Regulation of the Autonomic Nervous System on Intestine

Hongyi Duan, Xueqin Cai, Yingying Luan, Shuo Yang, Juan Yang, Hui Dong, Huihong Zeng, Lijian Shao, Hongyi Duan, Xueqin Cai, Yingying Luan, Shuo Yang, Juan Yang, Hui Dong, Huihong Zeng, Lijian Shao

Abstract

Intestine is composed of various types of cells including absorptive epithelial cells, goblet cells, endocrine cells, Paneth cells, immunological cells, and so on, which play digestion, absorption, neuroendocrine, immunological function. Intestine is innervated with extrinsic autonomic nerves and intrinsic enteric nerves. The neurotransmitters and counterpart receptors are widely distributed in the different intestinal cells. Intestinal autonomic nerve system includes sympathetic and parasympathetic nervous systems, which regulate cellular proliferation and function in intestine under physiological and pathophysiological conditions. Presently, distribution and functional characteristics of autonomic nervous system in intestine were reviewed. How autonomic nervous system regulates intestinal cell proliferation was discussed. Function of autonomic nervous system on intestinal diseases was extensively reviewed. It might be helpful to properly manipulate autonomic nervous system during treating different intestinal diseases.

Keywords: autonomic nerve system; cellular proliferation; enteric nervous system; intestinal disease; intestine.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Duan, Cai, Luan, Yang, Yang, Dong, Zeng and Shao.

Figures

FIGURE 1
FIGURE 1
Distribution of intestinal neural network. Extrinsic sympathetic and parasympathetic nerve fibers enter the whole layer of the intestinal wall to form complex neural networks with intrinsic enteric nervous and EGCs that innervate gastrointestinal epithelial and immune cells. Epitheliums are differentiated from intestinal stem cells, demonstrating enterocytes, endocrine cells, goblet cells, and Paneth cells. Intestinal stromal cells and various immune cells reside in the intestinal wall, the later including macrophages (Mϕs), lymphocytes, mast cells (MCs), dendritic cells (DCs), and innate lymphoid cells (ILCs). Intestinal neural networks regulate intestinal cells, via neurotransmitters (ACh, NE, ATP etc.), neurotrophic factors (GDNF etc.) and receptors (AChR, AR, P2Y4, RET etc.).
FIGURE 2
FIGURE 2
Mechanisms of cholinergic anti-inflammatory pathway. The CAIP depends on norepinephrine produced by splenic sympathetic fibers, which can lead ChAT+T cell to release ACh through β2 receptor. ACh from ChAT+T cell binds to the α7-nAChR on the bone marrow-derived non-T cells like macrophages along with inhibiting LPS-mediated cytokine production.

References

    1. Alpaerts K., Buckinx R., Adriaensen D., van Nassauw L., Timmermans J. P. (2015). Identification and putative roles of distinct subtypes of intestinal dendritic cells in neuroimmune communication: what can be learned from other organ systems? Anat. Rec. 298 903–916. 10.1002/ar.23106
    1. Anini Y., Brubaker P. (2003). Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells. Endocrinology 144 3244–3250. 10.1210/en.2003-0143
    1. Aponte Y., Atasoy D., Sternson S. (2011). AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14 351–355. 10.1038/nn.2739
    1. Bai A., Lu N., Guo Y., Chen J., Liu Z. (2009). Modulation of inflammatory response via alpha2-adrenoceptor blockade in acute murine colitis. Clin. Exp. Immunol. 156 353–362. 10.1111/j.1365-2249.2009.03894.x
    1. Barker N., Ridgway R. A., van Es J. H., van de Wetering M., Begthel H., van den Born M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457 608–611.
