Diet and Exercise Exert a Differential Effect on Glucose Metabolism Markers According to the Degree of NAFLD Severity

Antonella Bianco, Isabella Franco, Ritanna Curci, Caterina Bonfiglio, Angelo Campanella, Antonella Mirizzi, Fabio Fucilli, Giuseppe Di Giovanni, Nicola Giampaolo, Pasqua Letizia Pesole, Alberto Ruben Osella, Antonella Bianco, Isabella Franco, Ritanna Curci, Caterina Bonfiglio, Angelo Campanella, Antonella Mirizzi, Fabio Fucilli, Giuseppe Di Giovanni, Nicola Giampaolo, Pasqua Letizia Pesole, Alberto Ruben Osella

Abstract

Background: Non-Alcoholic Fatty Liver Disease (NAFLD) and Type 2 Diabetes (T2D) are highly prevalent diseases worldwide. Insulin Resistance (IR) is the common denominator of the two conditions even if the precise timing of onset is unknown. Lifestyle change remains the most effective treatment to manage NAFLD. This study aimed to estimate the effect of the Low Glycemic Index Mediterranean Diet (LGIMD) and exercise (aerobic and resistance) over a one-year period on the longitudinal trajectories of glucose metabolism regulatory pathways.

Materials and methods: In this observational study, 58 subjects (aged 18-65) with different degrees of NAFLD severity were enrolled by the National Institute of Gastroenterology-IRCCS "S. de Bellis", to follow a 12-month program of combined exercise and diet.

Results: The mean age was 55 ± 7 years old. Gender was equally distributed among NAFLD categories. There was a statistically significant main effect of time for glycosylated hemoglobin (Hb1Ac) over the whole period (-5.41, 95% CI: -7.51; -3.32). There was a steady, statistically significant decrease of HbA1c in participants with moderate and severe NAFLD whereas this effect was observed after the 9th month in those with mild NAFLD.

Conclusions: The proposed program significantly improves glucose metabolism parameters, especially HbA1c.

Keywords: Mediterranean diet; exercise; glycosylated hemoglobin; insulin resistance; non-alcoholic fatty liver disease.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Generalized Estimating Equation (GEE): predictive margins of glucose and insulin by the degree of NAFLD severity and time. NAFLD: Non-Alcoholic Fatty Liver Disease.
Figure 2
Figure 2
Generalized Estimating Equation (GEE): predictive margins of Homa-IR and HbA1c by the degree of NAFLD severity and time. Homa: Homeostatic Model Assessment for Insulin Resistance; HbA1c: Glycosylated Haemoglobin; NAFLD: Non-Alcoholic Fatty Liver Disease.

