At-home sampling to meet geographical challenges for serological assessment of SARS-CoV-2 exposure in a rural region of northern Sweden, March to May 2021: a retrospective cohort study

Julia Wigren Byström, Linnea Vikström, Ebba Rosendal, Remigius Gröning, Yong-Dae Gwon, Emma Nilsson, Atin Sharma, Akbar Espaillat, Leo Hanke, Gerald McInerney, Andrea Puhar, Felipe Cava, Gunilla B Karlsson Hedestam, Therese Thunberg, Tor Monsen, Fredrik Elgh, Magnus Evander, Anders F Johansson, Anna K Överby, Clas Ahlm, Johan Normark, Mattias Ne Forsell, Julia Wigren Byström, Linnea Vikström, Ebba Rosendal, Remigius Gröning, Yong-Dae Gwon, Emma Nilsson, Atin Sharma, Akbar Espaillat, Leo Hanke, Gerald McInerney, Andrea Puhar, Felipe Cava, Gunilla B Karlsson Hedestam, Therese Thunberg, Tor Monsen, Fredrik Elgh, Magnus Evander, Anders F Johansson, Anna K Överby, Clas Ahlm, Johan Normark, Mattias Ne Forsell

Abstract

BackgroundThe current SARS-CoV-2 pandemic has highlighted a need for easy and safe blood sampling in combination with accurate serological methodology. Venipuncture for testing is usually performed by trained staff at healthcare centres. Long travel distances to healthcare centres in rural regions may introduce a bias of testing towards relatively large communities with closer access. Rural regions are therefore often not represented in population-based data.AimThe aim of this retrospective cohort study was to develop and implement a strategy for at-home testing in a rural region of Sweden during spring 2021, and to evaluate its role to provide equal health care for its inhabitants.MethodsWe developed a sensitive method to measure antibodies to the S-protein of SARS-CoV-2 and optimised this assay for clinical use together with a strategy of at-home capillary blood sampling.ResultsWe demonstrated that our ELISA gave comparable results after analysis of capillary blood or serum from SARS-CoV-2-experienced individuals. We demonstrated stability of the assay under conditions that reflected temperature and humidity during winter or summer. By assessment of capillary blood samples from 4,122 individuals, we could show both feasibility of the strategy and that implementation shifted the geographical spread of testing in favour of rural areas.ConclusionImplementation of at-home sampling enabled citizens living in remote rural areas access to centralised and sensitive laboratory antibody tests. The strategy for testing used here could therefore enable disease control authorities to get rapid access to information concerning immunity to infectious diseases, even across vast geographical distance.

Keywords: Sweden; coronavirus disease (COVID-19); laboratory; surveillance.

Conflict of interest statement

Conflict of interest: JWB, JN and MF are founders and shareholders of the diagnostic company Xerum AB that provided funds towards this project via grants from the Swedish Innovations Agency, Vinnova.

Figures

Figure 1
Figure 1
Validation of ELISA methodology to detect binding and neutralising anti-SARS-CoV-2 S-specific IgG, Region Västerbotten, Sweden, March–May 2020
Figure 2
Figure 2
Verification of at-home capillary blood self-sampling test methodology, Region Västerbotten, Sweden, September–November 2020
Figure 3
Figure 3
At-home SARS-CoV-2 serology testing of the population using dried blood spot sampling kits in Region Västerbotten, Sweden, March−May 2021 (n = 4,122)
Figure 4
Figure 4
Access to SARS-CoV-2 serological testing in Region Västerbotten, Sweden, by venous blood sampling, November 2020–January 2021 (n = 8,002) and dried blood spot self-sampling, March−May 2021 (n = 4,122)