    1. Barker N., van Es J. H., Kuipers J., Kujala P., van den Born M., Cozijnsen M., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449 1003–1007. 10.1038/nature06196
    1. Bauer A. J., Boeckxstaens G. E. (2004). Mechanisms of postoperative ileus. Neurogastroenterol. Motil. 16(Suppl. 2), 54–60. 10.1111/j.1743-3150.2004.00558.x
    1. Bellinger D., Lorton D., Felten S., Felten D. (1992). Innervation of lymphoid organs and implications in development, aging, and autoimmunity. Int. J. Immunopharmacol. 14 329–344. 10.1016/0192-0561(92)90162-e
    1. Birchenough G., Nyström E., Johansson M., Hansson G. (2016). A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352 1535–1542. 10.1126/science.aaf7419
    1. Bohorquez D. V., Shahid R. A., Erdmann A., Kreger A. M., Wang Y., Calakos N., et al. (2015). Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Invest. 125 782–786. 10.1172/jci78361
    1. Bonaz B., Sinniger V., Hoffmann D., Clarencon D., Mathieu N., Dantzer C., et al. (2016). Chronic vagus nerve stimulation in Crohn’s disease: a 6-month follow-up pilot study. Neurogastroenterol. Motil. 28 948–953. 10.1111/nmo.12792
    1. Borger P., Hoekstra Y., Esselink M. T., Postma D. S., Zaagsma J., Vellenga E., et al. (1998). Beta-adrenoceptor-mediated inhibition of IFN-gamma, IL-3, and GM-CSF mRNA accumulation in activated human T lymphocytes is solely mediated by the beta2-adrenoceptor subtype. Am. J. Respir. Cell Mol. Biol. 19 400–407. 10.1165/ajrcmb.19.3.2765
    1. Borovikova L. V., Ivanova S., Zhang M., Yang H., Botchkina G. I., Watkins L. R., et al. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405 458–462. 10.1038/35013070
    1. Browning K. N., Travagli R. A. (2014). Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4 1339–1368. 10.1002/cphy.c130055
    1. Cailotto C., Costes L., van der Vliet J., van Bree S. H., van Heerikhuize J. J., Buijs R., et al. (2012). Neuroanatomical evidence demonstrating the existence of the vagal anti-inflammatory reflex in the intestine. Neurogastroenterol. Motil. 24 191–200. 10.1111/j.1365-2982.2011.01824.x
    1. Cailotto C., Gomez-Pinilla P. J., Costes L. M., van der Vliet J., Di Giovangiulio M., Nemethova A., et al. (2014). Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS One 9:e87785. 10.1371/journal.pone.0087785
    1. Callaghan B. D. (1991). The effect of pinealectomy and autonomic denervation on crypt cell proliferation in the rat small intestine. J. Pineal Res. 10 180–185. 10.1111/j.1600-079x.1991.tb00813.x
    1. Cameron H. L., Perdue M. H. (2007). Muscarinic acetylcholine receptor activation increases transcellular transport of macromolecules across mouse and human intestinal epithelium in vitro. Neurogastroenterol. Motil. 19 47–56. 10.1111/j.1365-2982.2006.00845.x
    1. Cardoso V., Chesne J., Ribeiro H., Garcia-Cassani B., Carvalho T., Bouchery T., et al. (2017). Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549 277–281. 10.1038/nature23469
    1. Chalaye P., Goffaux P., Bourgault P., Lafrenaye S., Devroede G., Watier A., et al. (2012). Comparing pain modulation and autonomic responses in fibromyalgia and irritable bowel syndrome patients. Clin. J. Pain 28 519–526. 10.1097/ajp.0b013e31823ae69e
    1. Cheng P., Shih W., Alberto M., Presson A. P., Licudine A., Mayer E. A., et al. (2013). Autonomic response to a visceral stressor is dysregulated in irritable bowel syndrome and correlates with duration of disease. Neurogastroenterol. Motil. 25 e650–e659.
    1. Coelho M., Moz M., Correia G., Teixeira A., Medeiros R., Ribeiro L. (2015). Antiproliferative effects of beta-blockers on human colorectal cancer cells. Oncol. Rep. 33 2513–2520. 10.3892/or.2015.3874
    1. Cortina C., Turon G., Stork D., Hernando-Momblona X., Sevillano M., Aguilera M., et al. (2017). A genome editing approach to study cancer stem cells in human tumors. EMBO Mol. Med. 9 869–879. 10.15252/emmm.201707550
    1. Costa M., Brookes S. J., Hennig G. W. (2000). Anatomy and physiology of the enteric nervous system. Gut 47(Suppl. 4), v15–v26.
    1. Costantini T. W., Bansal V., Krzyzaniak M., Putnam J. G., Peterson C. Y., Loomis W. H., et al. (2010). Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am. J. Physiol. Gastrointest. Liver Physiol. 299 G1308–G1318.
    1. Costantini T. W., Krzyzaniak M., Cheadle G. A., Putnam J. G., Hageny A. M., Lopez N., et al. (2012). Targeting alpha-7 nicotinic acetylcholine receptor in the enteric nervous system: a cholinergic agonist prevents gut barrier failure after severe burn injury. Am. J. Pathol. 181 478–486.
    1. Dailey M. J. (2014). Nutrient-induced intestinal adaption and its effect in obesity. Physiol. Behav. 136 74–78. 10.1016/j.physbeh.2014.03.026
    1. Davis E. A., Washington M. C., Yaniz E. R., Phillips H., Sayegh A. I., Dailey M. J. (2017). Long-term effect of parasympathetic or sympathetic denervation on intestinal epithelial cell proliferation and apoptosis. Exp. Biol. Med. 242 1499–1507. 10.1177/1535370217724790
    1. Davis E. A., Zhou W., Dailey M. J. (2018). Evidence for a direct effect of the autonomic nervous system on intestinal epithelial stem cell proliferation. Physiol. Rep. 6:e13745.