References

    1. Mundi M.S., Velapati S., Patel J., Kellogg T.A., Abu Dayyeh B.K., Hurt R.T. Evolution of NAFLD and its management. Nutr. Clin. Pract. 2020;35:72–84. doi: 10.1002/ncp.10449.
    1. Smith B.W., Adams L.A. Nonalcoholic fatty liver disease and diabetes mellitus: Pathogenesis and treatment. Nat. Rev. Endocrinol. 2011;7:456–465. doi: 10.1038/nrendo.2011.72.
    1. Ballestri S., Zona S., Targher G., Romagnoli D., Baldelli E., Nascimbeni F., Roverato A., Guaraldi G., Lonardo A. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2016;31:936–944. doi: 10.1111/jgh.13264.
    1. Kunutsor S.K., Apekey T.A., Walley J. Liver aminotransferases and risk of incident type 2 diabetes: A systematic review and meta-analysis. Am. J. Epidemiol. 2013;178:159–171. doi: 10.1093/aje/kws469.
    1. Wannamethee S.G., Shaper A.G., Lennon L., Whincup P.H. Hepatic enzymes, the metabolic syndrome, and the risk of type 2 diabetes in older men. Diabetes Care. 2005;28:2913–2918. doi: 10.2337/diacare.28.12.2913.
    1. Brar G., Tsukamoto H. Alcoholic and non-alcoholic steatohepatitis: Global perspective and emerging science. J. Gastroenterol. 2019;54:218–225. doi: 10.1007/s00535-018-01542-w.
    1. Smith G.I., Shankaran M., Yoshino M., Schweitzer G.G., Chondronikola M., Beals J.W., Okunade A.L., Patterson B.W., Nyangau E., Field T. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Investig. 2020;130:1453–1460. doi: 10.1172/JCI134165.
    1. Day C.P., James O.F. Volume 114. Elsevier; Amsterdam, The Netherlands: 1998. Steatohepatitis: A Tale of Two “Hits”? pp. 842–845.
    1. Utzschneider K.M., Kahn S.E. The role of insulin resistance in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2006;91:4753–4761. doi: 10.1210/jc.2006-0587.
    1. Misciagna G., Del Pilar Diaz M., Caramia D.V., Bonfiglio C., Franco I., Noviello M.R., Chiloiro M., Abbrescia D.I., Mirizzi A., Tanzi M., et al. Effect of a Low Glycemic Index Mediterranean Diet on Non-Alcoholic Fatty Liver Disease. A Randomized Controlled Clinici Trial. J. Nutr. Health Aging. 2017;21:404–412. doi: 10.1007/s12603-016-0809-8.
    1. Franco I., Bianco A., Dìaz M.D.P., Bonfiglio C., Chiloiro M., Pou S.A., Becaria Coquet J., Mirizzi A., Nitti A., Campanella A., et al. Effectiveness of two physical activity programs on non-alcoholic fatty liver disease. a randomized controlled clinical trial. Rev. Fac. Cienc. Médicas Córdoba. 2019;76:26. doi: 10.31053/1853.0605.v76.n1.21638.
    1. Franco I., Bianco A., Mirizzi A., Campanella A., Bonfiglio C., Sorino P., Notarnicola M., Tutino V., Cozzolongo R., Giannuzzi V., et al. Physical Activity and Low Glycemic Index Mediterranean Diet: Main and Modification Effects on NAFLD Score. Results from a Randomized Clinical Trial. Nutrients. 2020;13:66. doi: 10.3390/nu13010066.
    1. Calabrese F.M., Disciglio V., Franco I., Sorino P., Bonfiglio C., Bianco A., Campanella A., Lippolis T., Pesole P.L., Polignano M., et al. A Low Glycemic Index Mediterranean Diet Combined with Aerobic Physical Activity Rearranges the Gut Microbiota Signature in NAFLD Patients. Nutrients. 2022;14:1773. doi: 10.3390/nu14091773.
    1. Curci R., Bianco A., Franco I., Campanella A., Mirizzi A., Bonfiglio C., Sorino P., Fucilli F., Di Giovanni G., Giampaolo N., et al. The Effect of Low Glycemic Index Mediterranean Diet and Combined Exercise Program on Metabolic-Associated Fatty Liver Disease: A Joint Modeling Approach. J. Clin. Med. 2022;11:4339. doi: 10.3390/jcm11154339.
    1. Swain D.P., Brawner C.A., Medicine A.C.O.S. ACSM’s Resource Manual for Guidelines for Exercise Testing and Prescription. Wolters Kluwer Health/Lippincott Williams & Wilkins; Amsterdam, The Netherlands: 2014.
    1. Craig C.L., Marshall A.L., Sjöström M., Bauman A.E., Booth M.L., Ainsworth B.E., Pratt M., Ekelund U., Yngve A., Sallis J.F., et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003;35:1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. Riboli E., Hunt K.J., Slimani N., Ferrari P., Norat T., Fahey M., Charrondiere U.R., Hemon B., Casagrande C., Vignat J., et al. European Prospective Investigation into Cancer and Nutrition (EPIC): Study populations and data collection. Public Health Nutr. 2002;5:1113–1124. doi: 10.1079/PHN2002394.
