A Comprehensive Assessment of Qualitative and Quantitative Prodromal Parkinsonian Features in Carriers of Gaucher Disease-Identifying Those at the Greatest Risk

Michal Becker-Cohen, Ari Zimran, Tama Dinur, Maayan Tiomkin, Claudia Cozma, Arndt Rolfs, David Arkadir, Elena Shulman, Orly Manor, Ora Paltiel, Gilad Yahalom, Daniela Berg, Shoshana Revel-Vilk, Michal Becker-Cohen, Ari Zimran, Tama Dinur, Maayan Tiomkin, Claudia Cozma, Arndt Rolfs, David Arkadir, Elena Shulman, Orly Manor, Ora Paltiel, Gilad Yahalom, Daniela Berg, Shoshana Revel-Vilk

Abstract

Carriers of GBA1 gene variants have a significant risk of developing Parkinson’s disease (PD). A cohort study of GBA carriers between 40−75 years of age was initiated to study the presence of prodromal PD features. Participants underwent non-invasive tests to assess different domains of PD. Ninety-eight unrelated GBA carriers were enrolled (43 males) at a median age (range) of 51 (40−74) years; 71 carried the N370S variant (c.1226A > G) and 25 had a positive family history of PD. The Montreal Cognitive Assessment (MoCA) was the most frequently abnormal (23.7%, 95% CI 15.7−33.4%), followed by the ultrasound hyperechogenicity (22%, 95% CI 14−32%), Unified Parkinson’s Disease Rating Scale part III (UPDRS-III) (17.2%, 95% CI 10.2−26.4%), smell assessment (12.4%, 95% CI 6.6−20.6%) and abnormalities in sleep questionnaires (11%, 95% CI 5.7−19.4%). Significant correlations were found between tests from different domains. To define the risk for PD, we assessed the bottom 10th percentile of each prodromal test, defining this level as “abnormal”. Then we calculated the percentage of “abnormal” tests for each subject; the median (range) was 4.55 (0−43.5%). Twenty-two subjects had more than 15% “abnormal” tests. The limitations of the study included ascertainment bias of individuals with GBA-related PD in relatives, some incomplete data due to technical issues, and a lack of well-characterized normal value ranges in some tests. We plan to enroll additional participants and conduct longitudinal follow-up assessments to build a model for identifying individuals at risk for PD and investigate interventions aiming to delay the onset or perhaps to prevent full-blown PD.

Keywords: Gaucher disease carriers; Parkinson’s disease; carriers of GBA1 variants; prodromal Parkinson disease.

Conflict of interest statement

The SZMC Gaucher Unit receives support from Sanofi/Genzyme for participation in the ICGG Registry, from Takeda for the GOS Registry, and Pfizer for TALIAS. The Unit also receives research grants from Takeda, Pfizer, Sanofi/Genzyme, and Centogene. M.B.-C., T.D., M.T., C.C., D.A., E.S., O.M. and O.P., have no conflict of interest to declare. C.C. is an employee of Centogene GmbH. A.R. is the founder and was the CEO of Centogene GmbH during the study. A.Z. receives honoraria from Takeda, Pfizer, and BioEvents and consultancy fees from Takeda, NLC Pharma, Insightec, and Prevail therapeutics. G.Y. received consultation fee from Abbvie, Medison, Truemed and Takeda. D.B. receives honoraria from AbbVie, Biogen, BIAL, UCB Pharma GmbH Zambon, Desitin, Novartis, consultancy fees from Biogen, BIAL, UCB Pharma GmbH, AC Immune SA., and research grants from Deutsche Forschungsgemeinschaft (DFG), German Parkinson’s Disease Association (dPV), BMBF, Parkinson Fonds Deutschland gGmbH, UCB Pharma GmbH, EU, Novartis Pharma GmbH, Lundbeck, Damp foundation, Michael J Fox Foundation., S.R.-V. receives grant/research support, honoraria, and advisory fee from Takeda, Pfizer, and Sanofi/Genzyme.

