Safety of Clinical Ultrasound Neuromodulation

Sonja Radjenovic, Gregor Dörl, Martin Gaal, Roland Beisteiner, Sonja Radjenovic, Gregor Dörl, Martin Gaal, Roland Beisteiner

Abstract

Transcranial ultrasound holds much potential as a safe, non-invasive modality for navigated neuromodulation, with low-intensity focused ultrasound (FUS) and transcranial pulse stimulation (TPS) representing the two main modalities. While neuroscientific and preclinical applications have received much interest, clinical applications are still relatively scarce. For safety considerations, the current literature is largely based on guidelines for ultrasound imaging that uses various physical parameters to describe the ultrasound pulse form and expected bioeffects. However, the safety situation for neuromodulation is inherently different. This article provides an overview of relevant ultrasound parameters with a focus on bioeffects relevant for safe clinical applications. Further, a retrospective analysis of safety data for clinical TPS applications in patients is presented.

Keywords: FUS; TPS; clinical neuromodulation; neuromodulation; transcranial ultrasound.

Conflict of interest statement

R.B. receives research grants from STORZ Medical (including equipment) and is President of the Organization for Human Brain Mapping Alpine Chapter and the Austrian Society for fMRI (unpaid). S.R., G.D. and M.G. are involved in TPS research and application projects.

Figures

Figure 1
Figure 1
Experienced pressure and pain were rated during TPS treatment. (A) Percentages over all sessions and (B) number of patients across all sessions.
Figure 2
Figure 2
Adverse events during (A,B) and after (C,D). TPS treatment reported by patients across all sessions and percentage over all sessions, respectively. Detailed numbers are in Table 2.