    1. de Haan J. J., Hadfoune M., Lubbers T., Hodin C., Lenaerts K., Ito A., et al. (2013). Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex. Am. J. Physiol. Gastrointest. Liver Physiol. 305 G383–G391.
    1. de Jonge W. J., van der Zanden E. P., The F. O., Bijlsma M. F., van Westerloo D. J., Bennink R. J., et al. (2005). Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat. Immunol. 6 844–851. 10.1038/ni1229
    1. Delgado M., Munoz-Elias E. J., Gomariz R. P., Ganea D. (1999). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide prevent inducible nitric oxide synthase transcription in macrophages by inhibiting NF-kappa B and IFN regulatory factor 1 activation. J. Immunol. 162 4685–4696.
    1. Di Giovangiulio M., Bosmans G., Meroni E., Stakenborg N., Florens M., Farro G., et al. (2016). Vagotomy affects the development of oral tolerance and increases susceptibility to develop colitis independently of the alpha-7 nicotinic receptor. Mol. Med. 22 464–476. 10.2119/molmed.2016.00062
    1. Elenkov I. J., Wilder R. L., Chrousos G. P., Vizi E. S. (2000). The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52 595–638.
    1. Erlinge D., Brunkwall J., Edvinsson L. (1994). Neuropeptide Y stimulates proliferation of human vascular smooth muscle cells: cooperation with noradrenaline and Atp. Regul. Pept. 50 259–265. 10.1016/0167-0115(94)90006-x
    1. Erlinge D., Yoo H., Edvinsson L., Reis D. J., Wahlestedt C. (1993). Mitogenic effects of Atp on vascular smooth muscle cells VS. other growth factors and sympathetic cotransmitters. Am. J. Physiol. 265 H1089–H1097.
    1. Felten D., Felten S., Carlson S., Olschowka J., Livnat S. (1985). Noradrenergic and peptidergic innervation of lymphoid tissue. J. Immunol. 135 755s–765s.
    1. Fleshner M., Goehler L. E., Schwartz B. A., Mcgorry M., Martin D., Maier S. F., et al. (1998). Thermogenic and corticosterone responses to intravenous cytokines (IL-1beta and TNF-alpha) are attenuated by subdiaphragmatic vagotomy. J. Neuroimmunol. 86 134–141. 10.1016/s0165-5728(98)00026-5
    1. Frokjaer J. B., Bergmann S., Brock C., Madzak A., Farmer A. D., Ellrich J., et al. (2016). Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterol. Motil. 28 592–598. 10.1111/nmo.12760
    1. Gabanyi I., Muller P. A., Feighery L., Oliveira T. Y., Costa-Pinto F. A., Mucida D. (2016). Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164 378–391. 10.1016/j.cell.2015.12.023
    1. Gabella G., Costa M. (1968). Adrenergic fibres in the mucous membrane of guinea pig alimentary tract. Experientia 24 706–707. 10.1007/bf02138328
    1. Gareau M. G., Jury J., Perdue M. H. (2007). Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am. J. Physiol. Gastrointest. Liver Physiol. 293 G198–G203.
    1. Ghia J. E., Blennerhassett P., Deng Y., Verdu E. F., Khan W. I., Collins S. M. (2009). Reactivation of inflammatory bowel disease in a mouse model of depression. Gastroenterology 136 2280–2288. 10.1053/j.gastro.2009.02.069
    1. Ghia J. E., Blennerhassett P., El-Sharkawy R. T., Collins S. M. (2007). The protective effect of the vagus nerve in a murine model of chronic relapsing colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 293 G711–G718.
    1. Ghia J. E., Blennerhassett P., Kumar-Ondiveeran H., Verdu E. F., Collins S. M. (2006). The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131 1122–1130. 10.1053/j.gastro.2006.08.016
    1. Goldstein N., McKnight A. D., Carty J. R. E., Arnold M., Betley J. N., Alhadeff A. L. (2021). Hypothalamic detection of macronutrients via multiple gut-brain pathways. Cell Metab. 33 676–687. 10.1016/j.cmet.2020.12.018
    1. Greicius G., Kabiri Z., Sigmundsson K., Liang C., Bunte R., Singh M. K., et al. (2018). α pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc. Natl. Acad. Sci. U.S.A. 115 E3173–E3181.