Figures

Figure 1
Figure 1
Correlation analysis of prodromal tests lined on a scale from worse to best. Correlation strengths were defined as strong > 0.75, moderate 0.5−0.75, weak 0.25−0.5 and no relationship

References

    1. Neudorfer O., Giladi N., Elstein D., Abrahamov A., Turezkite T., Aghai E., Reches A., Bembi B., Zimran A. Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM. 1996;89:691–694. doi: 10.1093/qjmed/89.9.691.
    1. Gan-Or Z., Giladi N., Rozovski U., Shifrin C., Rosner S., Gurevich T., Bar-Shira A., Orr-Urtreger A. Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology. 2008;70:2277–2283. doi: 10.1212/01.wnl.0000304039.11891.29.
    1. Sidransky E., Nalls M.A., Aasly J.O., Aharon-Peretz J., Annesi G., Barbosa E.R., Bar-Shira A., Berg D., Bras J., Brice A., et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 2009;361:1651–1661. doi: 10.1056/NEJMoa0901281.
    1. Alcalay R.N., Levy O.A., Waters C.C., Fahn S., Ford B., Kuo S.H., Mazzoni P., Pauciulo M.W., Nichols W.C., Gan-Or Z., et al. Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations. Pt 9Brain. 2015;138:2648–2658. doi: 10.1093/brain/awv179.
    1. Gan-Or Z., Amshalom I., Kilarski L.L., Bar-Shira A., Gana-Weisz M., Mirelman A., Marder K., Bressman S., Giladi N., Orr-Urtreger A. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology. 2015;84:880–887. doi: 10.1212/WNL.0000000000001315.
    1. Lopez G., Kim J., Wiggs E., Cintron D., Groden C., Tayebi N., Mistry P.K., Pastores G.M., Zimran A., Goker-Alpan O., et al. Clinical course and prognosis in patients with Gaucher disease and parkinsonism. Neurol. Genet. 2016;2:e57. doi: 10.1212/NXG.0000000000000057.
    1. Mahlknecht P., Seppi K., Poewe W. The Concept of Prodromal Parkinson’s Disease. J. Parkinsons Dis. 2015;5:681–697. doi: 10.3233/JPD-150685.
    1. Berg D., Postuma R.B., Adler C.H., Bloem B.R., Chan P., Dubois B., Gasser T., Goetz C.G., Halliday G., Joseph L., et al. MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 2015;30:1600–1611. doi: 10.1002/mds.26431.
    1. Heinzel S., Berg D., Gasser T., Chen H., Yao C., Postuma R.B., MDS Task Force on the Definition of Parkinson’s Disease Update of the MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 2019;34:1464–1470. doi: 10.1002/mds.27802.
    1. Cacabelos R. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics. Int. J. Mol. Sci. 2017;18:551. doi: 10.3390/ijms18030551.
    1. Gonzalez-Rodriguez P., Zampese E., Stout K.A., Guzman J.N., Ilijic E., Yang B., Tkatch T., Stavarache M.A., Wokosin D.L., Gao L., et al. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature. 2021;599:650–656. doi: 10.1038/s41586-021-04059-0.
    1. Miller D.B., O’Callaghan J.P. Biomarkers of Parkinson’s disease: Present and future. Metabolism. 2015;64((Suppl. 1)):S40–S46. doi: 10.1016/j.metabol.2014.10.030.
    1. Armstrong M.J., Okun M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA. 2020;323:548–560. doi: 10.1001/jama.2019.22360.
    1. Revel-Vilk S., Szer J., Zimran A. Gaucher disease and related lysosomal storage diseases. In: Kaushansky K., Lichtman M., Prchal J., Levi M., Press O., Burns L., Caligiuri M., editors. Williams Hematology. 10th ed. McGraw-Hill; New York, NY, USA: 2021. pp. 1189–1202.
    1. Beavan M., McNeill A., Proukakis C., Hughes D.A., Mehta A., Schapira A.H. Evolution of prodromal clinical markers of Parkinson disease in a GBA mutation-positive cohort. JAMA Neurol. 2015;72:201–208. doi: 10.1001/jamaneurol.2014.2950.
