How to detect and track chronic neurologic sequelae of COVID-19? Use of auditory brainstem responses and neuroimaging for long-term patient follow-up

Michael Ogier, Guillaume Andéol, Emmanuel Sagui, Gregory Dal Bo, Michael Ogier, Guillaume Andéol, Emmanuel Sagui, Gregory Dal Bo

Abstract

This review intends to provide an overview of the current knowledge on neurologic sequelae of COVID-19 and their possible etiology, and, based on available data, proposes possible improvements in current medical care procedures. We conducted a thorough review of the scientific literature on neurologic manifestations of COVID-19, the neuroinvasive propensity of known coronaviruses (CoV) and their possible effects on brain structural and functional integrity. It appears that around one third of COVID-19 patients admitted to intensive care units (ICU) for respiratory difficulties exhibit neurologic symptoms. This may be due to progressive brain damage and dysfunction triggered by severe hypoxia and hypoxemia, heightened inflammation and SARS-CoV-2 dissemination into brain parenchyma, as suggested by current reports and analyses of previous CoV outbreaks. Viral invasion of the brain may particularly target and alter brainstem and thalamic functions and, consequently, result in sensorimotor dysfunctions and psychiatric disorders. Moreover, data collected from other structurally homologous CoV suggest that SARS-CoV-2 infection may lead to brain cell degeneration and demyelination similar to multiple sclerosis (MS). Hence, current evidence warrants further evaluation and long-term follow-up of possible neurologic sequelae in COVID-19 patients. It may be particularly relevant to evaluate brainstem integrity in recovered patients, as it is suspected that this cerebral area may particularly be dysfunctional following SARS-CoV-2 infection. Because CoV infection can potentially lead to chronic neuroinflammation and progressive demyelination, neuroimaging features and signs of MS may also be evaluated in the long term in recovered COVID-19 patients.

Keywords: Auditory brainstem responses; Brainstem dysfunction; COVID-19; Cytokine storm; Microglia priming; Multiple sclerosis; Neuroimaging; Neuroinflammatory mechanisms; Neurologic sequelae; SARS-CoV-2.

Conflict of interest statement

None.

© 2020 The Authors.

Figures

Fig. 1
Fig. 1
Long-term follow-up of COVID-19 patients predisposed to chronic neurologic sequelae. COVID-19 patients that are either admitted to ICU for severe respiratory failure or exhibit neurologic symptoms at initial diagnosis may be considered as having more risks for developing chronic neuroinflammation and brain cell degeneration due to infection. This may also be true for confirmed COVID-19 patients suffering from pre-existing conditions associated with chronic neuroinflammation. Patients exhibiting these characteristics should be submitted to a long-term neurologic follow-up protocol to ensure complete recovery. Auditory brainstem responses, neuroinflammation imaging and routine cognitive evaluation may be used for follow-up examination, as they might help assess existing or emerging brain dysfunction and objectivize further treatment. Abbreviations: ICU, Intensive Care Units; MRI, Magnetic resonance imaging; PET, Positron Emission Tomography; TBI, Traumatic Brain Injury.