    1. Greig C. J., Cowles R. A. (2017). Muscarinic acetylcholine receptors participate in small intestinal mucosal homeostasis. J. Pediatr. Surg. 52 1031–1034. 10.1016/j.jpedsurg.2017.03.037
    1. Guereschi M. G., Araujo L. P., Maricato J. T., Takenaka M. C., Nascimento V. M., Vivanco B. C., et al. (2013). Beta2-adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner. Eur. J. Immunol. 43 1001–1012. 10.1002/eji.201243005
    1. Gulbransen B., Sharkey K. (2009). Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology 136 1349–1358. 10.1053/j.gastro.2008.12.058
    1. Gulbransen B. D., Bains J. S., Sharkey K. A. (2010). Enteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon. J. Neurosci. 30 6801–6809. 10.1523/jneurosci.0603-10.2010
    1. Gustafsson J., Ermund A., Johansson M., Schütte A., Hansson G., Sjövall H. (2012). An ex vivo method for studying mucus formation, properties, and thickness in human colonic biopsies and mouse small and large intestinal explants. Am. J. Physiol. Gastrointest. Liver Physiol. 302 G430–G438.
    1. Hayashi S., Hamada T., Zaidi S. F., Oshiro M., Lee J., Yamamoto T., et al. (2014). Nicotine suppresses acute colitis and colonic tumorigenesis associated with chronic colitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 307 G968–G978.
    1. Huang X. Y., Wang H. C., Yuan Z., Huang J., Zheng Q. (2012). Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via beta-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepatogastroenterology 59 889–893.
    1. Huston J. M., Ochani M., Rosas-Ballina M., Liao H., Ochani K., Pavlov V. A., et al. (2006). Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J. Exp. Med. 203 1623–1628. 10.1084/jem.20052362
    1. Ibiza S., Garcia-Cassani B., Ribeiro H., Carvalho T., Almeida L., Marques R., et al. (2016). Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535 440–443. 10.1038/nature18644
    1. Iwasaki M., Akiba Y., Kaunitz J. D. (2019). Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Research 8:F1000 Faculty Rev-1629.
    1. Ji H., Rabbi M. F., Labis B., Pavlov V. A., Tracey K. J., Ghia J. E. (2014). Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol. 7 335–347. 10.1038/mi.2013.52
    1. Kageyama-Yahara N., Suehiro Y., Yamamoto T., Kadowaki M. (2008). IgE-induced degranulation of mucosal mast cells is negatively regulated via nicotinic acetylcholine receptors. Biochem. Biophys. Res. Commun. 377 321–325. 10.1016/j.bbrc.2008.10.004
    1. Kennedy M. F., Tutton P. J., Barkla D. H. (1983). Adrenergic factors involved in the control of crypt cell proliferation in jejunum and descending colon of mouse. Clin. Exp. Pharmacol. Physiol. 10 577–586. 10.1111/j.1440-1681.1983.tb00226.x
    1. Khan R. I., Yazawa T., Anisuzzaman A. S., Semba S., Ma Y., Uwada J., et al. (2014). Activation of focal adhesion kinase via M1 muscarinic acetylcholine receptor is required in restitution of intestinal barrier function after epithelial injury. Biochim. Biophys. Acta 1842 635–645. 10.1016/j.bbadis.2013.12.007
    1. Khedr M., Abdelmotelb A. M., Bedwell T. A., Shtaya A., Alzoubi M. N., Abu H. M., et al. (2018). Vasoactive intestinal peptide induces proliferation of human hepatocytes. Cell Prolif. 51:e12482. 10.1111/cpr.12482
    1. Lachat J. J., Goncalves R. P. (1978). Influence of autonomic denervation upon the kinetics of the ileal epithelium of the rat. Cell Tissue Res. 192 285–297.
