Large-scale genomic studies reveal central role of ABO in sP-selectin and sICAM-1 levels

Maja Barbalic, Josée Dupuis, Abbas Dehghan, Joshua C Bis, Ron C Hoogeveen, Renate B Schnabel, Vijay Nambi, Monique Bretler, Nicholas L Smith, Annette Peters, Chen Lu, Russell P Tracy, Nena Aleksic, Jan Heeriga, John F Keaney Jr, Kenneth Rice, Gregory Y H Lip, Ramachandran S Vasan, Nicole L Glazer, Martin G Larson, Andre G Uitterlinden, Jennifer Yamamoto, Peter Durda, Talin Haritunians, Bruce M Psaty, Eric Boerwinkle, Albert Hofman, Wolfgang Koenig, Nancy S Jenny, Jacqueline C Witteman, Christie Ballantyne, Emelia J Benjamin, Maja Barbalic, Josée Dupuis, Abbas Dehghan, Joshua C Bis, Ron C Hoogeveen, Renate B Schnabel, Vijay Nambi, Monique Bretler, Nicholas L Smith, Annette Peters, Chen Lu, Russell P Tracy, Nena Aleksic, Jan Heeriga, John F Keaney Jr, Kenneth Rice, Gregory Y H Lip, Ramachandran S Vasan, Nicole L Glazer, Martin G Larson, Andre G Uitterlinden, Jennifer Yamamoto, Peter Durda, Talin Haritunians, Bruce M Psaty, Eric Boerwinkle, Albert Hofman, Wolfgang Koenig, Nancy S Jenny, Jacqueline C Witteman, Christie Ballantyne, Emelia J Benjamin

Abstract

P-selectin and intercellular adhesion molecule-1 (ICAM-1) participate in inflammatory processes by promoting adhesion of leukocytes to vascular wall endothelium. Their soluble levels have been associated with adverse cardiovascular events. To identify loci affecting soluble levels of P-selectin (sP-selectin) and ICAM-1 (sICAM-1), we performed a genome-wide association study in a sample of 4115 (sP-selectin) and 9813 (sICAM-1) individuals of European ancestry as a part of The Cohorts for Heart and Aging Research in Genome Epidemiology consortium. The most significant SNP association for sP-selectin was within the SELP gene (rs6136, P = 4.05 x 10(-61)) and for sICAM-1 levels within the ICAM-1 gene (rs3093030, P = 3.53 x 10(-23)). Both sP-selectin and sICAM-1 were associated with ABO gene variants (rs579459, P = 1.86 x 10(-41) and rs649129, P = 1.22 x 10(-15), respectively) and in both cases the observed associations could be accounted for by the A1 allele of the ABO blood group. The absence of an association between ABO blood group and platelet-bound P-selectin levels in an independent subsample (N = 1088) from the ARIC study, suggests that the ABO blood group may influence cleavage of the P-selectin protein from the cell surface or clearance from the circulation, rather than its production and cellular presentation. These results provide new insights into adhesion molecule biology.

Figures

Figure 1.
Figure 1.
(A) Genome wide association plot for sP-selectin; (B) Regional plot of ABO locus for association with sP-selectin. Top SNP and corresponding P-value are indicated.
Figure 2.
Figure 2.
(A) Genome wide association plot for sICAM-1; (B) Regional plot of ABO locus for association with sICAM-1. Top SNP and corresponding P-value are indicated.