    1. Brazier J.E., Harper R., Jones N.M., O’Cathain A., Thomas K.J., Usherwood T., Westlake L. Validating the SF-36 health survey questionnaire: New outcome measure for primary care. BMJ. 1992;305:160–164. doi: 10.1136/bmj.305.6846.160.
    1. Chiloiro M., Misciagna G. Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease. Springer; Berlin/Heidelberg, Germany: 2012. Ultrasonographic Anthropometry: An Application to the Measurement of Liver and Abdominal Fat; pp. 2227–2242.
    1. Skinner H.A., Sheu W.J. Reliability of alcohol use indices. The Lifetime Drinking History and the MAST. J. Stud. Alcohol. 1982;43:1157–1170. doi: 10.15288/jsa.1982.43.1157.
    1. Chiloiro M., Caruso M.G., Cisternino A.M., Inguaggiato R., Reddavide R., Bonfiglio C., Guerra V., Notarnicola M., De Michele G., Correale M., et al. Ultrasound evaluation and correlates of fatty liver disease: A population study in a Mediterranean area. Metab. Syndr. Relat. Disord. 2013;11:349–358. doi: 10.1089/met.2012.0169.
    1. Veronese N., Notarnicola M., Cisternino A.M., Inguaggiato R., Guerra V., Reddavide R., Donghia R., Rotolo O., Zinzi I., Leandro G., et al. Trends in adherence to the Mediterranean diet in South Italy: A cross sectional study. Nutr. Metab. Cardiovasc. Dis. NMCD. 2019;30:410–417. doi: 10.1016/j.numecd.2019.11.003.
    1. Laukkanen R., Oja P., Pasanen M., Vuori I. Validity of a two kilometre walking test for estimating maximal aerobic power in overweight adults. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 1992;16:263–268.
    1. Canadian Society for Exercise Physiology . The Canadian Physical Activity, Fitness and Lifestyle Approach (CPAFLA): CSEP—Health and Fitness Program’s Health-Related Appraisal and Counselling Strategy. Canadian Society for Exercise Physiology; Ottawa, ON, Canada: 2003.
    1. Hoeger W.W., Hopkins D.R. A comparison of the sit and reach and the modified sit and reach in the measurement of flexibility in women. Res. Q. Exerc. Sport. 1992;63:191–195. doi: 10.1080/02701367.1992.10607580.
    1. Tanaka H., Monahan K.D., Seals D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001;37:153–156. doi: 10.1016/S0735-1097(00)01054-8.
    1. Colberg S.R., Sigal R.J., Fernhall B., Regensteiner J.G., Blissmer B.J., Rubin R.R., Chasan-Taber L., Albright A.L., Braun B. Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint position statement. Diabetes Care. 2010;33:e147–e167. doi: 10.2337/dc10-9990.
    1. Liang K.-Y., Zeger S.L. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22. doi: 10.1093/biomet/73.1.13.
    1. De Silva N.M.G., Borges M.C., Hingorani A.D., Engmann J., Shah T., Zhang X., Luan J.A., Langenberg C., Wong A., Kuh D. Liver function and risk of type 2 diabetes: Bidirectional Mendelian randomization study. Diabetes. 2019;68:1681–1691. doi: 10.2337/db18-1048.
    1. Fujiwara N., Qian T., Koneru B., Hoshida Y. Omics-derived hepatocellular carcinoma risk biomarkers for precision care of chronic liver diseases. Hepatol. Res. 2020;50:817–830. doi: 10.1111/hepr.13506.
    1. Brouwers M.C., Simons N., Stehouwer C.D., Isaacs A. Non-alcoholic fatty liver disease and cardiovascular disease: Assessing the evidence for causality. Diabetologia. 2020;63:253–260. doi: 10.1007/s00125-019-05024-3.
    1. Koo B.K., Allison M.A., Criqui M.H., Denenberg J.O., Wright C.M. The association between liver fat and systemic calcified atherosclerosis. J. Vasc. Surg. 2020;71:204–211. e204. doi: 10.1016/j.jvs.2019.03.044.
    1. Byrne C.D., Targher G. NAFLD as a driver of chronic kidney disease. J. Hepatol. 2020;72:785–801. doi: 10.1016/j.jhep.2020.01.013.
    1. Wild S.H., Walker J.J., Morling J.R., McAllister D.A., Colhoun H.M., Farran B., McGurnaghan S., McCrimmon R., Read S.H., Sattar N. Cardiovascular disease, cancer, and mortality among people with type 2 diabetes and alcoholic or nonalcoholic fatty liver disease hospital admission. Diabetes Care. 2018;41:341–347. doi: 10.2337/dc17-1590.