References

    1. Agrawal A.S., Garron T., Tao X., Peng B.-H., Wakamiya M., Chan T.-S. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J. Virol. 2015;89:3659–3670. doi: 10.1128/JVI.03427-14.
    1. Andries K., Pensaert M.B. Immunofluorescence studies on the pathogenesis of hemagglutinating encephalomyelitis virus infection in pigs after oronasal inoculation. Am. J. Vet. Res. 1980;41:1372–1378.
    1. Arabi Y.M., Harthi A., Hussein J., Bouchama A., Johani S., Hajeer A.H. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) Infection. 2015;43:495–501. doi: 10.1007/s15010-015-0720-y.
    1. Arbour N., Day R., Newcombe J., Talbot P.J. Neuroinvasion by human respiratory coronaviruses. J. Virol. 2000;74:8913–8921.
    1. Balofsky A., George J., Papadakos P. Neuropulmonol. Handb. Clin. Neurol. 2017;140:33–48. doi: 10.1016/B978-0-444-63600-3.00003-9.
    1. Barton L.M., Duval E.J., Stroberg E., Ghosh S., Mukhopadhyay S. COVID-19 autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 2020 doi: 10.1093/ajcp/aqaa062.
    1. Benarroch E.E. Brainstem integration of arousal, sleep, cardiovascular, and respiratory control. Neurology. 2018;91:958–966. doi: 10.1212/WNL.0000000000006537.
    1. Browning K.N., Travagli R.A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Comp. Physiol. 2014;4:1339–1368. doi: 10.1002/cphy.c130055.
    1. Burks J.S., DeVald B.L., Jankovsky L.D., Gerdes J.C. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science. 1980;209:933–934. doi: 10.1126/science.7403860.
    1. Celesia G.G. Hearing disorders in brainstem lesions. Handb. Clin. Neurol. 2015;129:509–536. doi: 10.1016/B978-0-444-62630-1.00029-9.
    1. Chatterjee D., Biswas K., Nag S., Ramachandra S.G., Das Sarma J. Microglia play a major role in direct viral-induced demyelination. Clin. Dev. Immunol. 2013;2013:510396. doi: 10.1155/2013/510396.
    1. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020 doi: 10.1172/JCI137244.
    1. Chen T., Wu D., Chen H., Yan W., Yang D., Chen G. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. doi: 10.1136/bmj.m1091.
    1. de Aquino M.T.P., Puntambekar S.S., Savarin C., Bergmann C.C., Phares T.W., Hinton D.R. Role of CD25(+) CD4(+) T cells in acute and persistent coronavirus infection of the central nervous system. Virology. 2013;447:112–120. doi: 10.1016/j.virol.2013.08.030.
    1. Desforges M., Le Coupanec A., Dubeau P., Bourgouin A., Lajoie L., Dubé M. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12 doi: 10.3390/v12010014.
    1. Diamant N.E. Neuromuscular mechanisms of primary peristalsis. Am. J. Med. 1997;103:40S–43S. doi: 10.1016/s0002-9343(97)00320-3.
    1. Doobay M.F., Talman L.S., Obr T.D., Tian X., Davisson R.L., Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R373–R381. doi: 10.1152/ajpregu.00292.2006.
    1. Fonken L.K., Frank M.G., Gaudet A.D., Maier S.F. Stress and aging act through common mechanisms to elicit neuroinflammatory priming. Brain Behav. Immun. 2018;73:133–148. doi: 10.1016/j.bbi.2018.07.012.
    1. Füllgrabe C., Moore B.C.J. Evaluation of a method for determining binaural sensitivity to temporal fine structure (TFS-AF test) for older listeners with normal and impaired low-frequency hearing. Trends Hear. 2017;21 doi: 10.1177/2331216517737230. 2331216517737230.
    1. Furst M., Aharonson V., Levine R.A., Fullerton B.C., Tadmor R., Pratt H. Sound lateralization and interaural discrimination. Effects of brainstem infarcts and multiple sclerosis lesions. Hear. Res. 2000;143:29–42. doi: 10.1016/s0378-5955(00)00019-8.
    1. Furst M., Levine R.A. In: Handbook Of Clinical Neurology the Human Auditory System. Aminoff M.J., Boller F., Swaab D.F., editors. Elsevier; 2015. Chapter 36 - hearing disorders in multiple sclerosis; pp. 649–665.
    1. Furst M., Levine R.A., Korczyn A.D., Fullerton B.C., Tadmor R., Algom D. Brainstem lesions and click lateralization in patients with multiple sclerosis. Hear. Res. 1995;82:109–124. doi: 10.1016/0378-5955(94)00170-u.
