doi: 10.1016/j.jmoldx.2019.10.007.
    1. Yang M, Cousineau A, Liu X, et al. Direct Metatranscriptome RNA-seq and Multiplex RT-PCR Amplicon Sequencing on Nanopore MinION - Promising Strategies for Multiplex Identification of Viable Pathogens in Food. Frontiers in microbiology. 2020;11:514. doi: 10.3389/fmicb.2020.00514. PubMed PMID: 32328039; PubMed Central PMCID: PMCPMC7160302. eng.
    1. Tsalik EL, Henao R, Nichols M, et al. Host gene expression classifiers diagnose acute respiratory illness etiology. Sci Transl Med. 2016 Jan 20;8(322):322ra11. doi: 10.1126/scitranslmed.aad6873. PubMed PMID: 26791949; PubMed Central PMCID: PMCPMC4905578.
    1. Ransom E.M., Potter R.F., Dantas G., et al. Genomic Prediction of Antimicrobial Resistance: Ready or Not, Here It Comes! Clin Chem. 2020 Oct 1;66(10):1278–1289. doi: 10.1093/clinchem/hvaa172. PubMed PMID: 32918462.
    1. Wang K, Li P, Lin Y, et al. Metagenomic Diagnosis for a Culture-Negative Sample From a Patient With Severe Pneumonia by Nanopore and Next-Generation Sequencing. Front Cell Infect Microbiol. 2020;10:182. doi: 10.3389/fcimb.2020.00182. PubMed PMID: 32432051; PubMed Central PMCID: PMCPMC7214676. eng.
    1. Simner P.J., Miller S., Carroll K.C. Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases. Clin Infect Dis. 2018 Feb 10;66(5):778–788. doi: 10.1093/cid/cix881.
    1. Goodwin S., McPherson J.D., McCombie W.R. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–351. doi: 10.1038/nrg.2016.49.
    1. Filkins L.M., Bryson A.L., Miller S.A., et al. Navigating Clinical Utilization of Direct-from-Specimen Metagenomic Pathogen Detection: Clinical Applications, Limitations, and Testing Recommendations. Clin Chem. 2020 Nov 1;66(11):1381–1395. doi: 10.1093/clinchem/hvaa183. PubMed PMID: 33141913.
    1. Zinter MS, Dvorak CC, Mayday MY, et al. Pulmonary Metagenomic Sequencing Suggests Missed Infections in Immunocompromised Children. Clin Infect Dis. 2019 May 17;68(11):1847-1855. doi: 10.1093/cid/ciy802. PubMed PMID: 30239621; PubMed Central PMCID: PMCPMC6784263.
    1. Li N, Cai Q, Miao Q, et al. High-Throughput Metagenomics for Identification of Pathogens in the Clinical Settings. Small methods. 2021 Jan 4;5(1):2000792. doi: 10.1002/smtd.202000792. PubMed PMID: 33614906; PubMed Central PMCID: PMCPMC7883231. eng.
    1. Drmanac R., Sparks A.B., Callow M.J., Halpern A.L., Burns N.L., Kermani B.G., et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science (New York, NY). 2010;327(5961):78–81. doi: 10.1126/science:1181498.
    1. Rothberg J.M., Hinz W., Rearick T.M., Schultz J., Mileski W., Davey M., et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–352. doi: 10.1038/nature10242.
    1. Scientific TF. Ion GeneStudio S5 Next-Generation Sequencing Series Specifications 2021. Available from: .
    1. Jain M, Olsen HE, Paten B, et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016 Nov 25;17(1):239. doi: 10.1186/s13059-016-1103-0. PubMed PMID: 27887629; PubMed Central PMCID: PMCPMC5124260. eng.
    1. López-Labrador F.X., Brown J.R., Fischer N., Harvala H., Van Boheemen S., Cinek O., et al. Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: wet lab procedure. J Clin Virol. 2021;134:104691. doi: 10.1016/j.jcv.2020.104691.
    1. Loman N.J., Quick J., Simpson J.T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015 Aug;12(8):733–735.
    1. Greninger AL, Naccache SN, Federman S, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome medicine. 2015 Sep 29;7:99. doi: 10.1186/s13073-015-0220-9. PubMed PMID: 26416663; PubMed Central PMCID: PMCPMC4587849. eng.