    1. Stefan N., Fritsche A., Schick F., Häring H.-U. Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes Endocrinol. 2016;4:789–798. doi: 10.1016/S2213-8587(16)00082-6.
    1. Stefan N., Schick F., Häring H.-U. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab. 2017;26:292–300. doi: 10.1016/j.cmet.2017.07.008.
    1. Keating S.E., George J., Johnson N.A. The benefits of exercise for patients with non-alcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol. 2015;9:1247–1250. doi: 10.1586/17474124.2015.1075392.
    1. Anania C., Perla F.M., Olivero F., Pacifico L., Chiesa C. Mediterranean diet and nonalcoholic fatty liver disease. World J. Gastroenterol. 2018;24:2083. doi: 10.3748/wjg.v24.i19.2083.
    1. Bullón-Vela V., Abete I., Tur J.A., Pintó X., Corbella E., Martínez-González M.A., Toledo E., Corella D., Macías M., Tinahones F. Influence of lifestyle factors and staple foods from the Mediterranean diet on non-alcoholic fatty liver disease among older individuals with metabolic syndrome features. Nutrition. 2020;71:110620. doi: 10.1016/j.nut.2019.110620.
    1. Errazuriz I., Dube S., Slama M., Visentin R., Nayar S., O’Connor H., Cobelli C., Das S.K., Basu A., Kremers W.K. Randomized controlled trial of a MUFA or fiber-rich diet on hepatic fat in prediabetes. J. Clin. Endocrinol. Metab. 2017;102:1765–1774. doi: 10.1210/jc.2016-3722.
    1. Boyraz M., Pirgon Ö., Dündar B., Çekmez F., Hatipoğlu N. Long-term treatment with n-3 polyunsaturated fatty acids as a monotherapy in children with nonalcoholic fatty liver disease. J. Clin. Res. Pediatr. Endocrinol. 2015;7:121. doi: 10.4274/jcrpe.1749.
    1. Martínez-González M.A., Salas-Salvadó J., Estruch R., Corella D., Fitó M., Ros E., Investigators P. Benefits of the Mediterranean diet: Insights from the PREDIMED study. Prog. Cardiovasc. Dis. 2015;58:50–60. doi: 10.1016/j.pcad.2015.04.003.
    1. Abenavoli L., Greco M., Milic N., Accattato F., Foti D., Gulletta E., Luzza F. Effect of Mediterranean diet and antioxidant formulation in non-alcoholic fatty liver disease: A randomized study. Nutrients. 2017;9:870. doi: 10.3390/nu9080870.
    1. Babu A.F., Csader S., Lok J., Gómez-Gallego C., Hanhineva K., El-Nezami H., Schwab U. Positive Effects of Exercise Intervention without Weight Loss and Dietary Changes in NAFLD-Related Clinical Parameters: A Systematic Review and Meta-Analysis. Nutrients. 2021;13:3135. doi: 10.3390/nu13093135.
    1. Sargeant J.A., Gray L.J., Bodicoat D.H., Willis S.A., Stensel D.J., Nimmo M.A., Aithal G.P., King J.A. The effect of exercise training on intrahepatic triglyceride and hepatic insulin sensitivity: A systematic review and meta-analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2018;19:1446–1459. doi: 10.1111/obr.12719.
    1. Clark J.S., Simpson B.S., Murphy K.J. The role of a Mediterranean diet and physical activity in decreasing age-related inflammation through modulation of the gut microbiota composition. Br. J. Nutr. 2022;128:1299–1314. doi: 10.1017/S0007114521003251.
    1. Guan L., Liu R. The Role of Diet and Gut Microbiota Interactions in Metabolic Homeostasis. Adv. Biol. 2023:e2300100. doi: 10.1002/adbi.202300100.
    1. Takahashi H., Kotani K., Tanaka K., Egucih Y., Anzai K. Therapeutic Approaches to Nonalcoholic Fatty Liver Disease: Exercise Intervention and Related Mechanisms. Front. Endocrinol. 2018;9:588. doi: 10.3389/fendo.2018.00588.
    1. Orci L.A., Gariani K., Oldani G., Delaune V., Morel P., Toso C. Exercise-based Interventions for Nonalcoholic Fatty Liver Disease: A Meta-analysis and Meta-regression. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2016;14:1398–1411. doi: 10.1016/j.cgh.2016.04.036.
    1. Thompson P.D., Arena R., Riebe D., Pescatello L.S. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription, ninth edition. Curr. Sports Med. Rep. 2013;12:215–217. doi: 10.1249/JSR.0b013e31829a68cf.
