Action Observation Treatment Improves Upper Limb Motor Functions in Children with Cerebral Palsy: A Combined Clinical and Brain Imaging Study

Giovanni Buccino, Anna Molinaro, Claudia Ambrosi, Daniele Arisi, Lorella Mascaro, Chiara Pinardi, Andrea Rossi, Roberto Gasparotti, Elisa Fazzi, Jessica Galli, Giovanni Buccino, Anna Molinaro, Claudia Ambrosi, Daniele Arisi, Lorella Mascaro, Chiara Pinardi, Andrea Rossi, Roberto Gasparotti, Elisa Fazzi, Jessica Galli

Abstract

The aim of the present study was to assess the role of action observation treatment (AOT) in the rehabilitation of upper limb motor functions in children with cerebral palsy. We carried out a two-group, parallel randomized controlled trial. Eighteen children (aged 5-11 yr) entered the study: 11 were treated children, and 7 served as controls. Outcome measures were scores on two functional scales: Melbourne Assessment of Unilateral Upper Limb Function Scale (MUUL) and the Assisting Hand Assessment (AHA). We collected functional scores before treatment (T1), at the end of treatment (T2), and at two months of follow-up (T3). As compared to controls, treated children improved significantly in both scales at T2 and this improvement persisted at T3. AOT has therefore the potential to become a routine rehabilitation practice in children with CP. Twelve out of 18 enrolled children also underwent a functional magnetic resonance study at T1 and T2. As compared to controls, at T2, treated children showed stronger activation in a parieto-premotor circuit for hand-object interactions. These findings support the notion that AOT contributes to reorganize brain circuits subserving the impaired function rather than activating supplementary or vicariating ones.

Figures

Figure 1
Figure 1
(a) Graphic representation of the fMRI experimental paradigm, alternating manipulation of a simple object (a sphere), and manipulation of complex objects. (b) Clusters of activations transposed on sections from standard pediatric brain (ANTS) before treatment (T1), when comparing manipulation of complex objects versus manipulation of a sphere. Cases and controls are taken as a whole group, p < 0.001. Note that at T1, no activation was present when directly comparing cases versus controls. (c) After treatment (T2), direct comparison between cases and controls shows increased activations in frontal and parietal areas known to be involved in hand-object interactions, p < 0.001. Clusters of activations transposed on sections from standard pediatric brain (ANTS), as in (b).
Figure 2
Figure 2
Scores obtained by cases (red line) and controls (blue line) at T1, T2, and T3 in two different functional scales (AHA, MUUL). Statistical analysis (see text for details) showed that only in case scores obtained at T2 differed significantly from scores at T1 in both scales. This was true also when comparing T3 with T2 in both scales (error bars: 95% CI). ∗∗refers to statistical significant effects.