References

    1. Milne G, Hames T, Scotton C, Gent N, Johnsen A, Anderson RM, et al. Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity? Lancet Respir Med. 2021;9(12):1450-66. 10.1016/S2213-2600(21)00407-0
    1. Altarawneh HN, Chemaitelly H, Hasan MR, Ayoub HH, Qassim S, AlMukdad S, et al. Protection against the Omicron variant from previous SARS-CoV-2 infection. N Engl J Med. 2022;386(13):1288-90. 10.1056/NEJMc2200133
    1. Folkhälsomyndigheten (FoHM). Teststrategi för covid-19 under 2021. [Testing strategy för covid-19 during 2021]. Stockholm: FoHM. [Accessed: 9 Feb 2023]. Swedish. Available from:
    1. Michlmayr D, Hansen CH, Gubbels SM, Valentiner-Branth P, Bager P, Obel N, et al. Observed protection against SARS-CoV-2 reinfection following a primary infection: A Danish cohort study among unvaccinated using two years of nationwide PCR-test data. Lancet Reg Health Eur. 2022;20:100452. 10.1016/j.lanepe.2022.100452
    1. Hansen CH, Friis NU, Bager P, Stegger M, Fonager J, Fomsgaard A, et al. Risk of reinfection, vaccine protection, and severity of infection with the BA.5 omicron subvariant: a nation-wide population-based study in Denmark. Lancet Infect Dis. 2023;23(2):167-76. 10.1016/S1473-3099(22)00595-3
    1. Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman LS, Ash N, et al. Protection and waning of natural and hybrid immunity to SARS-CoV-2. N Engl J Med. 2022;386(23):2201-12. 10.1056/NEJMoa2118946
    1. The Lancet Infectious Diseases . Why hybrid immunity is so triggering. Lancet Infect Dis. 2022;22(12):1649. 10.1016/S1473-3099(22)00746-0
    1. Krammer F, Simon V. Serology assays to manage COVID-19. Science. 2020;368(6495):1060-1. 10.1126/science.abc1227
    1. Lopman BA, Shioda K, Nguyen Q, Beckett SJ, Siegler AJ, Sullivan PS, et al. A framework for monitoring population immunity to SARS-CoV-2. Ann Epidemiol. 2021;63:75-8. 10.1016/j.annepidem.2021.08.013
    1. Shioda K, Lau MSY, Kraay ANM, Nelson KN, Siegler AJ, Sullivan PS, et al. Estimating the cumulative incidence of SARS-CoV-2 infection and the infection fatality ratio in light of waning antibodies. Epidemiology. 2021;32(4):518-24. 10.1097/EDE.0000000000001361
    1. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20(5):565-74. 10.1016/S1473-3099(20)30196-1
    1. Long QX, Liu BZ, Deng HJ, Wu GC, Deng K, Chen YK, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26(6):845-8. 10.1038/s41591-020-0897-1
    1. Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. 2020;92(6):568-76. 10.1002/jmv.25748
    1. Ing AJ, Cocks C, Green JP. COVID-19: in the footsteps of Ernest Shackleton. Thorax. 2020;75(8):693-4. 10.1136/thoraxjnl-2020-215091
    1. Beyerl J, Rubio-Acero R, Castelletti N, Paunovic I, Kroidl I, Khan ZN, et al. A dried blood spot protocol for high throughput analysis of SARS-CoV-2 serology based on the Roche Elecsys anti-N assay. EBioMedicine. 2021;70:103502. 10.1016/j.ebiom.2021.103502
    1. Swedish Ministry of Social Affairs. Ökad nationell testning för covid-19, 2020 - Överenskommelse mellan staten och Sveriges Kommuner och Regioner. DNR: S2020/05276. [Increased national testing for covid-19, 2020 - Agreement between the state and The Swedish Association of Local Authorities and Regions]. Stockholm: Swedish Government; 2020. Swedish. Available from:
    1. Folkhälsomyndigheten (FoHM). Nationell plan för vaccination mot covid-19. [National plan for vaccination against COVID-19]. Stockholm: FoHM; 2020. Swedish. Available from:
    1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. 10.1126/science.abb2507
    1. Hober S, Hellström C, Olofsson J, Andersson E, Bergström S, Jernbom Falk A, et al. Systematic evaluation of SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay. Clin Transl Immunology. 2021;10(7):e1312. 10.1002/cti2.1312
    1. United States Food and Drug Administration. (US FDA). Policy for Coronavirus Disease-2019 Tests - Guidance for Developers and Food and Drug Administration Staff. 4th edition. Silver Spring, Maryland, US: USFDA; 2020. Available from:
    1. Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020;26(7):1033-6. 10.1038/s41591-020-0913-5