    1. Lavin Y., Winter D., Blecher-Gonen R., David E., Keren-Shaul H., Merad M., et al. (2014). Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159 1312–1326. 10.1016/j.cell.2014.11.018
    1. Lin R., Ding Z., Ma H., Shi H., Gao Y., Qian W., et al. (2015). In vitro conditioned bone marrow-derived mesenchymal stem cells promote de novo functional enteric nerve regeneration, but not through direct-transdifferentiation. Stem Cells 33 3545–3557. 10.1002/stem.2197
    1. Lindgren S., Stewenius J., Sjolund K., Lilja B., Sundkvist G. (1993). Autonomic vagal nerve dysfunction in patients with ulcerative colitis. Scand. J. Gastroenterol. 28 638–642. 10.3109/00365529309096103
    1. Lubbers T., Luyer M. D., de Haan J. J., Hadfoune M., Buurman W. A., Greve J. W. (2009). Lipid-rich enteral nutrition reduces postoperative ileus in rats via activation of cholecystokinin-receptors. Ann. Surg. 249 481–487. 10.1097/sla.0b013e318194d187
    1. Lucas D., Scheiermann C., Chow A., Kunisaki Y., Bruns I., Barrick C., et al. (2013). Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat. Med. 19 695–703. 10.1038/nm.3155
    1. Lundgren O., Jodal M., Jansson M., Ryberg A. T., Svensson L. (2011). Intestinal epithelial stem/progenitor cells are controlled by mucosal afferent nerves. PLoS One 6:e16295. 10.1371/journal.pone.0016295
    1. Lyte M., Vulchanova L., Brown D. R. (2011). Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res. 343 23–32. 10.1007/s00441-010-1050-0
    1. Maceachern S. J., Patel B. A., Mckay D. M., Sharkey K. A. (2011). Nitric oxide regulation of colonic epithelial ion transport: a novel role for enteric glia in the myenteric plexus. J. Physiol. 589 3333–3348. 10.1113/jphysiol.2011.207902
    1. Magnotti L. J., Deitch E. A. (2005). Burns, bacterial translocation, gut barrier function, and failure. J. Burn Care Rehabil. 26 383–391. 10.1097/01.bcr.0000176878.79267.e8
    1. Matteoli G., Gomez-Pinilla P. J., Nemethova A., Di Giovangiulio M., Cailotto C., van Bree S. H., et al. (2014). A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63 938–948. 10.1136/gutjnl-2013-304676
    1. Maule S., Pierangeli G., Cevoli S., Grimaldi D., Gionchetti P., Barbara G., et al. (2007). Sympathetic hyperactivity in patients with ulcerative colitis. Clin. Auton Res. 17 217–220. 10.1007/s10286-007-0425-0
    1. Mazur M., Furgala A., Jablonski K., Mach T., Thor P. (2012). Autonomic nervous system activity in constipation-predominant irritable bowel syndrome patients. Med. Sci. Monit. 18 R493–R499.
    1. Mcconalogue K., Furness J. B. (1994). Gastrointestinal neurotransmitters. Baillieres Clin. Endocrinol. Metab. 8 51–76. 10.1016/s0950-351x(05)80226-5
    1. Mcdole J., Wheeler L., Mcdonald K., Wang B., Konjufca V., Knoop K., et al. (2012). Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483 345–349. 10.1038/nature10863
    1. Méndez-Ferrer S., Battista M., Frenette P. S. (2010). Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann. N.Y. Acad. Sci. 1192 139–144.
    1. Merlos-Suarez A., Barriga F. M., Jung P., Iglesias M., Cespedes M. V., Rossell D., et al. (2011). The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8 511–524. 10.1016/j.stem.2011.02.020
    1. Miceli P. C., Jacobson K. (2003). Cholinergic pathways modulate experimental dinitrobenzene sulfonic acid colitis in rats. Auton. Neurosci. 105 16–24. 10.1016/s1566-0702(03)00023-7
    1. Morishita K., Coimbra R., Langness S., Eliceiri B. P., Costantini T. W. (2015). Neuroenteric axis modulates the balance of regulatory T cells and T-helper 17 cells in the mesenteric lymph node following trauma/hemorrhagic shock. Am. J. Physiol. Gastrointest. Liver Physiol. 309 G202–G208.
    1. Musso F., Lachat J. J., Cruz A. R., Goncalves R. P. (1975). Effect of denervation on the mitotic index of the intestinal epithelium of the rat. Cell Tissue Res. 163 395–402.