References

    1. Darmani G., Bergmann T.O., Butts Pauly K., Caskey C.F., de Lecea L., Fomenko A., Fouragnan E., Legon W., Murphy K.R., Nandi T., et al. Non-Invasive Transcranial Ultrasound Stimulation for Neuromodulation. Clin. Neurophysiol. 2022;135:51–73. doi: 10.1016/j.clinph.2021.12.010.
    1. Meng Y., Hynynen K., Lipsman N. Applications of Focused Ultrasound in the Brain: From Thermoablation to Drug Delivery. Nat. Rev. Neurol. 2021;17:7–22. doi: 10.1038/s41582-020-00418-z.
    1. Sarica C., Nankoo J.-F., Fomenko A., Grippe T.C., Yamamoto K., Samuel N., Milano V., Vetkas A., Darmani G., Cizmeci M.N., et al. Human Studies of Transcranial Ultrasound Neuromodulation: A Systematic Review of Effectiveness and Safety. Brain Stimulat. 2022;15:737–746. doi: 10.1016/j.brs.2022.05.002.
    1. Pereira E.A., Green A.L., Nandi D., Aziz T.Z. Deep Brain Stimulation: Indications and Evidence. Expert Rev. Med. Devices. 2007;4:591–603. doi: 10.1586/17434440.4.5.591.
    1. Alster P., Koziorowski D.M., Za̧bek M., Dzierzȩcki S., Ma̧dry J., Duszyńska-Wa̧s K., Grygarowicz H., Zielonko J., Królicki L., Friedman A. Making a Difference—Positive Effect of Unilateral VIM Gamma Knife Thalamotomy in the Therapy of Tremor in Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) Front. Neurol. 2018;9:512. doi: 10.3389/fneur.2018.00512.
    1. Hallett M. Transcranial Magnetic Stimulation and the Human Brain. Nature. 2000;406:147–150. doi: 10.1038/35018000.
    1. Medeiros L., Souza I., Vidor L., Souza A., Deitos A., Volz M., Fregni F., CAUMO W., Torres I. Neurobiological Effects of Transcranial Direct Current Stimulation: A Review. Front. Psychiatry. 2012;3:110. doi: 10.3389/fpsyt.2012.00110.
    1. Truong D.Q., Thomas C., Hampstead B.M., Datta A. Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study. Neuromodul. Technol. Neural Interface. 2022;25:606–613. doi: 10.1016/j.neurom.2021.12.012.
    1. Cain J.A., Visagan S., Johnson M.A., Crone J., Blades R., Spivak N.M., Shattuck D.W., Monti M.M. Real Time and Delayed Effects of Subcortical Low Intensity Focused Ultrasound. Sci. Rep. 2021;11:6100. doi: 10.1038/s41598-021-85504-y.
    1. Spagnolo P.A., Wang H., Srivanitchapoom P., Schwandt M., Heilig M., Hallett M. Lack of Target Engagement Following Low-Frequency Deep Transcranial Magnetic Stimulation of the Anterior Insula. Neuromodul. Technol. Neural Interface. 2019;22:877–883. doi: 10.1111/ner.12875.
    1. Minjoli S., Saturnino G.B., Blicher J.U., Stagg C.J., Siebner H.R., Antunes A., Thielscher A. The Impact of Large Structural Brain Changes in Chronic Stroke Patients on the Electric Field Caused by Transcranial Brain Stimulation. NeuroImage Clin. 2017;15:106–117. doi: 10.1016/j.nicl.2017.04.014.
    1. Fomenko A., Neudorfer C., Dallapiazza R.F., Kalia S.K., Lozano A.M. Low-Intensity Ultrasound Neuromodulation: An Overview of Mechanisms and Emerging Human Applications. Brain Stimulat. 2018;11:1209–1217. doi: 10.1016/j.brs.2018.08.013.
    1. Beisteiner R., Matt E., Fan C., Baldysiak H., Schönfeld M., Philippi Novak T., Amini A., Aslan T., Reinecke R., Lehrner J., et al. Transcranial Pulse Stimulation with Ultrasound in Alzheimer’s Disease—A New Navigated Focal Brain Therapy. Adv. Sci. 2019;7:1902583. doi: 10.1002/advs.201902583.
    1. Collins M.N., Legon W., Mesce K.A. The Inhibitory Thermal Effects of Focused Ultrasound on an Identified, Single Motoneuron. eNeuro. 2021;8:ENEURO.0514-20.2021. doi: 10.1523/ENEURO.0514-20.2021.
