A Low Glycemic Index Mediterranean Diet Combined with Aerobic Physical Activity Rearranges the Gut Microbiota Signature in NAFLD Patients

Francesco Maria Calabrese, Vittoria Disciglio, Isabella Franco, Paolo Sorino, Caterina Bonfiglio, Antonella Bianco, Angelo Campanella, Tamara Lippolis, Pasqua Letizia Pesole, Maurizio Polignano, Mirco Vacca, Giusy Rita Caponio, Gianluigi Giannelli, Maria De Angelis, Alberto Ruben Osella, Francesco Maria Calabrese, Vittoria Disciglio, Isabella Franco, Paolo Sorino, Caterina Bonfiglio, Antonella Bianco, Angelo Campanella, Tamara Lippolis, Pasqua Letizia Pesole, Maurizio Polignano, Mirco Vacca, Giusy Rita Caponio, Gianluigi Giannelli, Maria De Angelis, Alberto Ruben Osella

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, and its prevalence worldwide is increasing. Several studies support the pathophysiological role of the gut-liver axis, where specific signal pathways are finely tuned by intestinal microbiota both in the onset and progression of NAFLD. In the present study, we investigate the impact of different lifestyle interventions on the gut microbiota composition in 109 NAFLD patients randomly allocated to six lifestyle intervention groups: Low Glycemic Index Mediterranean Diet (LGIMD), aerobic activity program (ATFIS_1), combined activity program (ATFIS_2), LGIMD plus ATFIS_1 or ATFIS2 and Control Diet based on CREA-AN (INRAN). The relative abundances of microbial taxa at all taxonomic levels were explored in all the intervention groups and used to cluster samples based on a statistical approach, relying both on the discriminant analysis of principal components (DAPCs) and on a linear regression model. Our analyses reveal important differences when physical activity and the Mediterranean diet are merged as treatment and allow us to identify the most statistically significant taxa linked with liver protection. These findings agree with the decreased 'controlled attenuation parameter' (CAP) detected in the LGIMD-ATFIS_1 group, measured using FibroScan®. In conclusion, our study demonstrates the synergistic effect of lifestyle interventions (diet and/or physical activity programs) on the gut microbiota composition in NAFLD patients.

Keywords: Mediterranean diet; NAFLD; gut microbiota; lifestyle intervention; physical activity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
DAPC analysis based on the adegenet R package: (A) DAPC plot obtained by superimposing samples on the prior group assignment with the screeplot of used discriminant analysis (DA) eigenvalues (two out of five in grey colour) reported in the bottom right of the panel; (B) proportions of successful reassignments: heat colors represent membership probabilities (red = 1, white = 0, orange/yellow = non completely succeeded reassignment) and blue crosses represent the DAPC prior cluster; and (C) loading DAPC plot reporting the genera that best highlighted the cluster separation. The variables that contributed the most to the DAPC loading plot are over the 0.01 threshold.
Figure 2
Figure 2
Maaslin2 associations in the single versus combined intervention groups. Aerobic physical activity (ATFIS_1), Mediterranean diet (LGIMD), and the combined LGIMD-ATFIS_1 intervention groups were compared by means of the linear regression model (Maaslin2), determining the multivariable associations between the phenotypes. Taxa relative abundances were reported on the Y axis.
Figure 3
Figure 3
Maaslin2 model, single versus combined groups. Grouped single (ATFIS_1 and LGIMD) interventions were compared with the combined (LGIMD-ATFIS_1) group, setting the allocation to each of the three groups as the random effect in the linear model.

References

    1. Vos T., Lim S.S., Abbafati C., Abbas K.M., Abbasi M., Abbasifard M., Abbasi-Kangevari M., Abbastabar H., Abd-Allah F., Abdelalim A., et al. GBD 2019 Diseases and Injuries Collaborators Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204–1222. doi: 10.1016/S0140-6736(20)30925-9.
    1. Younossi Z.M. Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. J. Hepatol. 2019;70:531–544. doi: 10.1016/j.jhep.2018.10.033.
