Safety of a Combined WB-EMS and High-Protein Diet Intervention in Sarcopenic Obese Elderly Men

Wolfgang Kemmler, Simon von Stengel, Matthias Kohl, Nicolas Rohleder, Thomas Bertsch, Cornel C Sieber, Ellen Freiberger, Robert Kob, Wolfgang Kemmler, Simon von Stengel, Matthias Kohl, Nicolas Rohleder, Thomas Bertsch, Cornel C Sieber, Ellen Freiberger, Robert Kob

Abstract

Purpose: Whole-body electromyostimulation (WB-EMS) especially in combination with a high-protein supplementation has been established as an efficient treatment against sarcopenia. However, there are several case reports of rhabdomyolysis after WB-EMS application. Thus, we asked if this training could potentially lead to deteriorations of the cardiac as well as the renal function.

Materials and methods: One hundred sarcopenic obese men aged 70 years and older were randomly balanced (1-1-1) and allocated to one of the three study arms. During 16 weeks of intervention, these groups either performed WB-EMS and took a protein supplement (WB-EMS&P), solely received the protein supplement (Protein) or served as control group (CG). WB-EMS consisted of 1.5×20 min (85 Hz, 350 μs, 4 s of strain to 4 s of rest) applied with moderate-to-high intensity while moving. We further generated a daily protein intake of 1.7-1.8 g/kg/body mass per day. At baseline and 8-10 days after completion of the intervention, blood was drawn and biomarkers of muscle, cardiac and renal health were assessed.

Results: Hereby, we found slight but significant elevations of creatine kinase (CK) levels in the WB-EMS group pointing to minor damages of the skeletal muscle (140 U/l [81-210], p < 0.001). This was accompanied by a significant, low-grade increase of creatine kinase-muscle brain (CK-MB, 0.43 ng/mL [-0.29-0.96], p < 0.01) and high-sensitivity troponin T (hsTnT, 0.001 ng/mL. [0.000-0.003], p < 0.001) but without a higher risk of developing heart failure according to N-terminal prohormone of brain natriuretic peptide (NT-proBNP, -5.7 pg/mL [-38.8-24.6], p = 0.17). Estimated glomerular filtration rate (eGFR) was impaired neither by the high-protein supplementation alone nor in combination with WB-EMS (CG 76.0 mL/min/1.73 m2 [71.9-82.2] vs Protein 73.2 mL/min/1.73 m2 [63.0-78.9] vs WB-EMS&P 74.6 mL/min/1.73 m2 [62.8-84.1], p = 0.478).

Conclusion: In conclusion, even in the vulnerable group of sarcopenic obese seniors, the combination of WB-EMS with a high-protein intake revealed no short-term, negative impact on the eGFR, but potential consequences for the cardiovascular system need to be addressed in future studies.

Keywords: CK-MB; cystatin C; electromyostimulation; high protein; hsTnT; rhabdomyolysis; sarcopenic obesity.

Conflict of interest statement

The authors report no conflicts of interest in this work.

© 2020 Kemmler et al.

Figures

Figure 1
Figure 1
Diagram of participants flow through the study.
Figure 2
Figure 2
Biomarkers of muscular and cardiovascular health of the intervention groups at baseline and follow-up with clinical reference range (dotted lines). (A) creatine kinase, (B) CKMB, (C) hsTnT, (D) NT-proBNP, (E) hsCRP and (F) hsIL 6. The boxes represent interquartile ranges with the bold horizontal lines denoting the median. The whiskers show the highest and lowest values within the 1.5-fold interquartile range. The circles represent outliers and asterisks represent extreme outliers. Significant changes within a group and between groups at the same time point are marked with black lines. *p < 0.05; **p < 0.01; ***p < 0.001.
Figure 3
Figure 3
Biomarkers of protein metabolism and renal health of the intervention groups at baseline and follow-up. (A) daily protein intake of the participants, (B) albumin, (C) total protein, (D) urea, (E) creatinine, (F) cystatin C, (G) creatinine-based eGFR and (H) cystatin C-based eGFR. The boxes represent interquartile ranges with the bold horizontal lines denoting the median. The whiskers show the highest and lowest values within the 1.5-fold interquartile range. The circles represent outliers and asterisks represent extreme outliers. Significant changes within a group and between groups at the same time point are marked with black lines. **p < 0.01; ***p < 0.001.

