Prone positioning improves ventilation-perfusion matching assessed by electrical impedance tomography in patients with ARDS: a prospective physiological study

Yu-Xian Wang, Ming Zhong, Min-Hui Dong, Jie-Qiong Song, Yi-Jun Zheng, Wei Wu, Jia-le Tao, Ling Zhu, Xin Zheng, Yu-Xian Wang, Ming Zhong, Min-Hui Dong, Jie-Qiong Song, Yi-Jun Zheng, Wei Wu, Jia-le Tao, Ling Zhu, Xin Zheng

Abstract

Background: The physiological effects of prone ventilation in ARDS patients have been discussed for a long time but have not been fully elucidated. Electrical impedance tomography (EIT) has emerged as a tool for bedside monitoring of pulmonary ventilation and perfusion, allowing the opportunity to obtain data. This study aimed to investigate the effect of prone positioning (PP) on ventilation-perfusion matching by contrast-enhanced EIT in patients with ARDS.

Design: Monocenter prospective physiologic study.

Setting: University medical ICU.

Patients: Ten mechanically ventilated ARDS patients who underwent PP.

Interventions: We performed EIT evaluation at the initiation of PP, 3 h after PP initiation and the end of PP during the first PP session.

Measurements and main results: The regional distribution of ventilation and perfusion was analyzed based on EIT images and compared to the clinical variables regarding respiratory and hemodynamic status. Prolonged prone ventilation improved oxygenation in the ARDS patients. Based on EIT measurements, the distribution of ventilation was homogenized and dorsal lung ventilation was significantly improved by PP administration, while the effect of PP on lung perfusion was relatively mild, with increased dorsal lung perfusion observed. The ventilation-perfusion matched region was found to increase and correlate with the increased PaO2/FiO2 by PP, which was attributed mainly to reduced shunt in the lung.

Conclusions: Prolonged prone ventilation increased dorsal ventilation and perfusion, which resulted in improved ventilation-perfusion matching and oxygenation.

Trial registration: ClinicalTrials.gov, NCT04725227. Registered on 25 January 2021.

Keywords: Acute respiratory distress syndrome; Electrical impedance tomography; Mechanical ventilation; Prone positioning; Pulmonary perfusion; Ventilation–perfusion matching.

Conflict of interest statement

The authors have no potential conflicts of interest to declare.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Effects of prone position on ventilation–perfusion matching in a representative study patient. Left: performed in the supine (T0), Middle: 3 h after PP initiation (T1), Right: at the end of PP (T2). During prone ventilation, pulmonary blood flow is mostly unmodified at the early stage and then gradually changes over time. Long prone ventilation increases dorsal ventilation and perfusion, which results in improved ventilation–perfusion matching
Fig. 2
Fig. 2
Evolution of Tidal image region (%) (A), Blood flow region (%) (C), ventilation (B) or perfusion distribution (%) (D) in the horizontal regions of interest (ROIs) at T0, T1, and T2. *vs. T0, p < 0.05. #vs. T1, p < 0.05
Fig. 3
Fig. 3
Comparisons of Matched Region (%) (A), Shunt-EIT (%) (B), and Dead Space-EIT (%) (C) at T0, T1, and T2. *p < 0.05. PaO2/FiO2 was significantly correlated with Matched Region (%) (D) and Shunt-EIT (%) (E), but not with Dead Space-EIT(%) (F)