    1. Abd El-Kader S.M., El-Den Ashmawy E.M.S. Non-Alcoholic Fatty Liver Disease: The Diagnosis and Management. World J. Hepatol. 2015;7:846–858. doi: 10.4254/wjh.v7.i6.846.
    1. Estes C., Razavi H., Loomba R., Younossi Z., Sanyal A.J. Modeling the Epidemic of Nonalcoholic Fatty Liver Disease Demonstrates an Exponential Increase in Burden of Disease. Hepatology. 2018;67:123–133. doi: 10.1002/hep.29466.
    1. Chrysavgis L., Giannakodimos I., Diamantopoulou P., Cholongitas E. Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma: Clinical Challenges of an Intriguing Link. World J. Gastroenterol. 2022;28:310–331. doi: 10.3748/wjg.v28.i3.310.
    1. Adam R., Karam V., Cailliez V., Grady O.J.G., Mirza D., Cherqui D., Klempnauer J., Salizzoni M., Pratschke J., Jamieson N., et al. 2018 Annual Report of the European Liver Transplant Registry (ELTR)—50-Year Evolution of Liver Transplantation. Transpl. Int. 2018;31:1293–1317. doi: 10.1111/tri.13358.
    1. Buzzetti E., Pinzani M., Tsochatzis E.A. The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD) Metabolism. 2016;65:1038–1048. doi: 10.1016/j.metabol.2015.12.012.
    1. Sberna A.L., Bouillet B., Rouland A., Brindisi M.C., Nguyen A., Mouillot T., Duvillard L., Denimal D., Loffroy R., Vergès B., et al. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) Clinical Practice Recommendations for the Management of Non-Alcoholic Fatty Liver Disease: Evaluation of Their Application in People with Type 2 Diabetes. Diabet. Med. 2018;35:368–375. doi: 10.1111/dme.13565.
    1. European Association for the Study of the Liver (EASL) European Association for the Study of Diabetes (EASD) European Association for the Study of Obesity (EASO) EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Diabetologia. 2016;59:1121–1140. doi: 10.1007/s00125-016-3902-y.
    1. Trovato F.M., Catalano D., Martines G.F., Pace P., Trovato G.M. Mediterranean Diet and Non-Alcoholic Fatty Liver Disease: The Need of Extended and Comprehensive Interventions. Clin. Nutr. 2015;34:86–88. doi: 10.1016/j.clnu.2014.01.018.
    1. Conlon B.A., Beasley J.M., Aebersold K., Jhangiani S.S., Wylie-Rosett J. Nutritional Management of Insulin Resistance in Nonalcoholic Fatty Liver Disease (NAFLD) Nutrients. 2013;5:4093–4114. doi: 10.3390/nu5104093.
    1. Farzanegi P., Dana A., Ebrahimpoor Z., Asadi M., Azarbayjani M.A. Mechanisms of Beneficial Effects of Exercise Training on Non-Alcoholic Fatty Liver Disease (NAFLD): Roles of Oxidative Stress and Inflammation. Eur. J. Sport Sci. 2019;19:994–1003. doi: 10.1080/17461391.2019.1571114.
    1. Xia Y., Wu Q., Dai H., Lv J., Liu Y., Sun H., Jiang Y., Chang Q., Niu K., Zhao Y. Associations of Nutritional, Lifestyle, and Metabolic Factors With Non-Alcoholic Fatty Liver Disease: An Umbrella Review With More Than 380,000 Participants. Front Nutr. 2021;8:642509. doi: 10.3389/fnut.2021.642509.
    1. Hrncir T., Hrncirova L., Kverka M., Hromadka R., Machova V., Trckova E., Kostovcikova K., Kralickova P., Krejsek J., Tlaskalova-Hogenova H. Gut Microbiota and NAFLD: Pathogenetic Mechanisms, Microbiota Signatures, and Therapeutic Interventions. Microorganisms. 2021;9:957. doi: 10.3390/microorganisms9050957.
