Influence of mobilization and weight bearing on in-hospital outcome in geriatric patients with hip fractures

Manuel Baer, Valentin Neuhaus, Hans Christoph Pape, Bernhard Ciritsis, Manuel Baer, Valentin Neuhaus, Hans Christoph Pape, Bernhard Ciritsis

Abstract

Introduction: Early recovery of mobilization after a fracture of the hip is associated with improved long-term ability to walk, lower complication rates, and mortality. In this context, early mobilization and full weight bearing are favorable. The aim of this study was (1) to analyze the influence of time between operation and first mobilization on in-hospital outcome and (2) the influence of early mobilization, full weight bearing, and ASA on pain, mobility of the hip, and ability to walk during the in-hospital phase of recovery.

Methods: This is a retrospective in-hospital study of 219 patients aged 70 years or older who were treated with surgery after a hip fracture. Data were collected by a review of medical records. The outcomes were mortality, complications, length of stay, and the Merle d'Aubigné score which evaluates pain, mobility of the hip, and ability to walk. Factors were sought in bivariate and multivariate analyses.

Results: A shorter time between operation and first mobilization was significantly associated with lower in-hospital mortality and complications. Early mobilization (within 24 h after the operation) and full weight bearing had no influence on pain, mobility of the hip, and ability to walk as well as length of stay in our cohort. Fracture type and treatment influenced mobility of the hip, while age as well as physical health status affected the ability to walk.

Discussion: Patients with femoral neck fractures, respectively after total hip arthroplasty, had less pain and showed better mobility of the hip and ability to walk during hospitalization than patients with trochanteric fractures; these results were irrespective of early vs. late mobilization and full vs. partial weight bearing. Foremost, a shorter time between operation and first mobilization is associated with lower complication and mortality rates.

© The Authors, published by EDP Sciences, 2019.