References

    1. Small S. L., Buccino G., Solodkin A. Brain repair after stroke-a novel neurological model. Nature Reviews Neurology. 2013;9(12):698–707. doi: 10.1038/nrneurol.2013.222.
    1. Taub E., Uswatte G., Elbert T. New treatments in neurorehabilitation founded on basic research. Nature Reviews Neuroscience. 2002;3(3):228–236. doi: 10.1038/nrn754.
    1. Roby-Brami A., Feydy A., Combeaud M., Biryukova E. V., Bussel B., Levin M. F. Motor compensation and recovery for reaching in stroke patients. Acta Neurologica Scandinavica. 2003;107(5):369–381. doi: 10.1034/j.1600-0404.2003.00021.x.
    1. Levin M. F., Kleim J. A., Wolf S. L. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabilitation and Neural Repair. 2009;23(4):313–319. doi: 10.1177/1545968308328727.
    1. Lum P. S., Mulroy S., Amdur R. L., Requejo P., Prilutsky B. I., Dromerick A. W. Gains in upper extremity function after stroke via recovery or compensation: potential differential effects on amount of real-world limb use. Topics in Stroke Rehabilitation. 2009;16(4):237–253. doi: 10.1310/tsr1604-237.
    1. Nudo R. J. Mechanisms for recovery of motor function following cortical damage. Current Opinion in Neurobiology. 2006;16(6):638–644. doi: 10.1016/j.conb.2006.10.004.
    1. Sakzewski L., Gordon A., Eliasson A. C. The state of the evidence for intensive upper limb therapy approaches for children with unilateral cerebral palsy. Journal of Child Neurology. 2014;29(8):1077–1090. doi: 10.1177/0883073814533150.
    1. Ramachandran V. S., Altschuler E. L. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain. 2009;132(7):1693–1710. doi: 10.1093/brain/awp135.
    1. Thieme H., Mehrholz J., Pohl M., Behrens J., Dohle C. Mirror therapy for improving motor function after stroke. Stroke. 2013;44(1):e1–e2. doi: 10.1161/STROKEAHA.112.673087.
    1. Bruchez R., Jequier Gygax M., Roches S., et al. Mirror therapy in children with hemiparesis: a randomized observer-blinded trial. Developmental Medicine & Child Neurology. 2016;58(9):970–978. doi: 10.1111/dmcn.13117.
    1. Rizzolatti G., Craighero L. The mirror-neuron system. Annual Review of Neuroscience. 2004;27(1):169–192. doi: 10.1146/annurev.neuro.27.070203.144230.
    1. Buccino G. Action observation treatment: a novel tool in neurorehabilitation. Philosophical Transactions of the Royal Society B: Biological Sciences. 2014;369(1644, article 20130185) doi: 10.1098/rstb.2013.0185.
    1. Bellelli G., Buccino G., Bernardini B., Padovani A., Trabucchi M. Action observation treatment improves recovery of postsurgical orthopedic patients: evidence for a topdown effect? Archives of Physical Medicine and Rehabilitation. 2010;91(10):1489–1494. doi: 10.1016/j.apmr.2010.07.013.
    1. Ertelt D., Small S., Solodkin A., et al. Action observation has a positive impact on rehabilitation of motor deficits after stroke. NeuroImage. 2007;36(Supplement 2):T164–T173. doi: 10.1016/j.neuroimage.2007.03.043.
    1. Pelosin E., Avanzino L., Bove M., Stramesi P., Nieuwboer A., Abbruzzese G. Action observation improves freezing of gait in patients with Parkinson’s disease. Neurorehabilitation and Neural Repair. 2010;24(8):746–752. doi: 10.1177/1545968310368685.
    1. Buccino G., Gatti R., Giusti M. C., et al. Action observation treatment improves autonomy in daily activities in Parkinson’s disease patients: results from a pilot study. Movement Disorders. 2011;26(10):1963–1964. doi: 10.1002/mds.23745.
    1. Buccino G., Arisi D., Gough P., et al. Improving upper limb motor functions through action observation treatment: a pilot study in children with cerebral palsy. Developmental Medicine & Child Neurology. 2012;54(9):822–828. doi: 10.1111/j.1469-8749.2012.04334.x.
    1. Sgandurra G., Ferrari A., Cossu G., Guzzetta A., Fogassi L., Cioni G. Randomized trial of observation and execution of upper extremity actions versus action alone in children with unilateral cerebral palsy. Neurorehabilitation and Neural Repair. 2013;27(9):808–815. doi: 10.1177/1545968313497101.
    1. Kim J. Y., Kim J. M., Ko E. Y. The effect of the action observation physical training on the upper extremity function in children with cerebral palsy. Journal of Exercise Rehabilitation. 2014;10(3):176–183. doi: 10.12965/jer.140114.
    1. Eliasson A. C., Krumlinde-Sundholm L., Rösblad B., et al. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Developmental Medicine & Child Neurology. 2006;48(7):549–554. doi: 10.1017/S0012162206001162.
    1. Randall M., Carlin J. B., Chondros P., Reddihough D. Reliability of the Melbourne Assessment of Unilateral Upper Limb Function. Developmental Medicine & Child Neurology. 2001;43(11):761–767. doi: 10.1111/j.1469-8749.2001.tb00158.x.
    1. Krumlinde-Sundholm L., Holmefur M., Kottorp A., Eliasson A. C. The Assisting Hand Assessment: current evidence of validity, reliability, and responsiveness to change. Developmental Medicine & Child Neurology. 2007;49(4):259–264. doi: 10.1111/j.1469-8749.2007.00259.x.
    1. Ghosh S. S., Kakunoori S., Augustinack J., et al. Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. NeuroImage. 2010;53(1):85–93. doi: 10.1016/j.neuroimage.2010.05.075.
    1. Friston K. J., Holmes A. P., Price C. J., Buchel C., Worsley K. J. Multisubject fMRI studies and conjunction analyses. NeuroImage. 1999;10(4):385–396. doi: 10.1006/nimg.1999.0484.
    1. Meltzoff A. N., Moore M. K. Imitation of facial and manual gestures by human neonates. Science. 1977;198(4312):75–78. doi: 10.1126/science.198.4312.75.
    1. Falck-Ytter T., Gredebäck G., von Hofsten C. Infants predict other people’s action goals. Nature Neuroscience. 2006;9(7):878–879. doi: 10.1038/nn1729.
    1. Hari R., Kujala M. V. Brain basis of human social interaction: from concepts to brain imaging. Physiological Reviews. 2009;89(2):453–479. doi: 10.1152/physrev.00041.2007.
    1. Celnik P., Webster B., Glasser D. M., Cohen L. G. Effects of action observation on physical training after stroke. Stroke. 2008;39(6):1814–1820. doi: 10.1161/STROKEAHA.107.508184.
    1. Stefan K., Cohen L. G., Duque J., et al. Formation of a motor memory by action observation. The Journal of Neuroscience. 2005;25(41):9339–9346. doi: 10.1523/JNEUROSCI.2282-05.2005.
    1. Gatti R., Tettamanti A., Gough P. M., Riboldi E., Marinoni L., Buccino G. Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study. Neuroscience Letters. 2013;540:37–42. doi: 10.1016/j.neulet.2012.11.039.
    1. Binkofski F., Buccino G., Posse S., Seitz R. J., Rizzolatti G., Freund H. J. A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. The European Journal of Neuroscience. 1999;11(9):3276–3286. doi: 10.1046/j.1460-9568.1999.00753.x.
    1. Biagi L., Cioni G., Fogassi L., Guzzetta A., Sgandurra G., Tosetti M. Action observation network in childhood: a comparative fMRI study with adults. Developmental Science. 2016;19(6):1075–1086. doi: 10.1111/desc.12353.
    1. Jeannerod M., Arbib M. A., Rizzolatti G., Sakata H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in Neurosciences. 1995;18(7):314–320. doi: 10.1016/0166-2236(95)93921-J.

Source: PubMed

3
Subscribe