    1. Liu Q., Liu S., Chen L., Zhao Z., Du S., Dong Q., Xin Y., Xuan S. Role and Effective Therapeutic Target of Gut Microbiota in NAFLD/NASH. Exp. Ther. Med. 2019;18:1935–1944. doi: 10.3892/etm.2019.7781.
    1. Sargeant J.A., Gray L.J., Bodicoat D.H., Willis S.A., Stensel D.J., Nimmo M.A., Aithal G.P., King J.A. The Effect of Exercise Training on Intrahepatic Triglyceride and Hepatic Insulin Sensitivity: A Systematic Review and Meta-Analysis. Obes. Rev. 2018;19:1446–1459. doi: 10.1111/obr.12719.
    1. Mascaró C.M., Bouzas C., Tur J.A. Association between Non-Alcoholic Fatty Liver Disease and Mediterranean Lifestyle: A Systematic Review. Nutrients. 2021;14:49. doi: 10.3390/nu14010049.
    1. Tilg H., Zmora N., Adolph T.E., Elinav E. The Intestinal Microbiota Fuelling Metabolic Inflammation. Nat. Rev. Immunol. 2020;20:40–54. doi: 10.1038/s41577-019-0198-4.
    1. Schuster S., Cabrera D., Arrese M., Feldstein A.E. Triggering and Resolution of Inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 2018;15:349–364. doi: 10.1038/s41575-018-0009-6.
    1. Chen J., Vitetta L. Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications. Int. J. Mol. Sci. 2020;21:5214. doi: 10.3390/ijms21155214.
    1. Park E., Jeong J.-J., Won S.-M., Sharma S.P., Gebru Y.A., Ganesan R., Gupta H., Suk K.T., Kim D.J. Gut Microbiota-Related Cellular and Molecular Mechanisms in the Progression of Nonalcoholic Fatty Liver Disease. Cells. 2021;10:2634. doi: 10.3390/cells10102634.
    1. Puri P., Daita K., Joyce A., Mirshahi F., Santhekadur P.K., Cazanave S., Luketic V.A., Siddiqui M.S., Boyett S., Min H.-K., et al. The Presence and Severity of Nonalcoholic Steatohepatitis Is Associated with Specific Changes in Circulating Bile Acids. Hepatology. 2018;67:534–548. doi: 10.1002/hep.29359.
    1. Ji Y., Yin Y., Li Z., Zhang W. Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD) Nutrients. 2019;11:1712. doi: 10.3390/nu11081712.
    1. Honsek C., Kabisch S., Kemper M., Gerbracht C., Arafat A.M., Birkenfeld A.L., Dambeck U., Osterhoff M.A., Weickert M.O., Pfeiffer A.F.H. Fibre Supplementation for the Prevention of Type 2 Diabetes and Improvement of Glucose Metabolism: The Randomised Controlled Optimal Fibre Trial (OptiFiT) Diabetologia. 2018;61:1295–1305. doi: 10.1007/s00125-018-4582-6.
    1. Kabisch S., Meyer N.M.T., Honsek C., Gerbracht C., Dambeck U., Kemper M., Osterhoff M.A., Birkenfeld A.L., Arafat A.M., Hjorth M.F., et al. Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT) Nutrients. 2019;11:2385. doi: 10.3390/nu11102385.
    1. Hattersley J.G., Pfeiffer A.F.H., Roden M., Petzke K.-J., Hoffmann D., Rudovich N.N., Randeva H.S., Vatish M., Osterhoff M., Goegebakan Ö., et al. Modulation of Amino Acid Metabolic Signatures by Supplemented Isoenergetic Diets Differing in Protein and Cereal Fiber Content. J. Clin. Endocrinol. Metab. 2014;99:E2599–E2609. doi: 10.1210/jc.2014-2302.
    1. Weickert M.O., Pfeiffer A.F.H. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018;148:7–12. doi: 10.1093/jn/nxx008.
    1. Weickert M.O., Roden M., Isken F., Hoffmann D., Nowotny P., Osterhoff M., Blaut M., Alpert C., Gögebakan O., Bumke-Vogt C., et al. Effects of Supplemented Isoenergetic Diets Differing in Cereal Fiber and Protein Content on Insulin Sensitivity in Overweight Humans. Am. J. Clin. Nutr. 2011;94:459–471. doi: 10.3945/ajcn.110.004374.