References

    1. Douglas WW, Rehder K, Beynen FM, Sessler AD, Marsh HM. Improved oxygenation in patients with acute respiratory failure: the prone position. Am Rev Respir Dis. 1977;115(4):559–566.
    1. Pelosi P, Tubiolo D, Mascheroni D, Vicardi P, Crotti S, Valenza F, Gattinoni L. Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med. 1998;157(2):387–393. doi: 10.1164/ajrccm.157.2.97-04023.
    1. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–2168. doi: 10.1056/NEJMoa1214103.
    1. Cornejo RA, Diaz JC, Tobar EA, Bruhn AR, Ramos CA, Gonzalez RA, Repetto CA, Romero CM, Galvez LR, Llanos O, et al. Effects of prone positioning on lung protection in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2013;188(4):440–448. doi: 10.1164/rccm.201207-1279OC.
    1. Richter T, Bellani G, Scott Harris R, Vidal Melo MF, Winkler T, Venegas JG, Musch G. Effect of prone position on regional shunt, aeration, and perfusion in experimental acute lung injury. Am J Respir Crit Care Med. 2005;172(4):480–487. doi: 10.1164/rccm.200501-004OC.
    1. Richard JC, Bregeon F, Costes N, Bars DL, Tourvieille C, Lavenne F, Janier M, Bourdin G, Gimenez G, Guerin C. Effects of prone position and positive end-expiratory pressure on lung perfusion and ventilation. Crit Care Med. 2008;36(8):2373–2380. doi: 10.1097/CCM.0b013e31818094a9.
    1. Katira BH, Osada K, Engelberts D, Bastia L, Damiani LF, Li X, Chan H, Yoshida T, Amato MBP, Ferguson ND, et al. Positive end-expiratory pressure, pleural pressure, and regional compliance during pronation: an experimental study. Am J Respir Crit Care Med. 2021;203(10):1266–1274. doi: 10.1164/rccm.202007-2957OC.
    1. Martinsson A, Houltz E, Wallinder A, Lindgren S, Thorén A. Lung recruitment in the prone position after cardiac surgery: a randomised controlled study. Br J Anaesth. 2021;126(5):1067–1074. doi: 10.1016/j.bja.2020.12.039.
    1. Frerichs I, Amato MB, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, Bodenstein M, Gagnon H, Bohm SH, Teschner E, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72(1):83–93. doi: 10.1136/thoraxjnl-2016-208357.
    1. Smit HJ, Vonk Noordegraaf A, Marcus JT, Boonstra A, de Vries PM, Postmus PE. Determinants of pulmonary perfusion measured by electrical impedance tomography. Eur J Appl Physiol. 2004;92(1–2):45–49. doi: 10.1007/s00421-004-1043-3.
    1. Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, et al. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol (1985) 2012;112(1):225–236. doi: 10.1152/japplphysiol.01090.2010.
    1. Kotani T, Tanabe H, Yusa H, Saito S, Yamazaki K, Ozaki M. Electrical impedance tomography-guided prone positioning in a patient with acute cor pulmonale associated with severe acute respiratory distress syndrome. J Anesth. 2016;30(1):161–165. doi: 10.1007/s00540-015-2084-y.
    1. Brunin Y, Despres C, Pili-Floury S, Besch G. Lung recruiting effect of prone positioning in spontaneously breathing COVID-19 patients assessed by electrical impedance tomography. Am J Respir Crit Care Med. 2021;204:476–477. doi: 10.1164/rccm.202008-3044IM.
    1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818–824. doi: 10.1164/ajrccm.149.3.7509706.
    1. Costa EL, Borges JB, Melo A, Suarez-Sipmann F, Toufen C, Jr, Bohm SH, Amato MB. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35(6):1132–1137. doi: 10.1007/s00134-009-1447-y.
    1. Sella N, Pettenuzzo T, Zarantonello F, Andreatta G, De Cassai A, Schiavolin C, Simoni C, Pasin L, Boscolo A, Navalesi P. Electrical impedance tomography: a compass for the safe route to optimal PEEP. Respir Med. 2021;187:106555. doi: 10.1016/j.rmed.2021.106555.
    1. Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, Tubiolo D, Tagliabue P, Zanella A, Grasselli G, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med. 2020;48(8):1129–1134. doi: 10.1097/CCM.0000000000004386.
    1. Spinelli E, Kircher M, Stender B, Ottaviani I, Basile MC, Marongiu I, Colussi G, Grasselli G, Pesenti A, Mauri T. Unmatched ventilation and perfusion measured by electrical impedance tomography predicts the outcome of ARDS. Crit Care. 2021;25(1):192. doi: 10.1186/s13054-021-03615-4.