    1. Gu W, Miller S, Chiu CY. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu Rev Pathol. 2019 Jan 24;14:319-338. doi: 10.1146/annurev-pathmechdis-012418-012751. PubMed PMID: 30355154; PubMed Central PMCID: PMCPMC6345613.
    1. Yang J., Yang F., Ren L., Xiong Z., Wu Z., Dong J., et al. Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach. J Clin Microbiol. 2011;49(10):3463–3469. doi: 10.1128/JCM.00273-11.
    1. Marotz C.A., Sanders J.G., Zuniga C., Zaramela L.S., Knight R., Zengler K. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome. 2018;6(1) doi: 10.1186/s40168-018-0426-3.
    1. Hasan M.R., Rawat A., Tang P., Jithesh P.V., Thomas E., Tan R., et al. Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing. J Clin Microbiol. 2016;54(4):919–927. doi: 10.1128/JCM.03050-15.
    1. Highlander SK, Feehery GR, Yigit E, et al. A Method for Selectively Enriching Microbial DNA from Contaminating Vertebrate Host DNA. PloS one. 2013;8(10). doi: 10.1371/journal.pone.0076096.
    1. Morlan JD, Qu K, Sinicropi DV. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PloS one. 2012;7(8):e42882. doi: 10.1371/journal.pone.0042882. PubMed PMID: 22900061; PubMed Central PMCID: PMCPMC3416766.
    1. Fang N, Akinci-Tolun R. Depletion of Ribosomal RNA Sequences from Single-Cell RNA-Sequencing Library. Curr Protoc Mol Biol. 2016 Jul 1;115:7 27 1-7 27 20. doi: 10.1002/cpmb.11. PubMed PMID: 27366895.
    1. Adiconis X., Borges-Rivera D., Satija R., DeLuca D.S., Busby M.A., Berlin A.M., et al. Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat Methods. 2013;10(7):623–629. doi: 10.1038/nmeth.2483.
    1. Gu W., Crawford E.D., O’Donovan B.D., Wilson M.R., Chow E.D., Retallack H., et al. Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol. 2016;17(1) doi: 10.1186/s13059-016-0904-5.
    1. Culviner PH, Guegler CK, Laub MT. A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies. mBio. 2020 Apr 21;11(2). doi: 10.1128/mBio.00010-20. PubMed PMID: 32317317; PubMed Central PMCID: PMCPMC7175087. eng.
    1. Prezza G., Heckel T., Dietrich S., Homberger C., Westermann A.J., Vogel J. Improved bacterial RNA-seq by Cas9-based depletion of ribosomal RNA reads. RNA (New York, NY). 2020;26(8):1069–1078. doi: 10.1261/rna.075945.120.
    1. Weyrich L.S., Farrer A.G., Eisenhofer R., Arriola L.A., Young J., Selway C.A., et al. Laboratory contamination over time during low-biomass sample analysis. Mol Ecol Resour. 2019;19(4):982–996. doi: 10.1111/men.2019.19.issue-410.1111/1755-0998.13011.
    1. Larsson A.J.M., Stanley G., Sinha R., Weissman I.L., Sandberg R. Computational correction of index switching in multiplexed sequencing libraries. Nat Methods. 2018;15(5):305–307. doi: 10.1038/nmeth.4666.
    1. Quail M.A., Smith M., Jackson D., Leonard S., Skelly T., Swerdlow H.P., et al. SASI-Seq: sample assurance Spike-Ins, and highly differentiating 384 barcoding for Illumina sequencing. BMC Genomics. 2014;15(1):110. doi: 10.1186/1471-2164-15-110.
    1. Wilson M.R., O'Donovan B.D., Gelfand J.M., et al. Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing. JAMA neurology. 2018 Aug 1;75(8):947–955. doi: 10.1001/jamaneurol.2018.0463.