    1. Simuni T., Uribe L., Cho H.R., Caspell-Garcia C., Coffey C.S., Siderowf A., Trojanowski J.Q., Shaw L.M., Seibyl J., Singleton A., et al. Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson’s Progression Markers Initiative (PPMI): A cross-sectional study. Lancet Neurol. 2020;19:71–80. doi: 10.1016/S1474-4422(19)30319-9.
    1. Krohn L., Ruskey J.A., Rudakou U., Leveille E., Asayesh F., Hu M.T.M., Arnulf I., Dauvilliers Y., Hogl B., Stefani A., et al. GBA variants in REM sleep behavior disorder: A multicenter study. Neurology. 2020;95:e1008–e1016. doi: 10.1212/WNL.0000000000010042.
    1. Arkadir D., Dinur T., Becker Cohen M., Revel-Vilk S., Tiomkin M., Bruggemann N., Cozma C., Rolfs A., Zimran A. Prodromal substantia nigra sonography undermines suggested association between substrate accumulation and the risk for GBA-related Parkinson’s disease. Eur. J. Neurol. 2019;26:1013–1018. doi: 10.1111/ene.13927.
    1. Omrani F., Ansari-Damavandi S., Zamani B., Omrani Z., Mohammadzade N., Rohani S., Rohani M. Transcranial sonography in carriers of Gaucher disease. Iran J. Neurol. 2018;17:145–148. doi: 10.18502/ijnl.v17i3.374.
    1. Perrin A.J., Nosova E., Co K., Book A., Iu O., Silva V., Thompson C., McKeown M.J., Stoessl A.J., Farrer M.J., et al. Gender differences in Parkinson’s disease depression. Park. Relat. Disord. 2017;36:93–97. doi: 10.1016/j.parkreldis.2016.12.026.
    1. Parker G., Brotchie H. Gender differences in depression. Int. Rev. Psychiatry. 2010;22:429–436. doi: 10.3109/09540261.2010.492391.
    1. Salk R.H., Hyde J.S., Abramson L.Y. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol. Bull. 2017;143:783–822. doi: 10.1037/bul0000102.
    1. Zhou H.Y., Sun Q., Tan Y.Y., Hu Y.Y., Zhan W.W., Li D.H., Wang Y., Xiao Q., Liu J., Chen S.D. Substantia nigra echogenicity correlated with clinical features of Parkinson’s disease. Park. Relat. Disord. 2016;24:28–33. doi: 10.1016/j.parkreldis.2016.01.021.
    1. Li K., Ge Y.L., Gu C.C., Zhang J.R., Jin H., Li J., Cheng X.Y., Yang Y.P., Wang F., Zhang Y.C., et al. Substantia nigra echogenicity is associated with serum ferritin, gender and iron-related genes in Parkinson’s disease. Sci. Rep. 2020;10:8660. doi: 10.1038/s41598-020-65537-5.
    1. Xu R., Chen G., Mao Z., Gao H., Deng Y., Tao A. Diagnostic Performance of Transcranial Sonography for Evaluating Substantia Nigra Hyper-echogenicity in Patients with Parkinson’s Disease. Ultrasound Med. Biol. 2020;46:1208–1215. doi: 10.1016/j.ultrasmedbio.2020.01.019.
    1. Toomsoo T., Liepelt-Scarfone I., Berg D., Kerner R., Pool A.H., Kadastik-Eerme L., Rubanovits I., Asser T., Taba P. Effect of Age on Substantia Nigra Hyper-echogenicity in Parkinson’s Disease Patients and Healthy Controls. Ultrasound Med. Biol. 2019;45:122–128. doi: 10.1016/j.ultrasmedbio.2018.09.018.
    1. Arkadir D., Dinur T., Mullin S., Mehta A., Baris H.N., Alcalay R.N., Zimran A. Trio approach reveals higher risk of PD in carriers of severe vs. mild GBA mutations. Blood Cells Mol. Dis. 2018;68:115–116. doi: 10.1016/j.bcmd.2016.11.007.
    1. Koros C., Simitsi A., Stefanis L. Genetics of Parkinson’s Disease: Genotype-Phenotype Correlations. Int. Rev. Neurobiol. 2017;132:197–231.
    1. Scholz S.W., Jeon B.S. GBA mutations and Parkinson disease: When genotype meets phenotype. Neurology. 2015;84:866–867. doi: 10.1212/WNL.0000000000001321.
    1. Eisenberg D.P., Lopez G., Gregory M.D., Berman K.F., Sidransky E. Comparison of Transcranial Sonography and [(18) F]-Fluorodopa PET Imaging in GBA1 Mutation Carriers. Mov. Disord. 2022;37:629–634. doi: 10.1002/mds.28852.
