Spotlight on a Short-Time Treatment with the IL-4/IL-13 Receptor Blocker in Patients with CRSwNP: microRNAs Modulations and Preliminary Clinical Evidence

Selena Mimmi, Nicola Lombardo, Domenico Maisano, Giovanna Piazzetta, Corrado Pelaia, Girolamo Pelaia, Marta Greco, Daniela Foti, Vincenzo Dattilo, Enrico Iaccino, Selena Mimmi, Nicola Lombardo, Domenico Maisano, Giovanna Piazzetta, Corrado Pelaia, Girolamo Pelaia, Marta Greco, Daniela Foti, Vincenzo Dattilo, Enrico Iaccino

Abstract

Already used for the treatment of some allergic and inflammatory diseases, such as asthma or atopic dermatitis, dupilumab has also been approved as add-on therapy for patients with CRSwNP, and it could represent the keystone to reducing the remission time as well as to improve healing and quality of life. On the other hand, the role of miRNAs as potential biomarkers of immune modulation is emerging. We analyzed the effects of a short-time treatment with dupilumab in patients with CRSwNP, analyzing the immune response modification as well as miRNAs modulations. First, in this early observation stage, all patients experienced remarkable improvement and were clinically stable. Indeed, we observed a significant decrease in CD4+ T cells and a significant reduction in total IgE (p < 0.05) and serum IL-8 levels (p < 0.01), indicating a reduction in the general inflammatory condition. In addition, we analyzed a panel of about 200 circulating miRNAs. After treatment, we noted a significant downregulation of hsa-mir-25-3p (p-value = 0.02415) and hsa-mir-185-5p (p-value = 0.04547), two miRNAs involved in the proliferation, inflammation, and dug-resistance, in accordance with the clinical status of patients. All these preliminary data aimed to identify new biomarkers of prognosis, identifiable with non-invasive procedures for patients. Further, these patients are still under observation, and others with different levels of responsiveness to treatment need to be enrolled to increase the statistical data.

Keywords: T cells; anti-IL-4/IL-13 receptor; antibody therapeutics; dupilumab; interleukins; miRNAs; nasal polyposis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Clinical parameters pre (T0) and post (T3) treatment with Dupilumab. Patients were evaluated with regards to canonical diagnostic/prognostic scores, such as SNOT-22 (panel A), NPS (panel B), and VAS (panel C). All parameters were expressed as means ± SD. Differences between two groups (T3 vs. T0) were analyzed by paired two-tailed t-test; * p < 0.05, ** p < 0.01.
Figure 2
Figure 2
IgE (A) and IL-8 (B) levels in serum of patients with CRSwNP before (T0) and after (T1, T2, T3) treatment with Dupilumab; dotted line indicates the reference value threshold. (C) Flow cytometry assay of circulating CD3+/CD4+ T cells in blood of the most representative patient (Pt1) during the observation; the percentage of CD3+/CD4+ T cells was reported in the Q2 square of each plot panel. (D) Percentage of CD3+/CD4+ T cells in the overall patients at the indicated timepoints; data are reported as the mean ± s.e.m. Data were analyzed by ANOVA for repeated measures, followed by Bonferroni’s multiple comparison test; * p < 0.05, ** p < 0.01.
Figure 3
Figure 3
Serum miRNAs profiling of patients at baseline (T0) and after treatment (T3). Heatmap displaying the results of a hierarchical cluster analysis (HCA) conducted on the patients’ serum levels of a 98 miRNAs panel at baseline and after the end of the treatment. Log2 fold expression values of reference are reported in the upper bars.
Figure 4
Figure 4
(A) Volcano plot of the 98 serum miRNAs analyzed by qRT-PCR (T3 vs. T0). Significant down-regulated miRNAs are localized in the upper-left section (dots colored green). (B) Serum miR-25-3p and miR-185-5p levels at T3 compared to baseline. Values are represented in whiskers plots as fold expression. Statistical significance is indicated at the top of the graph. * p ≤ 0.05.

