Oxidative Stress in the Anterior Ocular Diseases: Diagnostic and Treatment

Azza Dammak, Cristina Pastrana, Alba Martin-Gil, Carlos Carpena-Torres, Assumpta Peral Cerda, Mirjam Simovart, Pilar Alarma, Fernando Huete-Toral, Gonzalo Carracedo, Azza Dammak, Cristina Pastrana, Alba Martin-Gil, Carlos Carpena-Torres, Assumpta Peral Cerda, Mirjam Simovart, Pilar Alarma, Fernando Huete-Toral, Gonzalo Carracedo

Abstract

The eye is a metabolically active structure, constantly exposed to solar radiations making its structure vulnerable to the high burden of reactive oxygen species (ROS), presenting many molecular interactions. The biomolecular cascade modification is caused especially in diseases of the ocular surface, cornea, conjunctiva, uvea, and lens. In fact, the injury in the anterior segment of the eye takes its origin from the perturbation of the pro-oxidant/antioxidant balance and leads to increased oxidative damage, especially when the first line of antioxidant defence weakens with age. Furthermore, oxidative stress is related to mitochondrial dysfunction, DNA damage, lipid peroxidation, protein modification, apoptosis, and inflammation, which are involved in anterior ocular disease progression such as dry eye, keratoconus, uveitis, and cataract. The different pathologies are interconnected through various mechanisms such as inflammation, oxidative stress making the diagnostics more relevant in early stages. The end point of the molecular pathway is the release of different antioxidant biomarkers offering the potential of predictive diagnostics of the pathology. In this review, we have analysed the oxidative stress and inflammatory processes in the front of the eye to provide a better understanding of the pathomechanism, the importance of biomarkers for the diagnosis of eye diseases, and the recent treatment of anterior ocular diseases.

Keywords: cataract; conjunctiva; dry eye; keratoconus; oxidative stress; uveitis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Scheme of oxidative stress role in anterior ocular diseases. UVA: Ultraviolet A, ROS: Reactive Oxygen Species, IOP: intraocular pressure, ECM: Extracellular Matrix.