    1. Lohse-Busch H., Reime U., Falland R. Symptomatic Treatment of Unresponsive Wakefulness Syndrome with Transcranially Focused Extracorporeal Shock Waves. NeuroRehabilitation. 2014;35:235–244. doi: 10.3233/NRE-141115.
    1. Monti M.M., Schnakers C., Korb A.S., Bystritsky A., Vespa P.M. Non-Invasive Ultrasonic Thalamic Stimulation in Disorders of Consciousness after Severe Brain Injury: A First-in-Man Report. Brain Stimulat. 2016;9:940–941. doi: 10.1016/j.brs.2016.07.008.
    1. Dörl G., Matt E., Beisteiner R. Functional Specificity of TPS Brain Stimulation Effects in Patients with Alzheimer’s Disease: A Follow-up FMRI Analysis. Neurol. Ther. 2022;11:1391–1398. doi: 10.1007/s40120-022-00362-8.
    1. Matt E., Dörl G., Beisteiner R. Transcranial Pulse Stimulation (TPS) Improves Depression in AD Patients on State-of-the-Art Treatment. Alzheimers Dement. Transl. Res. Clin. Interv. 2022;8:e12245. doi: 10.1002/trc2.12245.
    1. Cain J.A., Spivak N.M., Coetzee J.P., Crone J.S., Johnson M.A., Lutkenhoff E.S., Real C., Buitrago-Blanco M., Vespa P.M., Schnakers C., et al. Ultrasonic Deep Brain Neuromodulation in Acute Disorders of Consciousness: A Proof-of-Concept. Brain Sci. 2022;12:428. doi: 10.3390/brainsci12040428.
    1. Cain J.A., Spivak N.M., Coetzee J.P., Crone J.S., Johnson M.A., Lutkenhoff E.S., Real C., Buitrago-Blanco M., Vespa P.M., Schnakers C., et al. Ultrasonic Thalamic Stimulation in Chronic Disorders of Consciousness. Brain Stimulat. 2021;14:301–303. doi: 10.1016/j.brs.2021.01.008.
    1. Jeong H., Im J.J., Park J.-S., Na S.-H., Lee W., Yoo S.-S., Song I.-U., Chung Y.-A. A Pilot Clinical Study of Low-Intensity Transcranial Focused Ultrasound in Alzheimer’s Disease. Ultrasonography. 2021;40:512–519. doi: 10.14366/usg.20138.
    1. Lee C.-C., Chou C.-C., Hsiao F.-J., Chen Y.-H., Lin C.-F., Chen C.-J., Peng S.-J., Liu H.-L., Yu H.-Y. Pilot Study of Focused Ultrasound for Drug-Resistant Epilepsy. Epilepsia. 2022;63:162–175. doi: 10.1111/epi.17105.
    1. Szabo T.L. Diagnostic Ultrasound Imaging: Inside Out. 2nd ed. Academic Press; Cambridge, MA, USA: 2014.
    1. Hanson M.A. Health Effects of Exposure to Ultrasound and Infrasound: Report of the Independent Advisory Group on Non-Ionising Radiation. Health Protection Agency; Chilton, UK: 2010.
    1. Iloreta J.I., Zhou Y., Sankin G.N., Zhong P., Szeri A.J. Assessment of Shock Wave Lithotripters via Cavitation Potential. Phys. Fluids. 2007;19:086103. doi: 10.1063/1.2760279.
    1. Kung Y., Lan C., Hsiao M.-Y., Sun M.-K., Hsu Y.-H., Huang A.P.-H., Liao W.-H., Liu H.-L., Inserra C., Chen W.-S. Focused Shockwave Induced Blood-Brain Barrier Opening and Transfection. Sci. Rep. 2018;8:2218. doi: 10.1038/s41598-018-20672-y.
    1. Tung Y.-S., Vlachos F., Choi J.J., Deffieux T., Selert K., Konofagou E.E. In Vivo Transcranial Cavitation Threshold Detection during Ultrasound-Induced Blood–Brain Barrier Opening in Mice. Phys. Med. Biol. 2010;55:6141–6155. doi: 10.1088/0031-9155/55/20/007.
    1. Maxwell A.D., Cain C.A., Hall T.L., Fowlkes J.B., Xu Z. Probability of Cavitation for Single Ultrasound Pulses Applied to Tissues and Tissue-Mimicking Materials. Ultrasound Med. Biol. 2013;39:449–465. doi: 10.1016/j.ultrasmedbio.2012.09.004.
    1. Haller J., Wilkens V. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: II. Systematic Investigation in an Agar Material. Ultrasound Med. Biol. 2018;44:397–415. doi: 10.1016/j.ultrasmedbio.2017.10.007.
    1. Haller J., Wilkens V., Shaw A. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: I. Method and Terminology. Ultrasound Med. Biol. 2018;44:377–396. doi: 10.1016/j.ultrasmedbio.2017.08.1946.