References

    1. Bachert C., Zhang N., Cavaliere C., Weiping W., Gevaert E., Krysko O. Biologics for chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2020;145:725–739. doi: 10.1016/j.jaci.2020.01.020.
    1. Stevens W.W., Schleimer R.P., Kern R.C. Chronic Rhinosinusitis with Nasal Polyps. J. Allergy Clin. Immunol. Pract. 2016;4:565–572. doi: 10.1016/j.jaip.2016.04.012.
    1. Jonstam K., Swanson B.N., Mannent L.P., Cardell L., Tian N., Wang Y., Zhang D., Fan C., Holtappels G., Hamilton J.D., et al. Dupilumab reduces local type 2 pro-inflammatory biomarkers in chronic rhinosinusitis with nasal polyposis. Allergy. 2019;74:743–752. doi: 10.1111/all.13685.
    1. Kariyawasam H.H., James L.K., Gane S.B. Dupilumab: Clinical Efficacy of Blocking IL-4/IL-13 Signalling in Chronic Rhinosinusitis with Nasal Polyps. Drug Des. Devel. Ther. 2020;14:1757–1769. doi: 10.2147/DDDT.S243053.
    1. Singh R.P., Massachi I., Manickavel S., Singh S., Rao N.P., Hasan S., Mc Curdy D.K., Sharma S., Wong D., Hahn B.H., et al. The role of miRNA in inflammation and autoimmunity. Autoimmun. Rev. 2013;12:1160–1165. doi: 10.1016/j.autrev.2013.07.003.
    1. Lee Y.S., Dutta A. MicroRNAs in cancer. Annu. Rev. Pathol. 2009;4:199–227. doi: 10.1146/annurev.pathol.4.110807.092222.
    1. Wen H., Liu Z., Tang J., Bu L. MiR-185-5p targets RAB35 gene to regulate tumor cell-derived exosomes-mediated proliferation, migration and invasion of non-small cell lung cancer cells. Aging. 2021;13:21435–21450. doi: 10.18632/aging.203483.
    1. Manna I., Iaccino E., Dattilo V., Barone S., Vecchio E., Mimmi S., Filippelli E., Demonte G., Polidoro S., Granata A., et al. Exosome-associated miRNA profile as a prognostic tool for therapy response monitoring in multiple sclerosis patients. FASEB J. 2018;32:4241–4246. doi: 10.1096/fj.201701533R.
    1. Iuliano R., Vismara M.F., Dattilo V., Trapasso F., Baudi F., Perrotti N. The Role of MicroRNAs in Cancer Susceptibility. BioMed Res. Int. 2013;2013:591931. doi: 10.1155/2013/591931.
    1. Quirico L., Orso F. The power of microRNAs as diagnostic and prognostic biomarkers in liquid biopsies. Cancer Drug Resist. 2020;3:117–139. doi: 10.20517/cdr.2019.103.
    1. Laidlaw T.M., Mullol J., Woessner K.M., Amin N., Mannent L.P. Chronic Rhinosinusitis with Nasal Polyps and Asthma. J. Allergy Clin. Immunol. Pract. 2021;9:1133–1141. doi: 10.1016/j.jaip.2020.09.063.
    1. Saeed A.I., Sharov V., White J., Li J., Liang W., Bhagabati N., Braisted J., Klapa M., Currier T., Thiagarajan M., et al. TM4: A Free, Open-Source System for Microarray Data Management and Analysis. Biotechniques. 2003;34:374–378. doi: 10.2144/03342mt01.
    1. Hochberg Y. A Sharper Bonferroni Procedure for Multiple Tests of Significance. Biometrika. 1988;75:800–802. doi: 10.1093/biomet/75.4.800.
    1. Benjamini Y., Drai D., Elmer G., Kafkafi N., Golani I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001;125:279–284. doi: 10.1016/S0166-4328(01)00297-2.
    1. Gallo S., Russo F., Mozzanica F., Preti A., Bandi F., Costantino C., Gera R., Ottaviani F., Castelnuovo P. Prognostic value of the Sinonasal Outcome Test 22 (SNOT-22) in chronic rhinosinusitis. Acta Otorhinolaryngol. Ital. 2020;40:113–121. doi: 10.14639/0392-100X-N0364.