    1. Okuya K, Hattori T, Saito T, Takadate Y, Sasaki M, Furuyama W, et al. Multiple Routes of Antibody-Dependent Enhancement of SARS-CoV-2 Infection. Microbiol Spectr. 2022;10(2):e0155321. 10.1128/spectrum.01553-21
    1. Lagerqvist N, Maleki KT, Verner-Carlsson J, Olausson M, Dillner J, Wigren Byström J, et al. Evaluation of 11 SARS-CoV-2 antibody tests by using samples from patients with defined IgG antibody titers. Sci Rep. 2021;11(1):7614. 10.1038/s41598-021-87289-6
    1. Castro Dopico X, Muschiol S, Grinberg NF, Aleman S, Sheward DJ, Hanke L, et al. Probabilistic classification of anti-SARS-CoV-2 antibody responses improves seroprevalence estimates. Clin Transl Immunology. 2022;11(3):e1379. 10.1002/cti2.1379
    1. Meyers E, Coen A, De Sutter A, Padalko E, Callens S, Vandekerckhove L, et al. Diagnostic performance of the SARS-CoV-2 S1RBD IgG ELISA (ImmunoDiagnostics) for the quantitative detection of SARS-CoV-2 antibodies on dried blood spots. J Clin Virol. 2022;155:105270. 10.1016/j.jcv.2022.105270
    1. Wong MP, Meas MA, Adams C, Hernandez S, Green V, Montoya M, et al. Development and implementation of dried blood spot-based COVID-19 serological assays for epidemiologic studies. Microbiol Spectr. 2022;10(3):e0247121. 10.1128/spectrum.02471-21
    1. Klumpp-Thomas C, Kalish H, Drew M, Hunsberger S, Snead K, Fay MP, et al. Standardization of ELISA protocols for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. Nat Commun. 2021;12(1):113. 10.1038/s41467-020-20383-x
    1. Toh ZQ, Higgins RA, Anderson J, Mazarakis N, Do LAH, Rautenbacher K, et al. The use of dried blood spots for the serological evaluation of SARS-CoV-2 antibodies. J Public Health (Oxf). 2022;44(2):e260-3. 10.1093/pubmed/fdab011
    1. Roxhed N, Bendes A, Dale M, Mattsson C, Hanke L, Dodig-Crnković T, et al. Multianalyte serology in home-sampled blood enables an unbiased assessment of the immune response against SARS-CoV-2. Nat Commun. 2021;12(1):3695. 10.1038/s41467-021-23893-4
    1. Beser J, Galanis I, Enkirch T, Kühlmann Berenzon S, van Straten E, Duracz J, et al. Seroprevalence of SARS-CoV-2 in Sweden, April 26 to May 9, 2021. Sci Rep. 2022;12(1):10816. 10.1038/s41598-022-15183-w
    1. Folkhälsomyndigheten (FoHM). Undersökningar av förekomsten av antikroppar mot SARS-CoV-2. [Investigations of the presence of antibodies against SARS-CoV-2]. Stockholm: FoHM. [Accessed: 1 May 2022]. Swedish. Available from:
    1. Hergott DEB, Owalla TJ, Balkus JE, Apio B, Lema J, Cemeri B, et al. Feasibility of community at-home dried blood spot collection combined with pooled reverse transcription PCR as a viable and convenient method for malaria epidemiology studies. Malar J. 2022;21(1):221. 10.1186/s12936-022-04239-x
    1. Barquín D, Ndarabu A, Carlos S, Fernández-Alonso M, Rubio-Garrido M, Makonda B, et al. HIV-1 diagnosis using dried blood spots from patients in Kinshasa, DRC: a tool to detect misdiagnosis and achieve World Health Organization 2030 targets. Int J Infect Dis. 2021;111:253-60. 10.1016/j.ijid.2021.08.035
    1. Øverbø J, Aziz A, Zaman K, Julin CH, Qadri F, Stene-Johansen K, et al. Stability and feasibility of dried blood spots for hepatitis E virus serology in a rural setting. Viruses. 2022;14(11):2525. 10.3390/v14112525
    1. Region Västerbotten. Aktuellt läge – följ statistik för covid 19. [Current situation – follow statistics for covid-19]. Umeå: Region Västerbotten. [Accessed: 7 Jun 2021]. Swedish. Available from:
    1. Cox RJ, Brokstad KA. Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nat Rev Immunol. 2020;20(10):581-2. 10.1038/s41577-020-00436-4
    1. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489-1501.e15. 10.1016/j.cell.2020.05.015
    1. GeurtsvanKessel CH, Okba NMA, Igloi Z, Bogers S, Embregts CWE, Laksono BM, et al. An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment. Nat Commun. 2020;11(1):3436. 10.1038/s41467-020-17317-y
    1. Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, et al. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis. 2020;26(7):1478-88. 10.3201/eid2607.200841
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. 10.1016/j.cell.2020.02.052
    1. Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 2020;41(5):355-9. 10.1016/j.it.2020.03.007

Source: PubMed

3
Subscribe