References

    1. Rosamond W., Flegal K., Friday G., Furie K., Go A., Greenlund K., Haase N., Ho M., Howard V., Kissela B., et al. Heart disease and stroke statistics-2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115:e69–e171.
    1. Tracy R.P. Emerging relationships of inflammation, cardiovascular disease and chronic diseases of aging. Int. J. Obes. Relat. Metab. Disord. 2003;27(Suppl. 3):S29–S34.
    1. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005;352:1685–1695.
    1. Fornage M., Chiang Y.A., O'Meara E.S., Psaty B.M., Reiner A.P., Siscovick D.S., Tracy R.P., Longstreth W.T., Jr Biomarkers of inflammation and MRI-defined small vessel disease of the brain: the cardiovascular health study. Stroke. 2008;39:1952–1959.
    1. Springer T.A. Adhesion receptors of the immune system. Nature. 1990;346:425–434.
    1. Blankenberg S., Barbaux S., Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170:191–203.
    1. Ley K., Laudanna C., Cybulsky M.I., Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 2007;7:678–689.
    1. Ishiwata N., Takio K., Katayama M., Watanabe K., Titani K., Ikeda Y., Handa M. Alternatively spliced isoform of P-selectin is present in vivo as a soluble molecule. J. Biol. Chem. 1994;269:23708–23715.
    1. Wong C.S., Gamble J.R., Skinner M.P., Lucas C.M., Berndt M.C., Vadas M.A. Adhesion protein GMP140 inhibits superoxide anion release by human neutrophils. Proc. Natl. Acad. Sci. USA. 1991;88:2397–2401.
    1. Rieckmann P., Michel U., Albrecht M., Bruck W., Wockel L., Felgenhauer K. Soluble forms of intercellular adhesion molecule-1 (ICAM-1) block lymphocyte attachment to cerebral endothelial cells. J. Neuroimmunol. 1995;60:9–15.
    1. Leeuwenberg J.F., Smeets E.F., Neefjes J.J., Shaffer M.A., Cinek T., Jeunhomme T.M., Ahern T.J., Buurman W.A. E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro. Immunology. 1992;77:543–549.
    1. Hwang S.J., Ballantyne C.M., Sharrett A.R., Smith L.C., Davis C.E., Gotto A.M., Jr, Boerwinkle E. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation. 1997;96:4219–4225.
    1. Barbaux S.C., Blankenberg S., Rupprecht H.J., Francomme C., Bickel C., Hafner G., Nicaud V., Meyer J., Cambien F., Tiret L. Association between P-selectin gene polymorphisms and soluble P-selectin levels and their relation to coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2001;21:1668–1673.
    1. Rohde L.E., Lee R.T., Rivero J., Jamacochian M., Arroyo L.H., Briggs W., Rifai N., Libby P., Creager M.A., Ridker P.M. Circulating cell adhesion molecules are correlated with ultrasound-based assessment of carotid atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 1998;18:1765–1770.
    1. Blann A.D., Nadar S.K., Lip G.Y. The adhesion molecule P-selectin and cardiovascular disease. Eur. Heart. J. 2003;24:2166–2179.
    1. Tzoulaki I., Murray G.D., Lee A.J., Rumley A., Lowe G.D., Fowkes F.G. C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study. Circulation. 2005;112:976–983.
    1. Polgar J., Matuskova J., Wagner D.D. The P-selectin, tissue factor, coagulation triad. J. Thromb. Haemost. 2005;3:1590–1596.
    1. Fijnheer R., Frijns C.J., Korteweg J., Rommes H., Peters J.H., Sixma J.J., Nieuwenhuis H.K. The origin of P-selectin as a circulating plasma protein. Thromb. Haemost. 1997;77:1081–1085.
    1. Schnabel R.B., Lunetta K.L., Larson M.G., Dupuis J., Lipinska I., Rong J., Chen M., Zhao Z., Yamamoto J.F., Meigs J.B., et al. The relation of genetic and environmental factors to systemic inflammatory biomarker concentrations. Circ. Cardiovasc. Genet. 2009;2:229–237.
    1. Reiner A.P., Carlson C.S., Thyagarajan B., Rieder M.J., Polak J.F., Siscovick D.S., Nickerson D.A., Jacobs D.R., Jr, Gross M.D. Soluble P-selectin, SELP polymorphisms, and atherosclerotic risk in European-American and African-African young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Arterioscler. Thromb. Vasc. Biol. 2008;28:1549–1555.