    1. InterAct Consortium Dietary Fibre and Incidence of Type 2 Diabetes in Eight European Countries: The EPIC-InterAct Study and a Meta-Analysis of Prospective Studies. Diabetologia. 2015;58:1394–1408. doi: 10.1007/s00125-015-3585-9.
    1. Franco I., Bianco A., Mirizzi A., Campanella A., Bonfiglio C., Sorino P., Notarnicola M., Tutino V., Cozzolongo R., Giannuzzi V., et al. Physical Activity and Low Glycemic Index Mediterranean Diet: Main and Modification Effects on NAFLD Score. Results from a Randomized Clinical Trial. Nutrients. 2020;13:66. doi: 10.3390/nu13010066.
    1. Mirizzi A., Franco I., Leone C.M., Bonfiglio C., Cozzolongo R., Notarnicola M., Giannuzzi V., Tutino V., De Nunzio V., Bruno I., et al. Effects of Some Food Components on Non-Alcoholic Fatty Liver Disease Severity: Results from a Cross-Sectional Study. Nutrients. 2019;11:2744. doi: 10.3390/nu11112744.
    1. Leclercq C., Arcella D., Piccinelli R., Sette S., Le Donne C., Turrini A. INRAN-SCAI 2005-06 Study Group The Italian National Food Consumption Survey INRAN-SCAI 2005-06: Main Results in Terms of Food Consumption. Public Health Nutr. 2009;12:2504–2532. doi: 10.1017/S1368980009005035.
    1. Misciagna G., Del Pilar Díaz M., Caramia D.V., Bonfiglio C., Franco I., Noviello M.R., Chiloiro M., Abbrescia D.I., Mirizzi A., Tanzi M., et al. Effect of a Low Glycemic Index Mediterranean Diet on Non-Alcoholic Fatty Liver Disease. A Randomized Controlled Clinici Trial. J. Nutr. Health Aging. 2017;21:404–412. doi: 10.1007/s12603-016-0809-8.
    1. Lee S.J., Kim S.U. Noninvasive Monitoring of Hepatic Steatosis: Controlled Attenuation Parameter and Magnetic Resonance Imaging-Proton Density Fat Fraction in Patients with Nonalcoholic Fatty Liver Disease. Expert Rev. Gastroenterol. Hepatol. 2019;13:523–530. doi: 10.1080/17474124.2019.1608820.
    1. Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glöckner F.O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013;41:e1. doi: 10.1093/nar/gks808.
    1. Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. [(accessed on 2 March 2022)]. Available online:
    1. Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9.
    1. Mallick H., Rahnavard A., McIver L.J., Ma S., Zhang Y., Nguyen L.H., Tickle T.L., Weingart G., Ren B., Schwager E.H., et al. Multivariable Association Discovery in Population-Scale Meta-Omics Studies. PLoS Comput. Biol. 2021;17:e1009442. doi: 10.1371/journal.pcbi.1009442.
    1. Parks D.H., Tyson G.W., Hugenholtz P., Beiko R.G. STAMP: Statistical Analysis of Taxonomic and Functional Profiles. Bioinformatics. 2014;30:3123–3124. doi: 10.1093/bioinformatics/btu494.
    1. Aron-Wisnewsky J., Vigliotti C., Witjes J., Le P., Holleboom A.G., Verheij J., Nieuwdorp M., Clément K. Gut Microbiota and Human NAFLD: Disentangling Microbial Signatures from Metabolic Disorders. Nat. Rev. Gastroenterol. Hepatol. 2020;17:279–297. doi: 10.1038/s41575-020-0269-9.
    1. Yang Q., Liang Q., Balakrishnan B., Belobrajdic D.P., Feng Q.-J., Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients. 2020;12:381. doi: 10.3390/nu12020381.