References

    1. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi:10.1093/ageing/afy169
    1. Schaap LA, van Schoor NM, Lips P, Visser M. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: the longitudinal aging study amsterdam. J Gerontol a Biol Sci Med Sci. 2018;73(9):1199–1204. doi:10.1093/gerona/glx245
    1. Perna S, Peroni G, Anna FM, et al. Sarcopenia and sarcopenic obesity in comparison: prevalence, metabolic profile, and key differences. A cross-sectional study in Italian hospitalized elderly. Aging Clin Exp Res. 2017:1–10. doi:10.1007/s40520-016-0701-8
    1. Newman AB, Simonsick EM, Naydeck BL, et al. Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA. 2006;295(17):2018–2026. doi:10.1001/jama.295.17.2018
    1. Kim J-H, Cho JJ, Park YS. Relationship between sarcopenic obesity and cardiovascular disease risk as estimated by the framingham risk score. J Korean Med Sci. 2015;30(3):264–271. doi:10.3346/jkms.2015.30.3.264
    1. Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res. 2004;12(12):1995–2004. doi:10.1038/oby.2004.250
    1. Auyeung TW, Lee JSW, Leung J, Kwok T, Woo J. Adiposity to muscle ratio predicts incident physical limitation in a cohort of 3153 older adults—an alternative measurement of sarcopenia and sarcopenic obesity. AGE. 2013;35(4):1377–1385. doi:10.1007/s11357-012-9423-9
    1. Jung S, Yabushita N, Kim M, et al. Obesity and muscle weakness as risk factors for mobility limitation in community-dwelling older Japanese women: a two-year follow-up investigation. J Nutr Health Aging. 2016;20(1):28–34. doi:10.1007/s12603-016-0672-7
    1. Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol. 2018;14(9):513–537. doi:10.1038/s41574-018-0062-9
    1. Garvey WT, Mechanick JI, Brett EM, et al. American association of clinical endocrinologists And American college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016;22(Suppl 3):1–203. doi:10.4158/
    1. Bouchard DR, Dionne IJ, Brochu M. Sarcopenic/obesity and physical capacity in older men and women: data from the Nutrition as a determinant of successful aging (NuAge)—the quebec longitudinal study. Obesity. 2009;17(11):2082–2088. doi:10.1038/oby.2009.109
    1. Cesari M, Vellas B, Hsu F-C, et al. A physical activity intervention to treat the frailty syndrome in older persons—results from the LIFE-P STUDY. J Gerontol a Biol Sci Med Sci. 2015;70(2):216–222. doi:10.1093/gerona/glu099
    1. Landi F, Cesari M, Calvani R, et al. The “Sarcopenia and Physical fRailty IN older people: multi-componenT Treatment strategies” (SPRINTT) randomized controlled trial: design and methods. Aging Clin Exp Res. 2017;29(1):89–100. doi:10.1007/s40520-016-0715-2
    1. Carlson SA, Fulton JE, Schoenborn CA, Loustalot F. Trend and prevalence estimates based on the 2008 physical activity guidelines for Americans. Am J Prev Med. 2010;39(4):305–313. doi:10.1016/j.amepre.2010.06.006
    1. Moschny A, Platen P, Klaaßen-Mielke R, Trampisch U, Hinrichs T. Barriers to physical activity in older adults in Germany: a cross-sectional study. Int J Behav Nutr Phys Activity. 2011;8(1):121. doi:10.1186/1479-5868-8-121
    1. Simmonds BAJ, Hannam KJ, Fox KR, Tobias JH. An exploration of barriers and facilitators to older adults’ participation in higher impact physical activity and bone health: a qualitative study. Osteoporos Int. 2016;27(3):979–987. doi:10.1007/s00198-015-3376-7
    1. Kemmler W, von Stengel S. Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial. Clin Interv Aging. 2013;8:1353–1364. doi:10.2147/CIA.S52337
    1. Stöllberger C, Finsterer J. Side effects of and contraindications for whole-body electro-myo-stimulation: a viewpoint. BMJ Open Sport Exerc Med. 2019;5(1):e000619. doi:10.1136/bmjsem-2019-000619
    1. Kemmler W, Teschler M, Bebenek M, von Stengel S. Hohe Kreatinkinase-Werte nach exzessiver Ganzkörper-Elektromyostimulation: gesundheitliche Relevanz und Entwicklung im Trainingsverlauf. Wien Med Wochenschr. 2015;165(21):427–435. doi:10.1007/s10354-015-0394-1