    1. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 2005;202:415–424. doi: 10.1084/jem.20050828.
    1. Guo Y., Korteweg C., McNutt M.A., Gu J. Pathogenetic mechanisms of severe acute respiratory syndrome. Virus Res. 2008;133:4–12. doi: 10.1016/j.virusres.2007.01.022.
    1. Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.J., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203:631–637. doi: 10.1002/path.1570.
    1. Hanisch U.-K., Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007;10:1387–1394. doi: 10.1038/nn1997.
    1. Harmer D., Gilbert M., Borman R., Clark K.L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532:107–110. doi: 10.1016/s0014-5793(02)03640-2.
    1. Heckmann J.G., Heckmann S.M., Lang C.J.G., Hummel T. Neurological aspects of taste disorders. Arch. Neurol. 2003;60:667–671. doi: 10.1001/archneur.60.5.667.
    1. Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen C. Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 2020 doi: 10.1056/NEJMc2008597.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 doi: 10.1016/j.cell.2020.02.052.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Kim J.E., Heo J.H., Kim H.O., Song S.H., Park S.S., Park T.H. Neurological complications during treatment of Middle East respiratory syndrome. J. Clin. Neurol. 2017;13:227–233. doi: 10.3988/jcn.2017.13.3.227.
    1. Lau K.-K., Yu W.-C., Chu C.-M., Lau S.-T., Sheng B., Yuen K.-Y. Possible central nervous system infection by SARS coronavirus. Emerg. Infect. Dis. 2004;10:342–344. doi: 10.3201/eid1002.030638.
    1. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R., Horoi M., Le Bon S.D., Rodriguez A. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Oto-Rhino-Laryngol. 2020 doi: 10.1007/s00405-020-05965-1.
    1. Levine R.A., Gardner J.C., Fullerton B.C., Stufflebeam S.M., Furst M., Rosen B.R. Multiple sclerosis lesions of the auditory pons are not silent. Brain. 1994;117(Pt 5):1127–1141. doi: 10.1093/brain/117.5.1127.
    1. Li K., Wohlford-Lenane C., Perlman S., Zhao J., Jewell A.K., Reznikov L.R. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J. Infect. Dis. 2016;213:712–722. doi: 10.1093/infdis/jiv499.
    1. Li Y., Li H., Fan R., Wen B., Zhang J., Cao X. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology. 2016;59:163–169. doi: 10.1159/000453066.
    1. Li Y.-C., Bai W.-Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 2020 doi: 10.1002/jmv.25728.
    1. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in wuhan, China. JAMA Neurol. 2020 doi: 10.1001/jamaneurol.2020.1127.
    1. Matsuda K., Park C.H., Sunden Y., Kimura T., Ochiai K., Kida H. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Vet. Pathol. 2004;41:101–107. doi: 10.1354/vp.41-2-101.
    1. McCray P.B., Pewe L., Wohlford-Lenane C., Hickey M., Manzel L., Shi L. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 2007;81:813–821. doi: 10.1128/JVI.02012-06.
    1. Moore B.C.J., Sek A. Development of a fast method for determining sensitivity to temporal fine structure. Int. J. Audiol. 2009;48:161–171. doi: 10.1080/14992020802475235.
    1. Moriguchi T., Harii N., Goto J., Harada D., Sugawara H., Takamino J. A first Case of Meningitis/Encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 2020 doi: 10.1016/j.ijid.2020.03.062.
    1. Netland J., Meyerholz D.K., Moore S., Cassell M., Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 2008;82:7264–7275. doi: 10.1128/JVI.00737-08.
    1. Nicholls J.G., Paton J.F.R. Brainstem: neural networks vital for life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009;364:2447–2451. doi: 10.1098/rstb.2009.0064.
    1. Norden D.M., Muccigrosso M.M., Godbout J.P. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology. 2015;96:29–41. doi: 10.1016/j.neuropharm.2014.10.028.
    1. Paniz-Mondolfi A., Bryce C., Grimes Z., Gordon R.E., Reidy J., Lednicky J. Central nervous system involvement by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2) J. Med. Virol. 2020 doi: 10.1002/jmv.25915.