    1. Cella V., Bimonte V.M., Sabato C., Paoli A., Baldari C., Campanella M., Lenzi A., Ferretti E., Migliaccio S. Nutrition and Physical Activity-Induced Changes in Gut Microbiota: Possible Implications for Human Health and Athletic Performance. Foods. 2021;10:3075. doi: 10.3390/foods10123075.
    1. Dogra S.K., Doré J., Damak S. Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Front. Microbiol. 2020;11:572921. doi: 10.3389/fmicb.2020.572921.
    1. Zhong H., Ren H., Lu Y., Fang C., Hou G., Yang Z., Chen B., Yang F., Zhao Y., Shi Z., et al. Distinct Gut Metagenomics and Metaproteomics Signatures in Prediabetics and Treatment-Naïve Type 2 Diabetics. EBioMedicine. 2019;47:373–383. doi: 10.1016/j.ebiom.2019.08.048.
    1. Chaisuwan W., Phimolsiripol Y., Chaiyaso T., Techapun C., Leksawasdi N., Jantanasakulwong K., Rachtanapun P., Wangtueai S., Sommano S.R., You S., et al. The Antiviral Activity of Bacterial, Fungal, and Algal Polysaccharides as Bioactive Ingredients: Potential Uses for Enhancing Immune Systems and Preventing Viruses. Front. Nutr. 2021;8:772033. doi: 10.3389/fnut.2021.772033.
    1. Leung C., Rivera L., Furness J.B., Angus P.W. The Role of the Gut Microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2016;13:412–425. doi: 10.1038/nrgastro.2016.85.
    1. Magzal F., Shochat T., Haimov I., Tamir S., Asraf K., Tuchner-Arieli M., Even C., Agmon M. Increased Physical Activity Improves Gut Microbiota Composition and Reduces Short-Chain Fatty Acid Concentrations in Older Adults with Insomnia. Sci. Rep. 2022;12:2265. doi: 10.1038/s41598-022-05099-w.
    1. Wang B., Jiang X., Cao M., Ge J., Bao Q., Tang L., Chen Y., Li L. Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-Alcoholic Fatty Liver Disease. Sci. Rep. 2016;6:32002. doi: 10.1038/srep32002.
    1. Pan X., Wen S.W., Kaminga A.C., Liu A. Gut Metabolites and Inflammation Factors in Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Sci. Rep. 2020;10:8848. doi: 10.1038/s41598-020-65051-8.
    1. Tsai M.-C., Liu Y.-Y., Lin C.-C., Wang C.-C., Wu Y.-J., Yong C.-C., Chen K.-D., Chuah S.-K., Yao C.-C., Huang P.-Y., et al. Gut Microbiota Dysbiosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study in Taiwan. Nutrients. 2020;12:820. doi: 10.3390/nu12030820.
    1. Lee G., You H.J., Bajaj J.S., Joo S.K., Yu J., Park S., Kang H., Park J.H., Kim J.H., Lee D.H., et al. Distinct Signatures of Gut Microbiome and Metabolites Associated with Significant Fibrosis in Non-Obese NAFLD. Nat. Commun. 2020;11:4982. doi: 10.1038/s41467-020-18754-5.
    1. Tang W., Yao X., Xia F., Yang M., Chen Z., Zhou B., Liu Q. Modulation of the Gut Microbiota in Rats by Hugan Qingzhi Tablets during the Treatment of High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease. Oxid Med. Cell Longev. 2018;2018:7261619. doi: 10.1155/2018/7261619.
    1. Rajilić-Stojanović M., de Vos W.M. The First 1000 Cultured Species of the Human Gastrointestinal Microbiota. FEMS Microbiol. Rev. 2014;38:996–1047. doi: 10.1111/1574-6976.12075.
    1. Astbury S., Atallah E., Vijay A., Aithal G.P., Grove J.I., Valdes A.M. Lower Gut Microbiome Diversity and Higher Abundance of Proinflammatory Genus Collinsella Are Associated with Biopsy-Proven Nonalcoholic Steatohepatitis. Gut. Microbes. 2020;11:569–580. doi: 10.1080/19490976.2019.1681861.
    1. Vacca M., Celano G., Calabrese F.M., Portincasa P., Gobbetti M., De Angelis M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms. 2020;8:573. doi: 10.3390/microorganisms8040573.