    1. Stöllberger C, Finsterer J. Side effects of whole-body electro-myo-stimulation. Wien Med Wochenschr. 2019;169(7):173–180. doi:10.1007/s10354-018-0655-x
    1. Mai H, Zhao Y, Salerno S, Li Y, Yang L, Fu P. Rhabdomyolysis-induced acute kidney injury in a patient with undifferentiated connective tissue disease: a case report and literature review rhabdomyolysis-induced AKI in a patient with UCTD. Medicine. 2019;98(30):e16492. doi:10.1097/MD.0000000000016492
    1. Peng F, Lin X, Sun L, et al. Exertional rhabdomyolysis in a 21-year-old healthy man resulting from lower extremity training: a case report. Medicine. 2019;98(28):e16244. doi:10.1097/MD.0000000000016244
    1. Hong JY, Oh JH, Shin J. Rhabdomyolysis caused by knee push-ups with whole body electromyostimulation. Br J Hosp Med. 2016;77(9):542–543. doi:10.12968/hmed.2016.77.9.542
    1. Guarascio P, Lusi E, Soccorsi F. Electronic muscular stimulators: a novel unsuspected cause of rhabdomyolysis. Br J Sports Med. 2004;38(4):505. doi:10.1136/bjsm.2003.008540
    1. Guillén Astete CA, Zegarra Mondragón S, Medina Quiñones C. Rhabdomyolysis secondary to physical activity and simultaneous electrostimulation. A case report. Rheumatol Clin. 2015;11(4):262–263. doi:10.1016/j.reumae.2015.03.010
    1. Kästner A, Braun M, Meyer T. Two cases of rhabdomyolysis after training with electromyostimulation by 2 young male professional soccer players. Clin J Sport Med. 2015;25(6):e71–e73. doi:10.1097/JSM.0000000000000153
    1. Teschler M, Weissenfels A, Fröhlich M, Kohl M, Bebenek M, Kemmler W. (Very) high creatine kinase (CK) levels after whole-body electromyostimulation. Are there implications for health? Int J Clin Exp Med. 2016;9(11):10.
    1. Wirtz N, Wahl P, Kleinöder H, Wechsler K, Achtzehn S, Mester J. Acute metabolic, hormonal, and psychological responses to strength training with superimposed EMS at the beginning and the end of a 6 week training period. J Musculoskelet Neuronal Interact. 2015;15(4):325–332.
    1. Martone AM, Lattanzio F, Abbatecola AM, et al. Treating sarcopenia in older and oldest old. Curr Pharm Des. 2015;21(13):1715–1722. doi:10.2174/1381612821666150130122032
    1. Gingrich A, Spiegel A, Kob R, et al. Amount, distribution, and quality of protein intake are not associated with muscle mass, strength, and power in healthy older adults without functional limitations—an enable study. Nutrients. 2017;9(12):1358. doi:10.3390/nu9121358
    1. Bauer J, Biolo G, Cederholm T, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE study group. J Am Med Dir Assoc. 2013;14(8):542–559. doi:10.1016/j.jamda.2013.05.021
    1. Richter M, Baerlocher K, Bauer JM, et al. Revised reference values for the intake of protein. ANM. 2019;74(3):242–250. doi:10.1159/000499374
    1. Deutz NEP, Bauer JM, Barazzoni R, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33(6):929–936. doi:10.1016/j.clnu.2014.04.007
    1. Meng X, Zhu K, Devine A, Kerr DA, Binns CW, Prince RL. A 5-Year Cohort Study of the Effects of High Protein Intake on Lean Mass and BMC in Elderly Postmenopausal Women. J Bone Mineral Res. 2009;24(11):1827–1834. doi:10.1359/jbmr.090513
    1. Houston DK, Nicklas BJ, Ding J, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the health, aging, and body composition (Health ABC) study. Am J Clin Nutr. 2008;87(1):150–155. doi:10.1093/ajcn/87.1.150
    1. Fois A, Chatrenet A, Cataldo E, et al. Moderate protein restriction in advanced CKD: a feasible option in an elderly, high-comorbidity population. A stepwise multiple-choice system approach. Nutrients. 2019;11(1):36. doi:10.3390/nu11010036
    1. Kemmler W, Weissenfels A, Teschler M, et al. Whole-body electromyostimulation and protein supplementation favorably affect sarcopenic obesity in community-dwelling older men at risk: the randomized controlled FranSO study. Clin Interv Aging. 2017;12:1503–1513. doi:10.2147/CIA.S137987
    1. Kemmler W, Grimm A, Bebenek M, Kohl M, von Stengel S. Effects of combined whole-body electromyostimulation and protein supplementation on local and overall muscle/fat distribution in older men with sarcopenic obesity: the randomized controlled franconia sarcopenic obesity (FranSO) study. Calcif Tissue Int. 2018;103(3):266–277. doi:10.1007/s00223-018-0424-2