    1. Phares T.W., Stohlman S.A., Bergmann C.C. Intrathecal humoral immunity to encephalitic RNA viruses. Viruses. 2013;5:732–752. doi: 10.3390/v5020732.
    1. Poyiadji N., Shahin G., Noujaim D., Stone M., Patel S., Griffith B. COVID-19–associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020:201187. doi: 10.1148/radiol.2020201187.
    1. Quarantelli M. MRI/MRS in neuroinflammation: methodology and applications. Clin. Transl. Imaging. 2015;3:475–489. doi: 10.1007/s40336-015-0142-y.
    1. Ransohoff R.M., Perry V.H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 2009;27:119–145. doi: 10.1146/annurev.immunol.021908.132528.
    1. Scheeren B., Marchiori E., Pereira J., Meirelles G., Alves G., Hochhegger B. Pulmonary computed tomography findings in patients with chronic aspiration detected by videofluoroscopic swallowing study. Br. J. Radiol. 2016;89 doi: 10.1259/bjr.20160004. 20160004.
    1. Shi H., Han X., Zheng C. Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in wuhan, China. Radiology. 2020;295:20. doi: 10.1148/radiol.2020200269.
    1. Skinner D., Marro B.S., Lane T.E. Chemokine CXCL10 and coronavirus-induced neurologic disease. Viral Immunol. 2019;32:25–37. doi: 10.1089/vim.2018.0073.
    1. St-Jean J.R., Jacomy H., Desforges M., Vabret A., Freymuth F., Talbot P.J. Human respiratory coronavirus OC43: genetic stability and neuroinvasion. J. Virol. 2004;78:8824–8834. doi: 10.1128/JVI.78.16.8824-8834.2004.
    1. Stone J.L., Bailes J.E., Hassan A.N., Sindelar B., Patel V., Fino J. Brainstem monitoring in the neurocritical care unit: a rationale for real-time, automated neurophysiological monitoring. Neurocritical Care. 2017;26:143–156. doi: 10.1007/s12028-016-0298-y.
    1. Talan J. COVID-19: neurologists in Italy to colleagues in US: look for poorly-defined neurologic conditions in patients with the coronavirus. Neurol. Today. 2020 Available at:
    1. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemostasis. 2020 doi: 10.1111/jth.14817.
    1. Tao X., Garron T., Agrawal A.S., Algaissi A., Peng B.-H., Wakamiya M. Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease. J. Virol. 2015;90:57–67. doi: 10.1128/JVI.02009-15.
    1. Tay T.L., Béchade C., D’Andrea I., St-Pierre M.-K., Henry M.S., Roumier A. Microglia gone rogue: impacts on psychiatric disorders across the lifespan. Front. Mol. Neurosci. 2017;10:421. doi: 10.3389/fnmol.2017.00421.
    1. Troyer E.A., Kohn J.N., Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav. Immun. 2020 doi: 10.1016/j.bbi.2020.04.027.
    1. Wang H.-Y., Li X.-L., Yan Z.-R., Sun X.-P., Han J., Zhang B.-W. Potential neurological symptoms of COVID-19. Therap. Adv. Neurol. Disorder. 2020;13 1756286420917830.
    1. Werry E.L., Bright F.M., Piguet O., Ittner L.M., Halliday G.M., Hodges J.R. Recent developments in TSPO PET imaging as A biomarker of neuroinflammation in neurodegenerative disorders. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20133161.
    1. Wheeler D.L., Sariol A., Meyerholz D.K., Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J. Clin. Invest. 2018;128:931–943. doi: 10.1172/JCI97229.
    1. Wu Y., Xu X., Chen Z., Duan J., Hashimoto K., Yang L. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 2020 doi: 10.1016/j.bbi.2020.03.031.
    1. Xia H., Lazartigues E. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J. Neurochem. 2008;107:1482–1494. doi: 10.1111/j.1471-4159.2008.05723.x.
    1. Xu J., Zhong S., Liu J., Li L., Li Y., Wu X. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin. Infect. Dis. 2005;41:1089–1096. doi: 10.1086/444461.
    1. Zhao G., Jiang Y., Qiu H., Gao T., Zeng Y., Guo Y. Multi-Organ damage in human dipeptidyl peptidase 4 transgenic mice infected with Middle East respiratory syndrome-coronavirus. PloS One. 2015;10 doi: 10.1371/journal.pone.0145561.
    1. Zhao K., Huang J., Dai D., Feng Y., Liu L., Nie S. 2020. Acute Myelitis after SARS-CoV-2 Infection: a Case Report. medRxiv, 2020.03.16.20035105.
    1. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017.

Source: PubMed

3
Subscribe