    1. Vlaisavljevich E., Lin K.-W., Maxwell A., Warnez M.T., Mancia L., Singh R., Putnam A.J., Fowlkes B., Johnsen E., Cain C., et al. Effects of Ultrasound Frequency and Tissue Stiffness on the Histotripsy Intrinsic Threshold for Cavitation. Ultrasound Med. Biol. 2015;41:1651–1667. doi: 10.1016/j.ultrasmedbio.2015.01.028.
    1. Vlaisavljevich E., Maxwell A., Warnez M., Johnsen E., Cain C.A., Xu Z. Histotripsy-Induced Cavitation Cloud Initiation Thresholds in Tissues of Different Mechanical Properties. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2014;61:341–352. doi: 10.1109/TUFFC.2014.6722618.
    1. Church C.C., Labuda C., Nightingale K. A Theoretical Study of Inertial Cavitation from Acoustic Radiation Force Impulse Imaging and Implications for the Mechanical Index1. Ultrasound Med. Biol. 2015;41:472–485. doi: 10.1016/j.ultrasmedbio.2014.09.012.
    1. Dalecki D., Raeman C.H., Child S.Z., Penney D.P., Carstensen E.L. Remnants of Albunex® Nucleate Acoustic Cavitation. Ultrasound Med. Biol. 1997;23:1405–1412. doi: 10.1016/S0301-5629(97)00142-7.
    1. Statement on Biological Effects of Ultrasound In Vivo. [(accessed on 1 August 2022)]. Available online: .
    1. Huang A.P.-H., Lai D.-M., Hsu Y.-H., Kung Y., Lan C., Yeh C.-S., Tsai H.-H., Lin C.-F., Chen W.-S. Cavitation-Induced Traumatic Cerebral Contusion and Intracerebral Hemorrhage in the Rat Brain by Using an off-the-Shelf Clinical Shockwave Device. Sci. Rep. 2019;9:15614. doi: 10.1038/s41598-019-52117-5.
    1. Dalecki D., Raeman C.H., Child S.Z., Penney D.P., Mayer R., Carstensen E.L. The Influence of Contrast Agents on Hemorrhage Produced by Lithotripter Fields. Ultrasound Med. Biol. 1997;23:1435–1439. doi: 10.1016/S0301-5629(97)00151-8.
    1. Fasano A., Sammartino F., Llinas M., Lozano A.M. MRI-Guided Focused Ultrasound Thalamotomy in Fragile X–Associated Tremor/Ataxia Syndrome. Neurology. 2016;87:736–738. doi: 10.1212/WNL.0000000000002982.
    1. Dalecki D. Mechanical Bioeffects of Ultrasound. Annu. Rev. Biomed. Eng. 2004;6:229–248. doi: 10.1146/annurev.bioeng.6.040803.140126.
    1. Verhagen L., Gallea C., Folloni D., Constans C., Jensen D.E., Ahnine H., Roumazeilles L., Santin M., Ahmed B., Lehericy S., et al. Offline Impact of Transcranial Focused Ultrasound on Cortical Activation in Primates. eLife. 2019;8:e40541. doi: 10.7554/eLife.40541.
    1. Kollmann F.G., Ter Haar G., Dolezal G., Hennerici M.G., Salvesen K.A., Valentin L. Ultrasound Output: Thermal (TI) and Mechanical (MI) Indices. Ultraschall Med. 2013;34:422–434.
    1. Recommended Maximum Scanning Times for Displayed Thermal Index (TI) Values. [(accessed on 1 August 2022)]. Available online: .
    1. Lee W., Weisholtz D.S., Strangman G.E., Yoo S.-S. Safety Review and Perspectives of Transcranial Focused Ultrasound Brain Stimulation. Brain Neurorehabil. 2021;14:e4. doi: 10.12786/bn.2021.14.e4.
    1. Daffertshofer M., Gass A., Ringleb P., Sitzer M., Sliwka U., Els T., Sedlaczek O., Koroshetz W.J., Hennerici M.G. Transcranial Low-Frequency Ultrasound-Mediated Thrombolysis in Brain Ischemia. Stroke. 2005;36:1441–1446. doi: 10.1161/01.STR.0000170707.86793.1a.
    1. Younan Y., Deffieux T., Larrat B., Fink M., Tanter M., Aubry J.-F. Influence of the Pressure Field Distribution in Transcranial Ultrasonic Neurostimulation. Med. Phys. 2013;40:082902. doi: 10.1118/1.4812423.
    1. Kim H.-C., Lee W., Kunes J., Yoon K., Lee J.E., Foley L., Kowsari K., Yoo S.-S. Transcranial Focused Ultrasound Modulates Cortical and Thalamic Motor Activity in Awake Sheep. Sci. Rep. 2021;11:19274. doi: 10.1038/s41598-021-98920-x.