    1. Gelardi M., Bocciolini C., Notargiacomo M., Schiavetti I., Lingua C., Pecoraro P., Iannuzzi L., Quaranta V.A., Giancaspro R., Ronca G., et al. Chronic rhinosinusitis with nasal polyps: How to identify eligible patients for biologics in clinical practice. Acta Otorhinolaryngol. Ital. 2022;42:75–81. doi: 10.14639/0392-100X-N1699.
    1. Doulaptsi M., Prokopakis E., Seys S., Pugin B., Steelant B., Hellings P. Visual analogue scale for sino-nasal symptoms severity correlates with sino-nasal outcome test 22: Paving the way for a simple outcome tool of CRS burden. Clin. Transl. Allergy. 2018;8:32. doi: 10.1186/s13601-018-0219-6.
    1. Chen H., Pan H., Qian Y., Zhou W., Liu X. MiR-25-3p promotes the proliferation of triple negative breast cancer by targeting BTG2. Mol. Cancer. 2018;17:4. doi: 10.1186/s12943-017-0754-0.
    1. Zi Y., Zhang Y., Wu Y., Zhang L., Yang R., Huang Y. Downregulation of microRNA-25-3p inhibits the proliferation and promotes the apoptosis of multiple myeloma cells via targeting the PTEN/PI3K/AKT signaling pathway. Int. J. Mol. Med. 2021;47:8. doi: 10.3892/ijmm.2020.4841.
    1. Pei K., Zhu J.-J., Wang C.-E., Xie Q.-L., Guo J.-Y. MicroRNA-185-5p modulates chemosensitivity of human non-small cell lung cancer to cisplatin via targeting ABCC1. Eur. Rev. Med. Pharmacol. Sci. 2016;20:4697–4704.
    1. Luo C., Xin H., Zhou Z., Hu Z., Sun R., Yao N., Sun Q., Borjigin U., Wu X., Fan J., et al. Tumor-derived exosomes induce immunosuppressive macrophages to foster intrahepatic cholangiocarcinoma progression. Hepatology. 2022;76:982–999. doi: 10.1002/hep.32387.
    1. Bachert C., Han J.K., Desrosiers M., Hellings P.W., Amin N., Lee S.E., Mullol J., Greos L.S., Bosso J.V., Laidlaw T.M., et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): Results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019;394:1638–1650. doi: 10.1016/S0140-6736(19)31881-1.
    1. Gion Y., Okano M., Koyama T., Oura T., Nishikori A., Orita Y., Tachibana T., Marunaka H., Makino T., Nishizaki K., et al. Clinical Significance of Cytoplasmic IgE-Positive Mast Cells in Eosinophilic Chronic Rhinosinusitis. Int. J. Mol. Sci. 2020;21:1843. doi: 10.3390/ijms21051843.
    1. Allen J.S., Eisma R., Leonard G., Lafreniere D., Kreutzer D. Interleukin-8 expression in human nasal polyps. Otolaryngol. Head Neck Surg. 1997;117:535–541. doi: 10.1016/S0194-5998(97)70027-5.
    1. Alfaro C., Sanmamed M.F., Rodriguez-Ruiz M.E., Teijeira Á., Oñate C., González Á., Ponz M., Schalper K.A., Pérez-Gracia J.L., Melero I. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat. Rev. 2017;60:24–31. doi: 10.1016/j.ctrv.2017.08.004.
    1. Cristiani C.M., Capone M., Garofalo C., Madonna G., Mallardo D., Tuffanelli M., Vanella V., Greco M., Foti D.P., Viglietto G., et al. Altered Frequencies and Functions of Innate Lymphoid Cells in Melanoma Patients Are Modulated by Immune Checkpoints Inhibitors. Front. Immunol. 2022;13:811131. doi: 10.3389/fimmu.2022.811131.
    1. Otto B.A., Wenzel S.E. The role of cytokines in chronic rhinosinusitis with nasal polyps. Curr. Opin. Otolaryngol. Head Neck Surg. 2008;16:270–274. doi: 10.1097/MOO.0b013e3282fb2885.
    1. Niu Y.-Z., Gong G.-Q., Chen S., Chen J.-J., Kong W.-J., Wang Y.-J. Effects of IL-17 on expression of GRO-α and IL-8 in fibroblasts from nasal polyps. J. Huazhong Univ. Sci. Technol. Med. Sci. 2014;34:591–595. doi: 10.1007/s11596-014-1321-1.