    1. Pare G., Chasman D.I., Kellogg M., Zee R.Y., Rifai N., Badola S., Miletich J.P., Ridker P.M. Novel association of ABO histo-blood group antigen with soluble ICAM-1: results of a genome-wide association study of 6,578 women. PLoS Genet. 2008;4:e1000118.
    1. Lee D.S., Larson M.G., Lunetta K.L., Dupuis J., Rong J., Keaney J.F., Jr, Lipinska I., Baldwin C.T., Vasan R.S., Benjamin E.J. Clinical and genetic correlates of soluble P-selectin in the community. J. Thromb. Haemost. 2008;6:20–31.
    1. Dupuis J., Larson M.G., Vasan R.S., Massaro J.M., Wilson P.W., Lipinska I., Corey D., Vita J.A., Keaney J.F., Jr, Benjamin E.J. Genome scan of systemic biomarkers of vascular inflammation in the Framingham Heart Study: evidence for susceptibility loci on 1q. Atherosclerosis. 2005;182:307–314.
    1. Hixson J.E., Blangero J. Genomic searches for genes that influence atherosclerosis and its risk factors. Ann. N. Y. Acad. Sci. 2000;902:1–7.
    1. Bielinski S.J., Pankow J.S., Foster C.L., Miller M.B., Hopkins P.N., Eckfeldt J.H., Hixson J., Liu Y., Register T., Myers R.H., et al. Circulating soluble ICAM-1 levels shows linkage to ICAM gene cluster region on chromosome 19: the NHLBI Family Heart Study follow-up examination. Atherosclerosis. 2008;199:172–178.
    1. Kent J.W., Jr, Mahaney M.C., Comuzzie A.G., Goring H.H., Almasy L., Dyer T.D., Cole S.A., MacCluer J.W., Blangero J. Quantitative trait locus on Chromosome 19 for circulating levels of intercellular adhesion molecule-1 in Mexican Americans. Atherosclerosis. 2007;195:367–373.
    1. Psaty B., O'Donnell C.J., Gudnason V., Lunetta K.L., Folsom A.R., Rotter J.I., Uitterlinden A.G., Harris T.B., Witteman J.C.M., Boerwinkle E. on Behalf of the CHARGE Consortium. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Circ. Cardiovasc. Genet. 2009;2:73–80.
    1. Yamamoto F., Clausen H., White T., Marken J., Hakomori S. Molecular genetic basis of the histo-blood group ABO system. Nature. 1990;345:229–233.
    1. Yamamoto F. Molecular biology of ABO genes. Tanpakushitsu Kakusan Koso. 1992;37:1696–1700.
    1. Champagne B., Tremblay P., Cantin A., St Pierre Y. Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J. Immunol. 1998;161:6398–6405.
    1. Otto V.I., Damoc E., Cueni L.N., Schurpf T., Frei R., Ali S., Callewaert N., Moise A., Leary J.A., Folkers G., et al. N-glycan structures and N-glycosylation sites of mouse soluble intercellular adhesion molecule-1 revealed by MALDI-TOF and FTICR mass spectrometry. Glycobiology. 2006;16:1033–1044.
    1. Martinez M., Joffraud M., Giraud S., Baisse B., Bernimoulin M.P., Schapira M., Spertini O. Regulation of PSGL-1 interactions with L-selectin, P-selectin, and E-selectin: role of human fucosyltransferase-IV and -VII. J. Biol. Chem. 2005;280:5378–5390.
    1. Souto J.C., Almasy L., Soria J.M., Buil A., Stone W., Lathrop M., Blangero J., Fontcuberta J. Genome-wide linkage analysis of von Willebrand factor plasma levels: results from the GAIT project. Thromb. Haemost. 2003;89:468–474.
    1. Vischer U.M. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J. Thromb. Haemost. 2006;4:1186–1193.
    1. Bonfanti R., Furie B.C., Furie B., Wagner D.D. PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood. 1989;73:1109–1112.
    1. Wagner D.D., Olmsted J.B., Marder V.J. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J. Cell. Biol. 1982;95:355–360.
    1. Romo G.M., Dong J.F., Schade A.J., Gardiner E.E., Kansas G.S., Li C.Q., McIntire L.V., Berndt M.C., Lopez J.A. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J. Exp. Med. 1999;190:803–814.
    1. Paterson A.D., Lopes-Virella M.F., Waggott D., Boright A.P., Hosseini S.M., Carter R.E., Shen E., Mirea L., Bharaj B., Sun L., et al. Genome-Wide association identifies the ABO blood group as a major locus associated with serum levels of soluble E-selectin. Arterioscler. Thromb. Vasc. Biol. 2009;29:1958–1967.
    1. Fischer P.R., Boone P. Short report: severe malaria associated with blood group. Am. J. Trop. Med. Hyg. 1998;58:122–123.