    1. Khoury T., Ishay Y., Rotnemer-Golinkin D., Zolotarovya L., Arkadir D., Zimran A., Ilan Y. A synergistic effect of Ambroxol and Beta-Glucosylceramide in alleviating immune-mediated hepatitis: A novel immunomodulatory non-immunosuppressive formulation for treatment of immune-mediated disorders. Biomed. Pharmacother. 2020;132:110890. doi: 10.1016/j.biopha.2020.110890.
    1. Zimmermann M., Gaenslen A., Prahl K., Srulijes K., Hauser A.K., Schulte C., Csoti I., Berg D., Brockmann K. Patient’s perception: Shorter and more severe prodromal phase in GBA-associated PD. Eur. J. Neurol. 2019;26:694–698. doi: 10.1111/ene.13776.
    1. Halperin A., Elstein D., Zimran A. Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol. Dis. 2006;36:426–428. doi: 10.1016/j.bcmd.2006.02.004.
    1. Bor-Seng-Shu E., Paschoal F.M., Almeida K.J., De Lima Oliveira M., Nogueira R.C., Teixeira M.J., Walter U. Transcranial brain sonography for Parkinsonian syndromes. J. Neurosurg. Sci. 2019;63:441–449. doi: 10.23736/S0390-5616.19.04696-4.
    1. Walter U., Skoloudik D. Transcranial sonography (TCS) of brain parenchyma in movement disorders: Quality standards, diagnostic applications and novel technologies. Ultraschall Med. 2014;35:322–331. doi: 10.1055/s-0033-1356415.
    1. Gaenslen A., Unmuth B., Godau J., Liepelt I., Di Santo A., Schweitzer K.J., Gasser T., Machulla H.J., Reimold M., Marek K., et al. The specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson’s disease: A prospective blinded study. Lancet Neurol. 2008;7:417–424. doi: 10.1016/S1474-4422(08)70067-X.
    1. Archibald N.K., Clarke M.P., Mosimann U.P., Burn D.J. The retina in Parkinson’s disease. Pt 5Brain. 2009;132:1128–1145. doi: 10.1093/brain/awp068.
    1. Brandies R., Yehuda S. The possible role of retinal dopaminergic system in visual performance. Neurosci. Biobehav. Rev. 2008;32:611–656. doi: 10.1016/j.neubiorev.2007.09.004.
    1. Postuma R.B., Gagnon J.F., Vendette M., Montplaisir J.Y. Markers of neurodegeneration in idiopathic rapid eye movement sleep behaviour disorder and Parkinson’s disease. Pt 12Brain. 2009;132:3298–3307. doi: 10.1093/brain/awp244.
    1. Kinnear P.R., Sahraie A. New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5–22 and for age decades 30–70. Br. J. Ophthalmol. 2002;86:1408–1411. doi: 10.1136/bjo.86.12.1408.
    1. Xiao Q., Chen S., Le W. Hyposmia: A possible biomarker of Parkinson’s disease. Neurosci. Bull. 2014;30:134–140. doi: 10.1007/s12264-013-1390-3.
    1. Cao M., Li Y., Gu Z., Mi T., Xu X., Ma C., Chen M., Wu M., Chan P. Validation of the utility of the Brief Smell Identification Test in Chinese patients with Parkinson’s disease. J. Clin. Neurosci. 2019;60:68–72. doi: 10.1016/j.jocn.2018.10.023.
    1. Cao M., Wang N., Zheng P., Gu Z., Chan P. Validation of a new olfactory test for Chinese Parkinson’s disease patients. J. Clin. Neurosci. 2020;76:31–35. doi: 10.1016/j.jocn.2020.04.068.
    1. Mu F., Jiao Q., Du X., Jiang H. Association of orthostatic hypotension with Parkinson’s disease: A meta-analysis. Neurol. Sci. 2020;41:1419–1426. doi: 10.1007/s10072-020-04277-w.
    1. Mahlknecht P., Gasperi A., Djamshidian A., Kiechl S., Stockner H., Willeit P., Willeit J., Rungger G., Poewe W., Seppi K. Performance of the Movement Disorders Society criteria for prodromal Parkinson’s disease: A population-based 10-year study. Mov. Disord. 2018;33:405–413. doi: 10.1002/mds.27281.
    1. Weintraub D., Simuni T., Caspell-Garcia C., Coffey C., Lasch S., Siderowf A., Aarsland D., Barone P., Burn D., Chahine L.M., et al. Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov. Disord. 2015;30:919–927. doi: 10.1002/mds.26170.