References

    1. Alexiou KI, Roushias A, Varitimidis SE, Malizos KN (2018) Quality of life and psychological consequences in elderly patients after a hip fracture: a review. Clin Interv Aging 13, 143–150.
    1. Brenneman SK, Barrett-Connor E, Sajjan S, Markson LE, Siris ES (2006) Impact of recent fracture on health-related quality of life in postmenopausal women. J Bone Miner Res 21, 809–816.
    1. Pareja Sierra T, Bartolome Martin I, Rodriguez Solis J, Barcena Goitiandia L, Gonzalez Torralba, de Suso M, Morales Sanz MD, Hornillos Calvo M (2017) Predictive factors of hospital stay, mortality and functional recovery after surgery for hip fracture in elderly patients. Rev Esp Cir Ortop Traumatol 61, 427–435.
    1. Yoo JI, Ha YC, Lim JY, Kang H, Yoon BH, Kim H (2017) Early Rehabilitation in Elderly after Arthroplasty versus Internal Fixation for Unstable Intertrochanteric Fractures of Femur: Systematic Review and Meta-Analysis. J Korean Med Sci 32, 858–867.
    1. Rapp K, Rothenbacher D, Magaziner J, Becker C, Benzinger P, Konig HH, Jaensch A, Buchele G (2015) Risk of Nursing Home Admission After Femoral Fracture Compared With Stroke, Myocardial Infarction, and Pneumonia. J Am Med Dir Assoc 16, 715.e7–715.e12.
    1. Laflamme GY, Rouleau DM, Leduc S, Roy L, Beaumont E (2012) The Timed Up and Go test is an early predictor of functional outcome after hemiarthroplasty for femoral neck fracture. J Bone Joint Surg Am 94, 1175–1179.
    1. Oldmeadow LB, Edwards ER, Kimmel LA, Kipen E, Robertson VJ, Bailey MJ (2006) No rest for the wounded: early ambulation after hip surgery accelerates recovery. ANZ J Surg Australia 76(7), 607–611.
    1. Kamel HK, Iqbal MA, Mogallapu R, Maas D, Hoffmann RG (2003) Time to ambulation after hip fracture surgery: relation to hospitalization outcomes. J Gerontol A Biol Sci Med Sci 58, 1042–1045.
    1. Sanguineti VA, Wild JR, Fain MJ (2014) Management of postoperative complications: general approach. Clin Geriatr Med 30, 261–270.
    1. Kim SM, Moon YW, Lim SJ, Yoon BK, Min YK, Lee DY, Park YS (2012) Prediction of survival, second fracture, and functional recovery following the first hip fracture surgery in elderly patients. Bone 50, 1343–1350.
    1. Morri M, Forni C, Marchioni M, Bonetti E, Marseglia F, Cotti A (2018) Which factors are independent predictors of early recovery of mobility in the older adults’ population after hip fracture? A cohort prognostic study. Arch Orthop Trauma Surg Germany 138(1), 35–41.
    1. Kristensen MT, Kehlet H (2018) The basic mobility status upon acute hospital discharge is an independent risk factor for mortality up to 5 years after hip fracture surgery. Acta Orthop 89, 47–52.
    1. Bliemel C, Buecking B, Oberkircher L, Knobe M, Ruchholtz S, Eschbach D (2017) The impact of pre-existing conditions on functional outcome and mortality in geriatric hip fracture patients. Int Orthop 42(10), 1995–2000.
    1. Holt G, Macdonald D, Fraser M, Reece AT (2006) Outcome after surgery for fracture of the hip in patients aged over 95 years. J Bone Joint Surg Br 88, 1060–1064.
    1. Endo Y, Aharonoff GB, Zuckerman JD, Egol KA, Koval KJ (2005) Gender differences in patients with hip fracture: a greater risk of morbidity and mortality in men. J Orthop Trauma 19, 29–35.
    1. Eastwood EA, Magaziner J, Wang J, Silberzweig SB, Hannan EL, Strauss E, Siu AL (2002) Patients with hip fracture: subgroups and their outcomes. J Am Geriatr Soc 50, 1240–1249.
    1. Beaupre LA, Binder EF, Cameron ID, Jones CA, Orwig D, Sherrington C, Magaziner J (2013) Maximising functional recovery following hip fracture in frail seniors. Best Pract Res Clin Rheumatol 27, 771–788.
    1. Munter KH, Clemmesen CG, Foss NB, Palm H, Kristensen MT (2017) Fatigue and pain limit independent mobility and physiotherapy after hip fracture surgery. Disabil Rehabil 40(15), 1808–1816.
    1. Zhang J, Ang ML, Kwek EB (2015) Who Will Walk Again? Effects of Rehabilitation on the Ambulatory Status in Elderly Patients Undergoing Hemiarthroplasty for Femoral Neck Fracture. Geriatr Orthop Surg Rehabil 6, 168–172.
    1. Stenvall M, Olofsson B, Nyberg L, Lundstrom M, Gustafson Y (2007) Improved performance in activities of daily living and mobility after a multidisciplinary postoperative rehabilitation in older people with femoral neck fracture: a randomized controlled trial with 1-year follow-up. J Rehabil Med 39, 232–238.
    1. Davison J, Bond J, Dawson P, Steen IN, Kenny RA (2005) Patients with recurrent falls attending Accident & Emergency benefit from multifactorial intervention–a randomised controlled trial. Age Ageing 34, 162–168.
    1. Ariza-Vega P, Jimenez-Moleon JJ, Kristensen MT (2014) Non-weight-bearing status compromises the functional level up to 1 yr after hip fracture surgery. Am J Phys Med Rehabil 93, 641–648.
    1. Ariza-Vega P, Kristensen MT, Martin-Martin L, Jimenez-Moleon JJ (2015) Predictors of long-term mortality in older people with hip fracture. Arch Phys Med Rehabil 96, 1215–1221.
    1. Wu J, Kurrle S, Cameron ID (2009) Restricted weight bearing after hip fracture surgery in the elderly: economic costs and health outcomes. J Eval Clin Pract 15(1), 217–219.
    1. Siebens HC, Sharkey P, Aronow HU, Horn SD, Munin MC, DeJong G, Smout RJ, Radnay CS (2012) Outcomes and weight-bearing status during rehabilitation after arthroplasty for hip fractures. PM R 4(8), 548–555.
    1. Owens WD, Felts JA, Spitznagel EL Jr (1978) ASA physical status classifications: a study of consistency of ratings. Anesthesiology 49, 239–243.
    1. d’Aubigne RM, Postel M (2009) The classic: functional results of hip arthroplasty with acrylic prosthesis.1954. Clin Orthop Relat Res 467, 7–27.
    1. Intiso D, Di Rienzo F, Grimaldi G, Lombardi T, Fiore P, Maruzzi G, Iarossi A, Tolfa M, Pazienza L (2009) Survival and functional outcome in patients 90 years of age or older after hip fracture. Age Ageing 38, 619–622.
    1. Miller AG, Bercik MJ, Ong A (2012) Nonagenarian hip fracture: treatment and complications. J Trauma Acute Care Surg 72, 1411–1415.
    1. Shah MR, Aharonoff GB, Wolinsky P, Zuckerman JD, Koval KJ (2001) Outcome after hip fracture in individuals ninety years of age and older. J Orthop Trauma 15, 34–39.
    1. Formiga F, Lopez-Soto A, Sacanella E, Coscojuela A, Suso S, Pujol R (2003) Mortality and morbidity in nonagenarian patients following hip fracture surgery. Gerontology 49, 41–45.
    1. Chen LH, Liang J, Chen MC, Wu CC, Cheng HS, Wang HH, Shyu YL (2017) The relationship between preoperative American Society of Anesthesiologists Physical Status Classification scores and functional recovery following hip-fracture surgery. BMC Musculoskelet Disord 18, 410.
    1. Siu AL, Penrod JD, Boockvar KS, Koval K, Strauss E, Morrison RS (2006) Early ambulation after hip fracture: effects on function and mortality. Arch Intern Med 166, 766–771.
    1. Donegan DJ, Gay AN, Baldwin K, Morales EE, Esterhai JL Jr, Mehta S (2010) Use of medical comorbidities to predict complications after hip fracture surgery in the elderly. J Bone Joint Surg Am 92, 807–813.
    1. Foss NB, Kristensen MT, Palm H, Kehlet H (2009) Postoperative pain after hip fracture is procedure specific. Br J Anaesth 102, 111–116.
    1. Kristensen MT (2013) Hip fracture-related pain strongly influences functional performance of patients with an intertrochanteric fracture upon discharge from the hospital. PM R 5, 135–141.

Source: PubMed

3
Subscribe