    1. Pathirana S.L., Alles H.K., Bandara S., Phone-Kyaw M., Perera M.K., Wickremasinghe A.R., Mendis K.N., Handunnetti S.M. ABO-blood-group types and protection against severe, Plasmodium falciparum malaria. Ann. Trop. Med. Parasitol. 2005;99:119–124.
    1. Ho M., Hickey M.J., Murray A.G., Andonegui G., Kubes P. Visualization of Plasmodium falciparum–endothelium interactions in human microvasculature: mimicry of leukocyte recruitment. J. Exp. Med. 2000;192:1205–1211.
    1. Cserti C.M., Dzik W.H. The ABO blood group system and Plasmodium falciparum malaria. Blood. 2007;110:2250–2258.
    1. Garrison R.J., Havlik R.J., Harris R.B., Feinleib M., Kannel W.B., Padgett S.J. ABO blood group and cardiovacular disease: the Framingham study. Atherosclerosis. 1976;25:311–318.
    1. Mitchell J.R. An association between abo blood-group distribution and geographical differences in death-rates. Lancet. 1977;1:295–297.
    1. Nydegger U.E., Wuillemin W.A., Julmy F., Meyer B.J., Carrel T.P. Association of ABO histo-blood group B allele with myocardial infarction. Eur. J. Immunogenet. 2003;30:201–206.
    1. Wu O., Bayoumi N., Vickers M.A., Clark P. ABO(H) blood groups and vascular disease: a systematic review and meta-analysis. J. Thromb. Haemost. 2008;6:62–69.
    1. Volcik K.A., Ballantyne C.M., Coresh J., Folsom A.R., Wu K.K., Boerwinkle E. P-selectin Thr715Pro polymorphism predicts P-selectin levels but not risk of incident coronary heart disease or ischemic stroke in a cohort of 14595 participants: the Atherosclerosis Risk in Communities Study. Atherosclerosis. 2006;186:74–79.
    1. Volcik K.A., Catellier D., Folsom A.R., Matijevic N., Wasserman B., Boerwinkle E. SELP and SELPLG genetic variation is associated with cell surface measures of SELP and SELPLG: The Atherosclerosis Risk in Communities (ARIC) carotid MRI study. Clin. Chem. 2009;55:1076–1082.
    1. Nakajima T., Hamakubo T., Kodama T., Inazawa J., Emi M. Genomic structure and chromosomal mapping of the human sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) gene. J. Hum. Genet. 1999;44:402–407.
    1. DeBose-Boyd R.A., Brown M.S., Li W.P., Nohturfft A., Goldstein J.L., Espenshade P.J. Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell. 1999;99:703–712.
    1. Puthothu B., Krueger M., Bernhardt M., Heinzmann A. ICAM1 amino-acid variant K469E is associated with paediatric bronchial asthma and elevated sICAM1 levels. Genes. Immun. 2006;7:322–326.
    1. Ponthieux A., Lambert D., Herbeth B., Droesch S., Pfister M., Visvikis S. Association between Gly241Arg ICAM-1 gene polymorphism and serum sICAM-1 concentration in the Stanislas cohort. Eur. J. Hum. Genet. 2003;11:679–686.
    1. Reilly P.L., Woska J.R., Jr, Jeanfavre D.D., McNally E., Rothlein R., Bormann B.J. The native structure of intercellular adhesion molecule-1 (ICAM-1) is a dimer. Correlation with binding to LFA-1. J. Immunol. 1995;155:529–532.
    1. Diamond M.S., Staunton D.E., Marlin S.D., Springer T.A. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell. 1991;65:961–971.
    1. Folsom A.R., Aleksic N., Sanhueza A., Boerwinkle E. Risk factor correlates of platelet and leukocyte markers assessed by flow cytometry in a population-based sample. Atherosclerosis. 2009;205:272–278.
    1. Catellier D.J., Aleksic N., Folsom A.R., Boerwinkle E. Atherosclerosis Risk in Communities (ARIC) Carotid MRI flow cytometry study of monocyte and platelet markers: intraindividual variability and reliability. Clin. Chem. 2008;54:1363–1371.
    1. Li Y., Abecasis G.R. Mach 1.0: Rapid haplotype reconstruction and missing genotype inference. Am. J. Hum. Genet. 2006;S79:2290.
    1. Servin B., Stephens M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 2007;3:e114.
    1. Higgins J.P., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560.
    1. Lumley T. Analysis of complex survey samples. JSS. 2004;9:1–19.

Source: PubMed

3
Subscribe