    1. Kemmler W, Teschler M, Weissenfels A, et al. Whole-body electromyostimulation to fight sarcopenic obesity in community-dwelling older women at risk. Results of the randomized controlled FORMOsA-sarcopenic obesity study. Osteoporos Int. 2016;27(11):3261–3270. doi:10.1007/s00198-016-3662-z
    1. von Stengel S, Bebenek M, Engelke K, Kemmler W. Whole-body electromyostimulation to fight osteopenia in elderly females: the randomized controlled training and electrostimulation trial (TEST-III). J Osteoporos. 2015;2015:1–7. doi:10.1155/2015/643520
    1. Kemmler W, Kohl M, Freiberger E, Sieber C, von Stengel S. Effect of whole-body electromyostimulation and/or protein supplementation on obesity and cardiometabolic risk in older men with sarcopenic obesity: the randomized controlled FranSO trial. BMC Geriatr. 2018;18. doi:10.1186/s12877-018-0759-6
    1. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604. doi:10.7326/0003-4819-150-9-200905050-00006
    1. Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20–29. doi:10.1056/NEJMoa1114248
    1. Saenger AK, Beyrau R, Braun S, et al. Multicenter analytical evaluation of a high-sensitivity troponin T assay. Clin Chimica Acta. 2011;412(9):748–754. doi:10.1016/j.cca.2010.12.034
    1. Normann J, Mueller M, Biener M, Vafaie M, Katus HA, Giannitsis E. Effect of older age on diagnostic and prognostic performance of high-sensitivity troponin T in patients presenting to an emergency department. Am Heart J. 2012;164(5):698–705.e4. doi:10.1016/j.ahj.2012.08.003
    1. Riedlinger D, Möckel M, Müller C, et al. High-sensitivity cardiac troponin T for diagnosis of NSTEMI in the elderly emergency department patient: a clinical cohort study. Biomarkers. 2018;23(6):551–557. doi:10.1080/1354750X.2018.1460763
    1. Thomas L, Müller M, Schumann G, et al. Consensus of DGKL and VDGH for interim reference intervals on enzymes in serum Konsensus von DGKL und VDGH zu vorläufigen Referenzbereichen für Serumenzyme. LaboratoriumsMedizin. 2005;29(5):301–308. doi:10.1515/JLM.2005.041
    1. Lippi G, Schena F, Ceriotti F. Diagnostic biomarkers of muscle injury and exertional rhabdomyolysis. Clin Chem Lab Med. 2018;57(2):175–182. doi:10.1515/cclm-2018-0656
    1. Welsh P, Papacosta O, Ramsay S, et al. High-sensitivity troponin t and incident heart failure in older men: british regional heart study. J Card Fail. 2019;25(4):230–237. doi:10.1016/j.cardfail.2018.08.002
    1. Lamb EJ, Tomson CR, Roderick PJ. Estimating kidney function in adults using formulae. Ann Clin Biochem. 2005;42(5):321–345. doi:10.1258/0004563054889936
    1. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–226. doi:10.1053/ajkd.2002.34487
    1. Fliser D, Ritz E. Serum cystatin C concentration as a marker of renal dysfunction in the elderly. Am J Kidney Dis. 2001;37(1):79–83. doi:10.1053/ajkd.2001.20628
    1. Finney H, Newman DJ, Price CP. Adult reference ranges for serum cystatin C, creatinine and predicted creatinine clearance. Ann Clin Biochem. 2000;37(1):49–59. doi:10.1258/0004563001901524
    1. Kemmler W, Froehlich M, von Stengel S, Kleinöder H. Whole-body electromyostimulation – the need for common sense! Rationale and guideline for a safe and effective training. Dtsch Z Sportmed. 2016;2016(09):218–221. doi:10.5960/dzsm.2016.246
    1. Wahl P, Hein M, Achtzehn S, Bloch W, Mester J. Acute effects of superimposed electromyostimulation during cycling on myokines and markers of muscle damage. J Musculoskelet Neuronal Interact. 2015;15(1):53–59.
    1. Koch AJ, Pereira R, Machado M. The creatine kinase response to resistance exercise. J Musculoskelet Neuronal Interact. 2014;14(1):68–77.
    1. Carmona G, Roca E, Guerrero M, et al. Fibre-type-specific and mitochondrial biomarkers of muscle damage after mountain races. Int J Sports Med. 2019;40(4):253–262. doi:10.1055/a-0808-4692