    1. Hanna-Pladdy B., Enslein A., Fray M., Gajewski B.J., Pahwa R., Lyons K.E. Utility of the NeuroTrax computerized battery for cognitive screening in Parkinson’s disease: Comparison with the MMSE and the MoCA. Int. J. Neurosci. 2010;120:538–543. doi: 10.3109/00207454.2010.496539.
    1. Visser M., Leentjens A.F., Marinus J., Stiggelbout A.M., van Hilten J.J. Reliability and validity of the Beck depression inventory in patients with Parkinson’s disease. Mov. Disord. 2006;21:668–672. doi: 10.1002/mds.20792.
    1. Torbey E., Pachana N.A., Dissanayaka N.N. Depression rating scales in Parkinson’s disease: A critical review updating recent literature. J. Affect Disord. 2015;184:216–224. doi: 10.1016/j.jad.2015.05.059.
    1. Hurtado-Pomares M., Carmen Terol-Cantero M., Sanchez-Perez A., Peral-Gomez P., Valera-Gran D., Navarrete-Munoz E.M. The frontal assessment battery in clinical practice: A systematic review. Int. J. Geriatr. Psychiatry. 2018;33:237–251. doi: 10.1002/gps.4751.
    1. Stiasny-Kolster K., Mayer G., Schafer S., Moller J.C., Heinzel-Gutenbrunner M., Oertel W.H. The REM sleep behavior disorder screening questionnaire--a new diagnostic instrument. Mov. Disord. 2007;22:2386–2393. doi: 10.1002/mds.21740.
    1. Sobreira-Neto M.A., Pena-Pereira M.A., Sobreira E.S.T., Chagas M.H.N., Fernandes R.M.F., Tumas V., Eckeli A.L. High Frequency of Sleep Disorders in Parkinson’s Disease and Its Relationship with Quality of Life. Eur. Neurol. 2017;78:330–337. doi: 10.1159/000481939.
    1. Kim R., Yoo D., Im J.H., Kim H.J., Jeon B. REM sleep behavior disorder predicts functional dependency in early Parkinson’s disease. Park. Relat. Disord. 2019;66:138–142. doi: 10.1016/j.parkreldis.2019.07.025.
    1. Marvin K. Purdue Pegboard Test (PPT) [(accessed on 31 July 2022)]. Available online:
    1. Haaxma C.A., Bloem B.R., Overeem S., Borm G.F., Horstink M.W. Timed motor tests can detect subtle motor dysfunction in early Parkinson’s disease. Mov. Disord. 2010;25:1150–1156. doi: 10.1002/mds.23100.
    1. Postuma R.B., Lang A.E., Gagnon J.F., Pelletier A., Montplaisir J.Y. How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behaviour disorder. Pt 6Brain. 2012;135:1860–1870. doi: 10.1093/brain/aws093.
    1. Skorvanek M., Martinez-Martin P., Kovacs N., Zezula I., Rodriguez-Violante M., Corvol J.C., Taba P., Seppi K., Levin O., Schrag A., et al. Relationship between the MDS-UPDRS and Quality of Life: A large multicenter study of 3206 patients. Park. Relat. Disord. 2018;52:83–89. doi: 10.1016/j.parkreldis.2018.03.027.
    1. Yahalom G., Yekutieli Z., Israeli-Korn S., Elincx-Benizri S., Livneh V., Fay-Karmon T., Tchelet K., Rubel Y., Hassin-Baer S. Smartphone Based Timed Up and Go Test Can Identify Postural Instability in Parkinson’s Disease. Isr. Med. Assoc. J. 2020;22:37–42.
    1. Tchelet K., Stark-Inbar A., Yekutieli Z. Pilot Study of the EncephaLog Smartphone Application for Gait Analysis. Sensors. 2019;19:5179. doi: 10.3390/s19235179.
    1. Salama M., Ellaithy A., Helmy B., El-Gamal M., Tantawy D., Mohamed M., Sheashaa H., Sobh M., Arias-Carrión O. Colchicine protects dopaminergic neurons in a rat model of Parkinson’s disease. CNS Neurol Disord. Drug Targets. 2012;11:836–843. doi: 10.2174/1871527311201070836.
    1. Rai S.N., Zahra W., Singh S.S., Birla H., Keswani C., Dilnashin H., Rathore A.S., Singh R., Singh R.K., Singh S.P. Anti-inflammatory Activity of Ursolic Acid in MPTP-Induced Parkinsonian Mouse Model. Neurotox Res. 2019;36:452–462. doi: 10.1007/s12640-019-00038-6.
    1. Mahlknecht P., Marini K., Werkmann M., Poewe W., Seppi K. Prodromal Parkinson’s disease: Hype or hope for disease-modification trials? Transl. Neurodegener. 2022;11:11. doi: 10.1186/s40035-022-00286-1.

Source: PubMed

3
Subscribe