    1. Nance D., Burns J. (1989). Innervation of the spleen in the rat: evidence for absence of afferent innervation. Brain Behav. Immun. 3 281–290. 10.1016/0889-1591(89)90028-7
    1. Nasser Y., Ho W., Sharkey K. A. (2006). Distribution of adrenergic receptors in the enteric nervous system of the guinea pig, mouse, and rat. J. Comp. Neurol. 495 529–553. 10.1002/cne.20898
    1. Nijhuis L. E., Olivier B. J., Dhawan S., Hilbers F. W., Boon L., Wolkers M. C., et al. (2014). Adrenergic beta2 receptor activation stimulates anti-inflammatory properties of dendritic cells in vitro. PLoS One 9:e85086. 10.1371/journal.pone.0085086
    1. Norberg K. A. (1964). Adrenergic innervation of the intestinal wall studied by fluorescence microscopy. Int. J. Neuropharmacol. 3 379–382. 10.1016/0028-3908(64)90067-x
    1. Nunes N. S., Chandran P., Sundby M., Visioli F., Da C. G. F., Burks S. R., et al. (2019). Therapeutic ultrasound attenuates DSS-induced colitis through the cholinergic anti-inflammatory pathway. Ebiomedicine 45 495–510. 10.1016/j.ebiom.2019.06.033
    1. Obara K., Arai K., Miyajima N., Hatano A., Tomita Y., Takahashi K. (2000). Expression of m2 muscarinic acetylcholine receptor mRNA in primary culture of human prostate stromal cells. Urol. Res. 28 196–200. 10.1007/s002400000113
    1. Oben J. A., Yang S., Lin H., Ono M., Diehl A. M. (2003). Norepinephrine and neuropeptide Y promote proliferation and collagen gene expression of hepatic myofibroblastic stellate cells. Biochem. Biophys. Res. Commun. 302 685–690. 10.1016/s0006-291x(03)00232-8
    1. Ochoa-Cortes F., Turco F., Linan-Rico A., Soghomonyan S., Whitaker E., Wehner S., et al. (2016). Enteric glial cells: a new frontier in neurogastroenterology and clinical target for inflammatory bowel diseases. Inflamm. Bowel Dis. 22 433–449. 10.1097/mib.0000000000000667
    1. Okabe Y., Medzhitov R. (2014). Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157 832–844. 10.1016/j.cell.2014.04.016
    1. Olivier B. J., Cailotto C., van der Vliet J., Knippenberg M., Greuter M. J., Hilbers F. W., et al. (2016). Vagal innervation is required for the formation of tertiary lymphoid tissue in colitis. Eur. J. Immunol. 46 2467–2480. 10.1002/eji.201646370
    1. Olofsson P., Katz D., Rosas-Ballina M., Levine Y., Ochani M., Valdés-Ferrer S., et al. (2012). α7 nicotinic acetylcholine receptor (α7nAChR) expression in bone marrow-derived non-T cells is required for the inflammatory reflex. Mol. Med. 18 539–543. 10.2119/molmed.2011.00405
    1. O’Mahony C., van der Kleij H., Bienenstock J., Shanahan F., O’mahony L. (2009). Loss of vagal anti-inflammatory effect: in vivo visualization and adoptive transfer. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297 R1118–R1126.
    1. Paris H., Voisin T., Remaury A., Rouyer-Fessard C., Daviaud D., Langin D., et al. (1990). Alpha-2 adrenoceptor in rat jejunum epithelial cells: characterization with [3H]RX821002 and distribution along the villus-crypt axis. J. Pharmacol. Exp. Ther. 254 888–893.
    1. Park Y. S., Cho N. J. (2008). Enhanced proliferation of SNU-407 human colon cancer cells by muscarinic acetylcholine receptors. BMB Rep. 41 803–807. 10.5483/bmbrep.2008.41.11.803
    1. Pellissier S., Dantzer C., Canini F., Mathieu N., Bonaz B. (2010). Psychological adjustment and autonomic disturbances in inflammatory bowel diseases and irritable bowel syndrome. Psychoneuroendocrino 35 653–662. 10.1016/j.psyneuen.2009.10.004
    1. Pereira A., McLaren A., Bell W. R., Copolov D., Dean B. (2003). Potential clozapine target sites on peripheral hematopoietic cells and stromal cells of the bone marrow. Pharmacogenom. J. 3 227–234. 10.1038/sj.tpj.6500179
    1. Phillips R. J., Powley T. L. (2012). Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract. Auton. Neurosci. 169 12–27. 10.1016/j.autneu.2012.02.004
    1. Rosas-Ballina M., Ochani M., Parrish W., Ochani K., Harris Y., Huston J., et al. (2008). Splenic nerve is required for cholinergic antiinflammatory pathway control of Tnf in endotoxemia. Proc. Natl. Acad. Sci. U.S.A. 105 11008–11013. 10.1073/pnas.0803237105
    1. Rosas-Ballina M., Olofsson P., Ochani M., Valdés-Ferrer S., Levine Y., Reardon C., et al. (2011). Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334 98–101. 10.1126/science.1209985
    1. Salamone G., Lombardi G., Gori S., Nahmod K., Jancic C., Amaral M., et al. (2011). Cholinergic modulation of dendritic cell function. J. Neuroimmunol. 236 47–56. 10.1016/j.jneuroim.2011.05.007
    1. Sanders V. M., Baker R. A., Ramer-Quinn D. S., Kasprowicz D. J., Fuchs B. A., Street N. E. (1997). Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J. Immunol. 158 4200–4210.
    1. Satoh Y. (1988). Atropine inhibits the degranulation of Paneth cells in ex-germ-free mice. Cell Tissue Res. 253 397–402.