References

    1. Perez-Garmendia R., Rodriguez A.L.D.E., Ramos-Martinez I., Zuñiga N.M., Gonzalez-Salinas R., Quiroz-Mercado H., Zenteno E., Hernández E.R., Hernández-Zimbrón L.F. Interplay between oxidative stress, inflammation, and amyloidosis in the anterior segment of the eye; its pathological implications. Oxidative Med. Cell. Longev. 2020;2020:1–14. doi: 10.1155/2020/6286105.
    1. Pisoschi A.M., Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015;97:55–74. doi: 10.1016/j.ejmech.2015.04.040.
    1. Oduntan O., Masige K.P. A review of the role of oxidative stress in the pathogenesis of eye diseases. Afr. Vis. Eye Health. 2011;70:191–199. doi: 10.4102/aveh.v70i4.116.
    1. Pham-Huy L.A., He H., Pham-Huy C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. IJBS. 2008;4:89.
    1. Ahmad A., Ahsan H. Biomarkers of inflammation and oxidative stress in ophthalmic disorders. J. Immunoass. Immunochem. 2020;41:257–271. doi: 10.1080/15321819.2020.1726774.
    1. Shoham A., Hadziahmetovic M., Dunaief J.L., Mydlarski M.B., Schipper H.M. Oxidative stress in diseases of the human cornea. Free Radic. Biol. Med. 2008;45:1047–1055. doi: 10.1016/j.freeradbiomed.2008.07.021.
    1. Chen Y., Mehta G., Vasiliou V. Antioxidant defenses in the ocular surface. Ocul. Surf. 2009;7:176–185. doi: 10.1016/S1542-0124(12)70185-4.
    1. Sacca S.C., Roszkowska A.M., Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat. Res./Rev. Mutat. Res. 2013;752:153–171. doi: 10.1016/j.mrrev.2013.01.001.
    1. Saccà S.C., Cutolo C.A., Ferrari D., Corazza P., Traverso C.E. The eye, oxidative damage and polyunsaturated fatty acids. Nutrients. 2018;10:668. doi: 10.3390/nu10060668.
    1. Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–247. doi: 10.1038/35041687.
    1. Kurutas E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2015;15:1–22. doi: 10.1186/s12937-016-0186-5.
    1. Čejková J., Vejražka M., Pláteník J., Štípek S. Age-related changes in superoxide dismutase, glutathione peroxidase, catalase and xanthine oxidoreductase/xanthine oxidase activities in the rabbit cornea. Exp. Gerontol. 2004;39:1537–1543. doi: 10.1016/j.exger.2004.08.006.
    1. Biswas S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative Med. Cell. Longev. 2016;2016:5698931. doi: 10.1155/2016/5698931.
    1. Hussain T., Tan B., Yin Y., Blachier F., Tossou M.C., Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Med. Cell. Longev. 2016;2016:7432797. doi: 10.1155/2016/7432797.
    1. Perry H.D. Dry eye disease: Pathophysiology, classification, and diagnosis. Am. J. Manag. Care. 2008;14((Suppl. S3)):S79–S87.
    1. Seen S., Tong L. Dry eye disease and oxidative stress. Acta Ophthalmol. 2018;96:e412–e420. doi: 10.1111/aos.13526.
    1. Clayton J.A. Dry Eye. N. Engl. J. Med. 2018;378:2212–2223. doi: 10.1056/NEJMra1407936.
    1. Alves M., Novaes P., Morraye M.D.A., Reinach P.S., Rocha E.M. Is dry eye an environmental disease? Arq. Bras. Oftalmol. 2014;77:193–200. doi: 10.5935/0004-2749.20140050.
    1. Jie Y., Xu L., Wu Y.Y., Jonas J.B. Prevalence of dry eye among adult Chinese in the Beijing Eye Study. Eye. 2009;23:688–693. doi: 10.1038/sj.eye.6703101.
    1. Junqueira V.B., Barrros S.B.M., Cham S.S., Rodrigues L., Giavarotti L., Abud R.L., Deucher G.P. Aging and oxidative stress. Mol. Asp. Med. 2004;25:5–16. doi: 10.1016/j.mam.2004.02.003.
    1. Kruk J., Kubasik-Kladna K., Aboul-Enein H.Y. The Role Oxidative Stress in the Pathogenesis of Eye Diseases: Current Status and a Dual Role of Physical Activity. Mini Rev. Med. Chem. 2015;16:241–257. doi: 10.2174/1389557516666151120114605.
    1. Cheeseman K.H., Slater T.F. An introduction to free radical biochemistry. Br. Med. Bull. 1993;49:481–493. doi: 10.1093/oxfordjournals.bmb.a072625.
    1. Valko M., Izakovic M., Mazur M., Rhodes C.J., Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 2004;266:37–56. doi: 10.1023/B:MCBI.0000049134.69131.89.
    1. Sies H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997;82:291–295. doi: 10.1113/expphysiol.1997.sp004024.
    1. Deng R., Hua X., Li J., Chi W., Zhang Z., Lu F., Zhang L., Pflugfelder S.C., Li D.-Q. Oxidative stress markers induced by hyperosmolarity in primary human corneal epithelial cells. PLoS ONE. 2015;10:e0126561. doi: 10.1371/journal.pone.0126561.
    1. The definition and classification of dry eye disease: Report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007) Ocul. Surf. 2007;5:75–92. doi: 10.1016/S1542-0124(12)70081-2.
    1. Nakamura S., Shibuya M., Nakashima H., Hisamura R., Masuda N., Imagawa T., Uehara M., Tsubota K. Involvement of oxidative stress on corneal epithelial alterations in a blink-suppressed dry eye. Investig. Opthalmol. Vis. Sci. 2007;48:1552–1558. doi: 10.1167/iovs.06-1027.
    1. Enríquez-de-Salamanca A., Castellanos E., Stern M.E., Fernández I., Carreño E., García-Vázquez C., Herreras J.M., Calonge M. Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol. Vis. 2010;16:862–873.