    1. Bal A., Pichon M., Picard C., Casalegno J.S., Valette M., Schuffenecker I., et al. Quality control implementation for universal characterization of DNA and RNA viruses in clinical respiratory samples using single metagenomic next-generation sequencing workflow. BMC Infect Dis. 2018;18(1) doi: 10.1186/s12879-018-3446-5.
    1. Davis N.M., Proctor D.M., Holmes S.P., Relman D.A., Callahan B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6(1) doi: 10.1186/s40168-018-0605-2.
    1. Zinter M.S., Mayday M.Y., Ryckman K.K., Jelliffe-Pawlowski L.L., DeRisi J.L. Towards precision quantification of contamination in metagenomic sequencing experiments. Microbiome. 2019;7(1) doi: 10.1186/s40168-019-0678-6.
    1. Huang J, Jiang E, Yang D, et al. Metagenomic Next-Generation Sequencing versus Traditional Pathogen Detection in the Diagnosis of Peripheral Pulmonary Infectious Lesions. Infect Drug Resist. 2020;13:567-576. doi: 10.2147/IDR.S235182. PubMed PMID: 32110067; PubMed Central PMCID: PMCPMC7036976.
    1. Wang H, Lu Z, Bao Y, et al. Clinical diagnostic application of metagenomic next-generation sequencing in children with severe nonresponding pneumonia. PloS one. 2020;15(6):e0232610. doi: 10.1371/journal.pone.0232610. PubMed PMID: 32497137; PubMed Central PMCID: PMCPMC7272011.
    1. Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019 Jun;20(6):341-355. doi: 10.1038/s41576-019-0113-7. PubMed PMID: 30918369; PubMed Central PMCID: PMCPMC6858796.
    1. Miller S, Chiu C, Rodino KG, et al. Point-Counterpoint: Should We Be Performing Metagenomic Next-Generation Sequencing for Infectious Disease Diagnosis in the Clinical Laboratory? Journal of clinical microbiology. 2020 Feb 24;58(3). doi: 10.1128/JCM.01739-19. PubMed PMID: 31619533; PubMed Central PMCID: PMCPMC7041574.
    1. Miller S., Naccache S.N., Samayoa E., Messacar K., Arevalo S., Federman S., et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Genome Res. 2019;29(5):831–842. doi: 10.1101/gr.238170.118.
    1. Flygare S., Simmon K., Miller C., Qiao Y.i., Kennedy B., Di Sera T., et al. Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling. Genome Biol. 2016;17(1) doi: 10.1186/s13059-016-0969-1.
    1. Yan Q, Wi YM, Thoendel MJ, et al. Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. Journal of clinical microbiology. 2019 Feb;57(2). doi: 10.1128/jcm.01182-18. PubMed PMID: 30429253; PubMed Central PMCID: PMCPMC6355540. eng.
    1. Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly. Brief Bioinform. 2019 Jul 19;20(4):1125-1136. doi: 10.1093/bib/bbx120. PubMed PMID: 29028872; PubMed Central PMCID: PMCPMC6781581.
    1. Sichtig H., Minogue T., Yan Y.i., Stefan C., Hall A., Tallon L., et al. FDA-ARGOS is a database with public quality-controlled reference genomes for diagnostic use and regulatory science. Nat Commun. 2019;10(1) doi: 10.1038/s41467-019-11306-6.
    1. Goodacre N, Aljanahi A, Nandakumar S, et al. A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection. mSphere. 2018 Mar-Apr;3(2). doi: 10.1128/mSphereDirect.00069-18. PubMed PMID: 29564396; PubMed Central PMCID: PMCPMC5853486. eng.
    1. Greninger AL. The challenge of diagnostic metagenomics. Expert review of molecular diagnostics. 2018 Jul;18(7):605-615. doi: 10.1080/14737159.2018.1487292. PubMed PMID: 29898605; eng.
    1. Grumaz S., Stevens P., Grumaz C., Decker S.O., Weigand M.A., Hofer S., et al. Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Med. 2016;8(1) doi: 10.1186/s13073-016-0326-8.