    1. Carsuzaa F., Béquignon É., Dufour X., de Bonnecaze G., Lecron J.-C., Favot L. Cytokine Signature and Involvement in Chronic Rhinosinusitis with Nasal Polyps. Int. J. Mol. Sci. 2022;23:417. doi: 10.3390/ijms23010417.
    1. Pant H., Hughes A., Miljkovic D., Schembri M., Wormald P., Macardle P., Grose R., Zola H., Krumbiegel D. Accumulation of Effector Memory CD8+ T Cells in Nasal Polyps. Am. J. Rhinol. Allergy. 2013;27:e117–e126. doi: 10.2500/ajra.2013.27.3958.
    1. Ma J., Shi L.-L., Deng Y.-K., Wang H., Cao P.-P., Long X.-B., Zhang X.-H., Liu Y., Zeng M., Liu Z. CD8+T cells with distinct cytokine-producing features and low cytotoxic activity in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Clin. Exp. Allergy. 2016;46:1162–1175. doi: 10.1111/cea.12758.
    1. Ickrath P., Kleinsasser N., Ding X., Ginzkey C., Beyersdorf N., Hagen R., Kerkau T., Hackenberg S. Characterization of T-cell Subpopulations in Patients with Chronic Rhinosinusitis with Nasal Polyposis. Allergy Rhinol. 2017;8:139–147. doi: 10.2500/ar.2017.8.0214.
    1. Wang Y., Huang L., Shan N., Ma H., Lu S., Chen X., Long H. Establishing a three-miRNA signature as a prognostic model for colorectal cancer through bioinformatics analysis. Aging. 2021;13:19894–19907. doi: 10.18632/aging.203400.
    1. Moazzendizaji S., Sevbitov A., Ezzatifar F., Jalili H.R., Aalii M., Hemmatzadeh M., Aslani S., Navashenaq J.G., Safari R., Hosseinzadeh R., et al. microRNAs: Small molecules with a large impact on colorectal cancer. Biotechnol. Appl. Biochem. 2022;69:1893–1908. doi: 10.1002/bab.2255.
    1. Hajibabaie F., Abedpoor N., Assareh N., Tabatabaiefar M.A., Shariati L., Zarrabi A. The Importance of SNPs at miRNA Binding Sites as Biomarkers of Gastric and Colorectal Cancers: A Systematic Review. J. Pers. Med. 2022;12:456. doi: 10.3390/jpm12030456.
    1. Condrat C.E., Thompson D.C., Barbu M.G., Bugnar O.L., Boboc A., Cretoiu D., Suciu N., Cretoiu S.M., Voinea S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 2020;9:276. doi: 10.3390/cells9020276.
    1. Jung E., Choi J., Kim J.S., Han T.S. MicroRNA-Based Therapeutics for Drug-Resistant Colorectal Cancer. Pharmaceuticals. 2021;14:136. doi: 10.3390/ph14020136.
    1. Cao W., Cheng W., Wu W. MicroRNAs Reprogram Tumor Immune Response. Methods Mol Biol. 2017;1699:67–74. doi: 10.1007/978-1-4939-7435-1_4.
    1. Gutierrez-Vazquez C., Galan A.R., Fernandez-Alfara M., Mittelbrunn M., Sánchez-Cabo F., Martínez-Herrera D.J., Ramírez-Huesca M., Pascual-Montano A., Sanchez-Madrid F. miRNA profiling during antigen-dependent T cell activation: A role for miR-132-3p. Sci. Rep. 2017;7:3508. doi: 10.1038/s41598-017-03689-7.
    1. Yang M., Eyers F., Xiang Y., Guo M., Young I.G., Rosenberg H.F., Foster P.S. Expression Profiling of Differentiating Eosinophils in Bone Marrow Cultures Predicts Functional Links between MicroRNAs and Their Target mRNAs. PLoS ONE. 2014;9:e97537. doi: 10.1371/journal.pone.0097537.
    1. Salvi V., Gianello V., Tiberio L., Sozzani S., Bosisio D. Cytokine Targeting by miRNAs in Autoimmune Diseases. Front. Immunol. 2019;10:15. doi: 10.3389/fimmu.2019.00015.

Source: PubMed

3
Subscribe