    1. Satoh Y., Ishikawa K., Oomori Y., Takeda S., Ono K. (1992). Bethanechol and a G-protein activator, NaF/AlCl3, induce secretory response in Paneth cells of mouse intestine. Cell Tissue Res. 269 213–220. 10.1007/bf00319611
    1. Schaak S., Cussac D., Cayla C., Devedjian J. C., Guyot R., Paris H., et al. (2000). Alpha(2) adrenoceptors regulate proliferation of human intestinal epithelial cells. Gut 47 242–250. 10.1136/gut.47.2.242
    1. Schaper J., Wagner A., Enigk F., Brell B., Mousa S. A., Habazettl H., et al. (2013). Regional sympathetic blockade attenuates activation of intestinal macrophages and reduces gut barrier failure. Anesthesiology 118 134–142. 10.1097/aln.0b013e3182784c93
    1. Schepers A. G., Snippert H. J., Stange D. E., van den Born M., van Es J. H., van de Wetering M., et al. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337 730–735. 10.1126/science.1224676
    1. Schutz B., Jurastow I., Bader S., Ringer C., von Engelhardt J., Chubanov V., et al. (2015). Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front. Physiol. 6:87. 10.3389/fphys.2015.00087
    1. Shimokawa M., Ohta Y., Nishikori S., Matano M., Takano A., Fujii M., et al. (2017). Visualization and targeting of LGR5(+) human colon cancer stem cells. Nature 545 187–192. 10.1038/nature22081
    1. Shwartz Y., Gonzalez-Celeiro M., Chen C.-L., Pasolli H. A., Sheu S.-H., Fan S. M.-Y., et al. (2020). Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182 578–593. 10.1016/j.cell.2020.06.031
    1. Skok M., Grailhe R., Changeux J. P. (2005). Nicotinic receptors regulate B lymphocyte activation and immune response. Eur. J. Pharmacol. 517 246–251. 10.1016/j.ejphar.2005.05.011
    1. Slater T. W., Finkielsztein A., Mascarenhas L. A., Mehl L. C., Butin-Israeli V., Sumagin R. (2017). Neutrophil microparticles deliver active myeloperoxidase to injured mucosa to inhibit epithelial wound healing. J. Immunol. 198 2886–2897. 10.4049/jimmunol.1601810
    1. Stakenborg N., Wolthuis A. M., Gomez-Pinilla P. J., Farro G., Di Giovangiulio M., Bosmans G., et al. (2017). Abdominal vagus nerve stimulation as a new therapeutic approach to prevent postoperative ileus. Neurogastroenterol. Motil. 29:13075.
    1. Stead R. H., Colley E. C., Wang B., Partosoedarso E., Lin J., Stanisz A., et al. (2006). Vagal influences over mast cells. Auton. Neurosci. 125 53–61. 10.1016/j.autneu.2006.01.002
    1. Straub R. H., Grum F., Strauch U., Capellino S., Bataille F., Bleich A., et al. (2008). Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 57 911–921. 10.1136/gut.2007.125401
    1. Sun P., Zhou K., Wang S., Li P., Chen S., Lin G., et al. (2013). Involvement of Mapk/Nf-kappaB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS One 8:e69424. 10.1371/journal.pone.0069424
    1. Takahashi T., Ohnishi H., Sugiura Y., Honda K., Suematsu M., Kawasaki T., et al. (2014). Non-neuronal acetylcholine as an endogenous regulator of proliferation and differentiation of Lgr5-positive stem cells in mice. FEBS J. 281 4672–4690. 10.1111/febs.12974
    1. Tanaka Y., Kanazawa M., Palsson O. S., Tilburg M., Gangarosa L. M., Fukudo S., et al. (2018). Increased postprandial colonic motility and autonomic nervous system activity in patients with irritable bowel syndrome: a prospective Study. J. Neurogastroenterol. Motil. 24 87–95. 10.5056/jnm16216
    1. Teratani T., Mikami Y., Nakamoto N., Suzuki T., Harada Y., Okabayashi K., et al. (2020). The liver-brain-gut neural arc maintains the T cell niche in the gut. Nature 585 591–596. 10.1038/s41586-020-2425-3
    1. The F. O., Boeckxstaens G. E., Snoek S. A., Cash J. L., Bennink R., Larosa G. J., et al. (2007). Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology 133 1219–1228. 10.1053/j.gastro.2007.07.022
    1. Tsibulevskii A., Orlova E. N. (1976). [Physiologic regeneration of jejunal epithelium following bilateral subdiaphragmatic vagotomy in rats]. Biull. Eksp. Biol. Med. 81 236–237.