    1. Yoon K., Lee W., Lee J.E., Xu L., Croce P., Foley L., Yoo S.-S. Effects of Sonication Parameters on Transcranial Focused Ultrasound Brain Stimulation in an Ovine Model. PLoS ONE. 2019;14:e0224311. doi: 10.1371/journal.pone.0224311.
    1. Yang P.-F., Phipps M.A., Newton A.T., Chaplin V., Gore J.C., Caskey C.F., Chen L.M. Neuromodulation of Sensory Networks in Monkey Brain by Focused Ultrasound with MRI Guidance and Detection. Sci. Rep. 2018;8:7993. doi: 10.1038/s41598-018-26287-7.
    1. Dallapiazza R.F., Timbie K.F., Holmberg S., Gatesman J., Lopes M.B., Price R.J., Miller G.W., Elias W.J. Noninvasive Neuromodulation and Thalamic Mapping with Low-Intensity Focused Ultrasound. J. Neurosurg. 2018;128:875–884. doi: 10.3171/2016.11.JNS16976.
    1. Lee W., Lee S.D., Park M.Y., Foley L., Purcell-Estabrook E., Kim H., Fischer K., Maeng L.-S., Yoo S.-S. Image-Guided Focused Ultrasound-Mediated Regional Brain Stimulation in Sheep. Ultrasound Med. Biol. 2016;42:459–470. doi: 10.1016/j.ultrasmedbio.2015.10.001.
    1. Gaur P., Casey K.M., Kubanek J., Li N., Mohammadjavadi M., Saenz Y., Glover G.H., Bouley D.M., Pauly K.B. Histologic Safety of Transcranial Focused Ultrasound Neuromodulation and Magnetic Resonance Acoustic Radiation Force Imaging in Rhesus Macaques and Sheep. Brain Stimulat. 2020;13:804–814. doi: 10.1016/j.brs.2020.02.017.
    1. Munoz F., Meaney A., Gross A., Liu K., Pouliopoulos A.N., Liu D., Konofagou E.E., Ferrera V.P. Long Term Study of Motivational and Cognitive Effects of Low-Intensity Focused Ultrasound Neuromodulation in the Dorsal Striatum of Nonhuman Primates. Brain Stimulat. 2022;15:360–372. doi: 10.1016/j.brs.2022.01.014.
    1. Matt E., Kaindl L., Tenk S., Egger A., Kolarova T., Karahasanović N., Amini A., Arslan A., Sariçiçek K., Weber A., et al. First Evidence of Long-Term Effects of Transcranial Pulse Stimulation (TPS) on the Human Brain. J. Transl. Med. 2022;20:26. doi: 10.1186/s12967-021-03222-5.
    1. Lee W., Kim H., Jung Y., Song I.-U., Chung Y.A., Yoo S.-S. Image-Guided Transcranial Focused Ultrasound Stimulates Human Primary Somatosensory Cortex. Sci. Rep. 2015;5:8743. doi: 10.1038/srep08743.
    1. Lee W., Kim H.-C., Jung Y., Chung Y.A., Song I.-U., Lee J.-H., Yoo S.-S. Transcranial Focused Ultrasound Stimulation of Human Primary Visual Cortex. Sci. Rep. 2016;6:34026. doi: 10.1038/srep34026.
    1. Stern J.M., Spivak N.M., Becerra S.A., Kuhn T.P., Korb A.S., Kronemyer D., Khanlou N., Reyes S.D., Monti M.M., Schnakers C., et al. Safety of Focused Ultrasound Neuromodulation in Humans with Temporal Lobe Epilepsy. Brain Stimulat. 2021;14:1022–1031. doi: 10.1016/j.brs.2021.06.003.
    1. Beisteiner R., Lozano A.M. Transcranial Ultrasound Innovations Ready for Broad Clinical Application. Adv. Sci. 2020;7:2002026. doi: 10.1002/advs.202002026.
    1. Legon W., Adams S., Bansal P., Patel P.D., Hobbs L., Ai L., Mueller J.K., Meekins G., Gillick B.T. A Retrospective Qualitative Report of Symptoms and Safety from Transcranial Focused Ultrasound for Neuromodulation in Humans. Sci. Rep. 2020;10:5573. doi: 10.1038/s41598-020-62265-8.
    1. Sanguinetti J.L., Hameroff S., Smith E.E., Sato T., Daft C.M.W., Tyler W.J., Allen J.J.B. Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans. Front. Hum. Neurosci. 2020;14:52. doi: 10.3389/fnhum.2020.00052.
    1. Spivak N.M., Sanguinetti J.L., Monti M.M. Focusing in on the Future of Focused Ultrasound as a Translational Tool. Brain Sci. 2022;12:158. doi: 10.3390/brainsci12020158.

Source: PubMed

3
Subscribe