    1. Shen F., Zheng R.-D., Sun X.-Q., Ding W.-J., Wang X.-Y., Fan J.-G. Gut Microbiota Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease. Hepatobiliary Pancreat Dis. Int. 2017;16:375–381. doi: 10.1016/S1499-3872(17)60019-5.
    1. Sayin S.I., Wahlström A., Felin J., Jäntti S., Marschall H.-U., Bamberg K., Angelin B., Hyötyläinen T., Orešič M., Bäckhed F. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metab. 2013;17:225–235. doi: 10.1016/j.cmet.2013.01.003.
    1. Buffie C.G., Bucci V., Stein R.R., McKenney P.T., Ling L., Gobourne A., No D., Liu H., Kinnebrew M., Viale A., et al. Precision Microbiome Reconstitution Restores Bile Acid Mediated Resistance to Clostridium Difficile. Nature. 2015;517:205–208. doi: 10.1038/nature13828.
    1. Mullish B.H., Pechlivanis A., Barker G.F., Thursz M.R., Marchesi J.R., McDonald J.A.K. Functional Microbiomics: Evaluation of Gut Microbiota-Bile Acid Metabolism Interactions in Health and Disease. Methods. 2018;149:49–58. doi: 10.1016/j.ymeth.2018.04.028.
    1. Zhang B., Jiang M., Zhao J., Song Y., Du W., Shi J. The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Front. Endocrinol. 2022;13 doi: 10.3389/fendo.2022.841703.
    1. Sehgal R., Ilha M., Vaittinen M., Kaminska D., Männistö V., Kärjä V., Tuomainen M., Hanhineva K., Romeo S., Pajukanta P., et al. Indole-3-Propionic Acid, a Gut-Derived Tryptophan Metabolite, Associates with Hepatic Fibrosis. Nutrients. 2021;13:3509. doi: 10.3390/nu13103509.
    1. Cheng D., Xie M.Z. A Review of a Potential and Promising Probiotic Candidate-Akkermansia Muciniphila. J. Appl. Microbiol. 2021;130:1813–1822. doi: 10.1111/jam.14911.
    1. Li Y., Xu W., Zhang F., Zhong S., Sun Y., Huo J., Zhu J., Wu C. The Gut Microbiota-Produced Indole-3-Propionic Acid Confers the Antihyperlipidemic Effect of Mulberry-Derived 1-Deoxynojirimycin. mSystems. 2020;5:e00313-20. doi: 10.1128/mSystems.00313-20.
    1. Juárez-Fernández M., Porras D., Petrov P., Román-Sagüillo S., García-Mediavilla M.V., Soluyanova P., Martínez-Flórez S., González-Gallego J., Nistal E., Jover R., et al. The Synbiotic Combination of Akkermansia Muciniphila and Quercetin Ameliorates Early Obesity and NAFLD through Gut Microbiota Reshaping and Bile Acid Metabolism Modulation. Antioxidants. 2021;10:2001. doi: 10.3390/antiox10122001.
    1. Hassan M.I., Lundgren B.R., Chaumun M., Whitfield D.M., Clark B., Schoenhofen I.C., Boddy C.N. Total Biosynthesis of Legionaminic Acid, a Bacterial Sialic Acid Analogue. Angew. Chem. Int. Ed. Engl. 2016;55:12018–12021. doi: 10.1002/anie.201606006.
    1. Sakamoto Y., Yoshio S., Doi H., Mori T., Matsuda M., Kawai H., Shimagaki T., Yoshikawa S., Aoki Y., Osawa Y., et al. Increased Frequency of Dysfunctional Siglec-7-CD57+PD-1+ Natural Killer Cells in Patients With Non-Alcoholic Fatty Liver Disease. Front. Immunol. 2021;12:603133. doi: 10.3389/fimmu.2021.603133.
    1. Montori V.M., Guyatt G.H. Intention-to-Treat Principle. CMAJ. 2001;165:1339–1341.

Source: PubMed

3
Subscribe