    1. Takeuchi S., Kawada J.-I., Horiba K., Okuno Y., Okumura T., Suzuki T., et al. Metagenomic analysis using next-generation sequencing of pathogens in bronchoalveolar lavage fluid from pediatric patients with respiratory failure. Sci Rep. 2019;9(1) doi: 10.1038/s41598-019-49372-x.
    1. Zhou H., Larkin P.M.K., Zhao D., Ma Q., Yao Y., Wu X., et al. Clinical Impact of Metagenomic Next-Generation Sequencing of Bronchoalveolar Lavage in the Diagnosis and Management of Pneumonia: A Multicenter Prospective Observational Study. J Mol Diagn. 2021 doi: 10.1016/j.jmoldx.2021.06.007.
    1. Graf E.H., Simmon K.E., Tardif K.D., Hymas W., Flygare S., Eilbeck K., et al. Unbiased Detection of Respiratory Viruses by Use of RNA Sequencing-Based Metagenomics: a Systematic Comparison to a Commercial PCR Panel. J Clin Microbiol. 2016;54(4):1000–1007. doi: 10.1128/JCM.03060-15.
    1. Schlaberg R., Chiu C.Y., Miller S., Procop G.W., Weinstock G. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection. Arch Pathol Lab Med. 2017;141(6):776–786. doi: 10.5858/arpa.2016-0539-RA.
    1. Han D, Li Z, Li R, et al. mNGS in clinical microbiology laboratories: on the road to maturity. Critical reviews in microbiology. 2019 Sep-Nov;45(5-6):668-685. doi: 10.1080/1040841x.2019.1681933. PubMed PMID: 31691607; eng.
    1. van Rijn AL, van Boheemen S, Sidorov I, et al. The respiratory virome and exacerbations in patients with chronic obstructive pulmonary disease. PloS one. 2019;14(10):e0223952. doi: 10.1371/journal.pone.0223952. PubMed PMID: 31647831; PubMed Central PMCID: PMCPMC6812800.
    1. Li Y, Sun B, Tang X, et al. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in critically ill patients. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2020 Feb;39(2):369-374. doi: 10.1007/s10096-019-03734-5. PubMed PMID: 31813078; PubMed Central PMCID: PMCPMC7102353.
    1. illumina. NextSeq 1000 & NextSeq 2000 Systems 2021. Available from:
    1. Saha S, Ramesh A, Kalantar K, et al. Unbiased Metagenomic Sequencing for Pediatric Meningitis in Bangladesh Reveals Neuroinvasive Chikungunya Virus Outbreak and Other Unrealized Pathogens. mBio. 2019 Dec 17;10(6). doi: 10.1128/mBio.02877-19. PubMed PMID: 31848287; PubMed Central PMCID: PMCPMC6918088. eng.
    1. Zhou H., Chen X., Hu T., Li J., Song H., Liu Y., et al. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Current biology : CB. 2020;30(11):2196–2203.e3. doi: 10.1016/j.cub.2020.05.023.
    1. institution BG. MGISEQ-200 2021. Available from: .
    1. institution BG. MGISEQ-2000 2021. Available from: .
    1. Fisher T. Ion GeneStudio™ S5 system 2021. Available from: .
    1. Yee R., Breitwieser F.P., Hao S., Opene B.N.A., Workman R.E., Tamma P.D., et al. Metagenomic next-generation sequencing of rectal swabs for the surveillance of antimicrobial-resistant organisms on the Illumina Miseq and Oxford MinION platforms. Eur J Clin Microbiol Infect Disofficial publication of the European Society of Clinical Microbiology. 2021;40(1):95–102. doi: 10.1007/s10096-020-03996-4.
    1. Ardui S, Ameur A, Vermeesch JR, et al. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic acids research. 2018 Mar 16;46(5):2159-2168. doi: 10.1093/nar/gky066. PubMed PMID: 29401301; PubMed Central PMCID: PMCPMC5861413. eng.
    1. Zhang Y, Ai JW, Cui P, et al. A cluster of cases of pneumocystis pneumonia identified by shotgun metagenomics approach. J Infect. 2019 Feb;78(2):158-169. doi: 10.1016/j.jinf.2018.08.013. PubMed PMID: 30149030; eng.

Source: PubMed

3
Subscribe