    1. Sedaghat-Hamedani F, Kayvanpour E, Frankenstein L, et al. Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury—a metaanalysis of 45 studies. Clin Chem. 2015;61(10):1246–1255. doi:10.1373/clinchem.2015.240796
    1. Saad YME, Idris H, Shugman IM, et al. Evaluation of serial high sensitivity troponin t levels in individuals without overt coronary heart disease following exercise stress testing. Heart Lung Circ. 2017;26(7):660–666. doi:10.1016/j.hlc.2016.11.004
    1. Shave R, Baggish A, George K, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol. 2010;56(3):169–176. doi:10.1016/j.jacc.2010.03.037
    1. Linssen GCM, Bakker SJL, Voors AA, et al. N-terminal pro-B-type natriuretic peptide is an independent predictor of cardiovascular morbidity and mortality in the general population. Eur Heart J. 2010;31(1):120–127. doi:10.1093/eurheartj/ehp420
    1. Fritzsche D, Fruend A, Schenk S, et al. Elektromyostimulation (EMS) bei kardiologischen Patienten. Herz. 2010;35(1):34–40. doi:10.1007/s00059-010-3268-8
    1. Iliou MC, Vergès-Patois B, Pavy B, et al. Effects of combined exercise training and electromyostimulation treatments in chronic heart failure: a prospective multicentre study. Eur J Prev Cardiol. 2017;24(12):1274–1282. doi:10.1177/2047487317712601
    1. van Buuren F, Mellwig KP, Prinz C, et al. Electrical myostimulation improves left ventricular function and peak oxygen consumption in patients with chronic heart failure: results from the exEMS study comparing different stimulation strategies. Clin Res Cardiol. 2013;102(7):523–534. doi:10.1007/s00392-013-0562-5
    1. Teschler M, Mooren FC. (Whole-Body) Electromyostimulation, Muscle Damage, and Immune System: A Mini Review. Front Physiol. 2019;10. doi:10.3389/fphys.2019.01461
    1. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–1406. doi:10.1152/physrev.90100.2007
    1. Sardeli AV, Tomeleri CM, Cyrino ES, Fernhall B, Cavaglieri CR, Chacon-Mikahil MPT. Effect of resistance training on inflammatory markers of older adults: A meta-analysis. Exp Gerontol. 2018;111:188–196. doi:10.1016/j.exger.2018.07.021
    1. Coley-Grant D, Herbert M, Cornes MP, Barlow IM, Ford C, Gama R. The impact of change in albumin assay on reference intervals, prevalence of ‘hypoalbuminaemia’ and albumin prescriptions. Ann Clin Biochem. 2016;53(1):112–116. doi:10.1177/0004563215599560
    1. Vanden Wyngaert K, Van Craenenbroeck AH, Van Biesen W, et al. The effects of aerobic exercise on eGFR, blood pressure and VO2peak in patients with chronic kidney disease stages 3-4: a systematic review and meta-analysis. PLoS One. 2018;13(9):e0203662. doi:10.1371/journal.pone.0203662
    1. Murty MSN, Sharma UK, Pandey VB, Kankare SB. Serum cystatin C as a marker of renal function in detection of early acute kidney injury. Indian J Nephrol. 2013;23(3):180–183. doi:10.4103/0971-4065.111840
    1. Møller G, Rikardt Andersen J, Ritz C, et al. Higher protein intake is not associated with decreased kidney function in pre-diabetic older adults following a one-year intervention—a preview sub-study. Nutrients. 2018;10(1):54. doi:10.3390/nu10010054
    1. Van Elswyk ME, Weatherford CA, McNeill SH. A systematic review of renal health in healthy individuals associated with protein intake above the us recommended daily allowance in randomized controlled trials and observational studies. Adv Nutr. 2018;9(4):404–418. doi:10.1093/advances/nmy026
    1. Melzer K. Carbohydrate and fat utilization during rest and physical activity. Eur e J Clin Nutr Metab. 2011;6(2):e45–e52. doi:10.1016/j.eclnm.2011.01.005
    1. Batsis JA, Barre LK, Mackenzie TA, Pratt SI, Lopez-Jimenez F, Bartels SJ. Variation in the prevalence of sarcopenia and sarcopenic obesity in older adults associated with different research definitions: dual-Energy X-Ray absorptiometry data from the national health and nutrition examination survey 1999–2004. J Am Geriatr Soc. 2013;61(6):974–980. doi:10.1111/jgs.12260
    1. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol a Biol Sci Med Sci. 2014;69(5):547–558. doi:10.1093/gerona/glu010

Source: PubMed

3
Subscribe