    1. Li G., Zhang P., Wang J., Gregg E.W., Yang W., Gong Q., Li H., Li H., Jiang Y., An Y., et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: A 20-year follow-up study. Lancet. 2008;371:1783–1789. doi: 10.1016/S0140-6736(08)60766-7.
    1. Bae J.C., Suh S., Park S.E., Rhee E.J., Park C.Y., Oh K.W., Park S.W., Kim S.W., Hur K.Y., Kim J.H., et al. Regular exercise is associated with a reduction in the risk of NAFLD and decreased liver enzymes in individuals with NAFLD independent of obesity in Korean adults. PLoS ONE. 2012;7:e46819. doi: 10.1371/journal.pone.0046819.
    1. Bergström J., Hermansen L., Hultman E., Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol. Scand. 1967;71:140–150. doi: 10.1111/j.1748-1716.1967.tb03720.x.
    1. Cartee G., Farrar R. Exercise training induces glycogen sparing during exercise by old rats. J. Appl. Physiol. 1988;64:259–265. doi: 10.1152/jappl.1988.64.1.259.
    1. Liu Y., Ye W., Chen Q., Zhang Y., Kuo C.-H., Korivi M. Resistance exercise intensity is correlated with attenuation of HbA1c and insulin in patients with type 2 diabetes: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health. 2019;16:140. doi: 10.3390/ijerph16010140.
    1. Umpierre D., Ribeiro P., Schaan B., Ribeiro J. Volume of supervised exercise training impacts glycaemic control in patients with type 2 diabetes: A systematic review with meta-regression analysis. Diabetologia. 2013;56:242–251. doi: 10.1007/s00125-012-2774-z.
    1. Houmard J.A., Tanner C.J., Slentz C.A., Duscha B.D., McCartney J.S., Kraus W.E. Effect of the volume and intensity of exercise training on insulin sensitivity. J. Appl. Physiol. 2004;96:101–106. doi: 10.1152/japplphysiol.00707.2003.
    1. Franz M.J., VanWormer J.J., Crain A.L., Boucher J.L., Histon T., Caplan W., Bowman J.D., Pronk N.P. Weight-loss outcomes: A systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J. Am. Diet. Assoc. 2007;107:1755–1767. doi: 10.1016/j.jada.2007.07.017.
    1. Gelli C., Tarocchi M., Abenavoli L., Di Renzo L., Galli A., De Lorenzo A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J. Gastroenterol. 2017;23:3150–3162. doi: 10.3748/wjg.v23.i17.3150.
    1. O’sullivan C., Hynes N., Mahendran B., Andrews E., Avalos G., Tawfik S., Lowery A., Sultan S. Haemoglobin A1c (HbA1C) in non-diabetic and diabetic vascular patients. Is HbA1C an independent risk factor and predictor of adverse outcome? Eur. J. Vasc. Endovasc. Surg. 2006;32:188–197. doi: 10.1016/j.ejvs.2006.01.011.
    1. Cavero-Redondo I., Peleteiro B., Álvarez-Bueno C., Rodriguez-Artalejo F., Martínez-Vizcaíno V. Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: A systematic review and meta-analysis. BMJ Open. 2017;7:e015949. doi: 10.1136/bmjopen-2017-015949.
    1. Cavero-Redondo I., Peleteiro B., Álvarez-Bueno C., Garrido-Miguel M., Artero E.G., Martinez-Vizcaino V. The effects of physical activity interventions on glycated haemoglobin A1c in non-diabetic populations: A protocol for a systematic review and meta-analysis. BMJ Open. 2017;7:e015801. doi: 10.1136/bmjopen-2016-015801.
    1. Richter E.A., Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013;93:993–1017. doi: 10.1152/physrev.00038.2012.
    1. Tahara Y., Shima K. Kinetics of HbA1c, glycated albumin, and fructosamine and analysis of their weight functions against preceding plasma glucose level. Diabetes Care. 1995;18:440–447. doi: 10.2337/diacare.18.4.440.
    1. Wrench E., Rattley K., Lambert J.E., Killick R., Hayes L.D., Lauder R.M., Gaffney C.J. There is no dose-response relationship between the amount of exercise and improvement in HbA1c in interventions over 12 weeks in patients with type 2 diabetes: A meta-analysis and meta-regression. Acta Diabetol. 2022;59:1399–1415. doi: 10.1007/s00592-022-01918-8.
    1. Sherwani S.I., Khan H.A., Ekhzaimy A., Masood A., Sakharkar M.K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark. Insights. 2016;11:BMI.S38440. doi: 10.4137/BMI.S38440.
    1. WHO . International Classification of Diseases. 10th ed. WHO; Geneva, Switzerland: 2010.

Source: PubMed

3
Subscribe