    1. Tsuchida Y., Hatao F., Fujisawa M., Murata T., Kaminishi M., Seto Y., et al. (2011). Neuronal stimulation with 5-hydroxytryptamine 4 receptor induces anti-inflammatory actions via alpha7nACh receptors on muscularis macrophages associated with postoperative ileus. Gut 60 638–647. 10.1136/gut.2010.227546
    1. Tutton P. J. (1975). The influence of cholinoceptor activity on the mitotic rate in the crypts of Lieberkuhn in rat jejunum. Clin. Exp. Pharmacol. Physiol. 2 269–276. 10.1111/j.1440-1681.1975.tb03032.x
    1. Tutton P. J., Barkla D. H. (1977). The influence of adrenoceptor activity on cell proliferation in colonic crypt ipithelium and in colonic adenocarcinomata. Virchows Arch. B Cell. Pathol. 24 139–146.
    1. Tutton P. J., Helme R. D. (1974). The influence of adrenoreceptor activity on crypt cell proliferation in the rat jejunum. Cell Tissue Kinet. 7 125–136. 10.1111/j.1365-2184.1974.tb00405.x
    1. Uwada J., Yazawa T., Islam M. T., Khan M., Krug S. M., Fromm M., et al. (2017). Activation of muscarinic receptors prevents TNF-alpha-mediated intestinal epithelial barrier disruption through p38 MAPK. Cell Signal. 35 188–196. 10.1016/j.cellsig.2017.04.007
    1. Valet P., Senard J. M., Devedjian J. C., Planat V., Salomon R., Voisin T., et al. (1993). Characterization and distribution of alpha 2-adrenergic receptors in the human intestinal mucosa. J. Clin. Invest. 91 2049–2057. 10.1172/jci116427
    1. van der Zanden E. P., Snoek S., Heinsbroek S., Stanisor O., Verseijden C., Boeckxstaens G., et al. (2009). Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology 137 1029–1039. 10.1053/j.gastro.2009.04.057
    1. Vasina V., Abu-Gharbieh E., Barbara G., de Giorgio R., Colucci R., Blandizzi C., et al. (2008). The beta3-adrenoceptor agonist SR58611A ameliorates experimental colitis in rats. Neurogastroenterol. Motil. 20 1030–1041. 10.1111/j.1365-2982.2008.01138.x
    1. Vather R., O’Grady G., Bissett I. P., Dinning P. G. (2014). Postoperative ileus: mechanisms and future directions for research. Clin. Exp. Pharmacol. Physiol. 41 358–370. 10.1111/1440-1681.12220
    1. Vida G., Peña G., Kanashiro A., Thompson-Bonilla Mdel R., Palange D., Deitch E., et al. (2011). β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J. 25 4476–4485. 10.1096/fj.11-191007
    1. Wallrapp A., Riesenfeld S. J., Burkett P. R., Abdulnour R. E., Nyman J., Dionne D., et al. (2017). The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549 351–356. 10.1038/nature24029
    1. Wan H., Chen Y. (2010). Effects of antidepressive treatment of Saint John’s wort extract related to autonomic nervous function in women with irritable bowel syndrome. Int. J. Psychiatry Med. 40 45–56. 10.2190/pm.40.1.d
    1. Wang L., Zhi X., Zhang Q., Wei S., Li Z., Zhou J., et al. (2016). Muscarinic receptor M3 mediates cell proliferation induced by acetylcholine and contributes to apoptosis in gastric cancer. Tumour Biol. 37 2105–2117. 10.1007/s13277-015-4011-0
    1. Wheatley L. M., Urso D., Tumas K., Maltzman J., Loh E., Levinson A. I. (1992). Molecular evidence for the expression of nicotinic acetylcholine receptor alpha-chain in mouse thymus. J. Immunol. 148 3105–3109.
    1. Willemze R. A., Welting O., van Hamersveld H. P., Meijer S. L., Folgering J., Darwinkel H., et al. (2018). Neuronal control of experimental colitis occurs via sympathetic intestinal innervation. Neurogastroenterol. Motil. 30:13163.
    1. Wu N., Sun H., Zhao X., Zhang Y., Tan J., Qi Y., et al. (2021). Map3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature 592 606–610. 10.1038/s41586-021-03283-y
    1. Zeng H., Li H., Yue M., Fan Y., Cheng J., Wu X., et al. (2020). Isoprenaline protects intestinal stem cells from chemotherapy-induced damage. Br. J. Pharmacol. 177 687–700. 10.1111/bph.14883
    1. Zhang Y., Li J. (2012). Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-kappabeta and myosin light-chain kinase pathways. Biochem. Biophys. Res. Commun. 428 321–326. 10.1016/j.bbrc.2012.10.056
    1. Zhou H., Liang H., Li Z. F., Xiang H., Liu W., Li J. G. (2013). Vagus nerve stimulation attenuates intestinal epithelial tight junctions disruption in endotoxemic mice through alpha7 nicotinic acetylcholine receptors. Shock 40 144–151. 10.1097/shk.0b013e318299e9c0

Source: PubMed

3
Subscribe