    1. Yoshida T, Piraino T, Lima CAS, Kavanagh BP, Amato MBP, Brochard L. Regional ventilation displayed by electrical impedance tomography as an incentive to decrease positive end-expiratory pressure. Am J Respir Crit Care Med. 2019;200(7):933–937. doi: 10.1164/rccm.201904-0797LE.
    1. Zhao Z, Moller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution. Intensive Care Med. 2009;35(11):1900–1906. doi: 10.1007/s00134-009-1589-y.
    1. Mauri T, Bellani G, Confalonieri A, Tagliabue P, Turella M, Coppadoro A, Citerio G, Patroniti N, Pesenti A. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support. Crit Care Med. 2013;41(7):1664–1673. doi: 10.1097/CCM.0b013e318287f6e7.
    1. Patroniti N, Bellani G, Cortinovis B, Foti G, Maggioni E, Manfio A, Pesenti A. Role of absolute lung volume to assess alveolar recruitment in acute respiratory distress syndrome patients. Crit Care Med. 2010;38(5):1300–1307. doi: 10.1097/CCM.0b013e3181d8cb51.
    1. Pelosi P, D'Andrea L, Vitale G, Pesenti A, Gattinoni L. Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1994;149(1):8–13. doi: 10.1164/ajrccm.149.1.8111603.
    1. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354(17):1775–1786. doi: 10.1056/NEJMoa052052.
    1. Gattinoni L, Pesenti A, Carlesso E. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure: impact and clinical fallout through the following 20 years. Intensive Care Med. 2013;39(11):1909–1915. doi: 10.1007/s00134-013-3066-x.
    1. Guerin C, Baboi L, Richard JC. Mechanisms of the effects of prone positioning in acute respiratory distress syndrome. Intensive Care Med. 2014;40(11):1634–1642. doi: 10.1007/s00134-014-3500-8.
    1. Galiatsou E, Kostanti E, Svarna E, Kitsakos A, Koulouras V, Efremidis SC, Nakos G. Prone position augments recruitment and prevents alveolar overinflation in acute lung injury. Am J Respir Crit Care Med. 2006;174(2):187–197. doi: 10.1164/rccm.200506-899OC.
    1. Gattinoni L, Taccone P, Carlesso E, Marini JJ. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med. 2013;188(11):1286–1293. doi: 10.1164/rccm.201308-1532CI.
    1. Wiener CM, Kirk W, Albert RK. Prone position reverses gravitational distribution of perfusion in dog lungs with oleic acid-induced injury. J Appl Physiol (1985) 1990;68(4):1386–1392. doi: 10.1152/jappl.1990.68.4.1386.
    1. Glenny RW, Lamm WJ, Albert RK, Robertson HT. Gravity is a minor determinant of pulmonary blood flow distribution. J Appl Physiol (1985) 1991;71(2):620–629. doi: 10.1152/jappl.1991.71.2.620.
    1. Perier F, Tuffet S, Maraffi T, Alcala G, Victor M, Haudebourg AF, De Prost N, Amato M, Carteaux G, Mekontso Dessap A. Effect of positive end-expiratory pressure and proning on ventilation and perfusion in COVID-19 acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;202(12):1713–1717. doi: 10.1164/rccm.202008-3058LE.
    1. Zarantonello F, Andreatta G, Sella N, Navalesi P. Prone position and lung ventilation and perfusion matching in acute respiratory failure due to COVID-19. Am J Respir Crit Care Med. 2020;202(2):278–279. doi: 10.1164/rccm.202003-0775IM.
    1. Lamm WJ, Graham MM, Albert RK. Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med. 1994;150(1):184–193. doi: 10.1164/ajrccm.150.1.8025748.
    1. Fossali T, Pavlovsky B, Ottolina D, Colombo R, Basile MC, Castelli A, Rech R, Borghi B, Ianniello A, Flor N, et al. Effects of prone position on lung recruitment and ventilation-perfusion matching in patients with COVID-19 acute respiratory distress syndrome: a combined CT scan/electrical impedance tomography study. Crit Care Med. 2022;50:723–732. doi: 10.1097/CCM.0000000000005450.
    1. Berg RMG, Hartmann JP, Iepsen UW, Christensen RH, Ronit A, Andreasen AS, Bailey DM, Mortensen J, Moseley PL, Plovsing RR. Therapeutic benefits of proning to improve pulmonary gas exchange in severe respiratory failure: focus on fundamentals of physiology. Exp Physiol. 2021.
    1. van der Burg PS, Miedema M, de Jongh FH, Frerichs I, van Kaam AH. Cross-sectional changes in lung volume measured by electrical impedance tomography are representative for the whole lung in ventilated preterm infants. Crit Care Med. 2014;42(6):1524–1530. doi: 10.1097/CCM.0000000000000230.

Source: PubMed

3
Subscribe