    1. Pinazo-Durán M.D., Galbis-Estrada C., Pons-Vázquez S., Cantú-Dibildox J., Marco-Ramírez C., Benítez-del-Castillo J. Effects of a nutraceutical formulation based on the combination of antioxidants and ω-3 essential fatty acids in the expression of inflammation and immune response mediators in tears from patients with dry eye disorders. Clin. Interv. Aging. 2013;8:139–148. doi: 10.2147/CIA.S40640.
    1. Galbis-Estrada C., Cantu-Dibildox J., Galbis-Estrada C., Marco-Ramirez C., Diaz-Llopis M., Benitez-Del-Castillo J. Patients undergoing long-term treatment with antihypertensive eye drops responded positively with respect to their ocular surface disorder to oral supplementation with antioxidants and essential fatty acids. Clin. Interv. Aging. 2013;8:711–719.
    1. Kojima T., Wakamatsu T.H., Dogru M., Ogawa Y., Igarashi A., Ibrahim O.M.A., Inaba T., Shimizu T., Noda S., Obata H., et al. Age-related dysfunction of the lacrimal gland and oxidative stress: Evidence from the Cu,Zn-superoxide dismutase-1 (Sod1) knockout mice. Am. J. Pathol. 2012;180:1879–1896. doi: 10.1016/j.ajpath.2012.01.019.
    1. Ohashi Y., Dogru M., Tsubota K. Laboratory findings in tear fluid analysis. Clin. Chim. Acta. 2006;369:17–28. doi: 10.1016/j.cca.2005.12.035.
    1. Uchino Y., Kawakita T., Miyazawa M., Ishii T., Onouchi H., Yasuda K., Ogawa Y., Shimmura S., Ishii N., Tsubota K. Oxidative stress induced inflammation initiates functional decline of tear production. PLoS ONE. 2012;7:e45805. doi: 10.1371/journal.pone.0045805.
    1. Batista T.M., Tomiyoshi L.M., Dias A.C., Roma L.P., Módulo C.M., Malki L.T., Filho E.B.M., Deminice R., Jordão A.A., Cunha D.A., et al. Age-dependent changes in rat lacrimal gland anti-oxidant and vesicular related protein expression profiles. Mol. Vis. 2012;18:194–202.
    1. Dogru M., Kojima T., Simsek C., Tsubota K. Potential Role of Oxidative Stress in Ocular Surface Inflammation and Dry Eye Disease. Investig. Ophthalmol. Vis. Sci. 2018;59:DES163–DES168. doi: 10.1167/iovs.17-23402.
    1. Tangvarasittichai O., Tangvarasittichai S. Oxidative Stress, Ocular Disease and Diabetes Retinopathy. Curr. Pharm. Des. 2018;24:4726–4741. doi: 10.2174/1381612825666190115121531.
    1. Leung E.W., Rife L., Smith R.E., Kay E.P. Extracellular matrix components in retrocorneal fibrous membrane in comparison to corneal endothelium and Descemet’s membrane. Mol. Vis. 2000;6:15–23.
    1. Wenk J., Brenneisen P., Meewes C., Wlaschek M., Peters T., Blaudschun R., Ma W., Kuhr L., Schneider L., Scharffet-ter-Kochanek K. UV-induced oxidative stress and photoaging. Curr. Probl. Dermatol. 2001;29:83–94.
    1. Choi S.I., Dadakhujaev S., Ryu H., Kim T.I., Kim E.K. Melatonin protects against oxidative stress in granular corneal dystrophy type 2 corneal fibroblasts by mechanisms that involve membrane melatonin receptors. J. Pineal. Res. 2011;51:94–103. doi: 10.1111/j.1600-079X.2011.00866.x.
    1. Peng C.Y., Lan C.-H., Juang Y.-J., Tsao T.-H., Dai Y.-T., Liu H.-H., Chen C.-J. Exposure assessment of aluminum arc welding radiation. Health Phys. 2007;93:298–306. doi: 10.1097/01.HP.0000267862.44497.a4.
    1. Sherwin T., Brookes N.H. Morphological changes in keratoconus: Pathology or pathogenesis. Clin. Exp. Ophthalmol. 2004;32:211–217. doi: 10.1111/j.1442-9071.2004.00805.x.
    1. Rabinowitz Y.S. Keratoconus. Surv. Ophthalmol. 1998;42:297–319. doi: 10.1016/S0039-6257(97)00119-7.
    1. Gulpamuk B., Koç M., Karatepe M.S., Yildiz A., Erel O., Neselioglu S., Yilmazbas P. Novel Assay Assessment of Oxidative Stress Biomarkers in Patients with Keratoconus: Thiol-Disulfide Homeostasis. Curr. Eye Res. 2017;42:1215–1219. doi: 10.1080/02713683.2017.1302592.
    1. Toprak I., Kucukatay V., Yildirim C., Kilic-Toprak E., Kilic-Erkek O. Increased systemic oxidative stress in patients with keratoconus. Eye. 2014;28:285–289. doi: 10.1038/eye.2013.262.
    1. Chwa M., Atilano S., Reddy V., Jordan N., Kim D.W., Kenney M.C. Increased stress-induced generation of reactive oxygen species and apoptosis in human keratoconus fibroblasts. Investig. Ophthalmol. Vis. Sci. 2006;47:1902–1910. doi: 10.1167/iovs.05-0828.
    1. Chwa M., Atilano S.R., Hertzog D., Zheng H., Langberg J., Kim D.W., Kenney M.C. Hypersensitive response to oxidative stress in keratoconus corneal fibroblasts. Investig. Ophthalmol. Vis. Sci. 2008;49:4361–4369. doi: 10.1167/iovs.08-1969.
    1. Määttä M., Heljasvaara R., Sormunen R., Pihlajaniemi T., Autio-Harmainen H., Tervo T. Differential expression of collagen types XVIII/endostatin and XV in normal, keratoconus, and scarred human corneas. Cornea. 2006;25:341–349. doi: 10.1097/01.ico.0000178729.57435.96.
    1. Brown D.J., Lin B., Chwa M., Atilano S.R., Kim D.W., Kenney M.C. Elements of the nitric oxide pathway can degrade TIMP-1 and increase gelatinase activity. Mol. Vis. 2004;10:281–288.
    1. Nita M., Nita M., Strzałka-Mrozik B., Grzybowski A., Mazurek U. Age-related macular degeneration and changes in the extracellular matrix. Med. Sci. Monit. 2014;20:1003–1016.
    1. Nagase H., Visse R., Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006;69:562–573. doi: 10.1016/j.cardiores.2005.12.002.
    1. Smith V.A., Hoh H.B., Littleton M., Easty D.L. Over-expression of a gelatinase A activity in keratoconus. Pt 4Eye. 1995;9:429–433. doi: 10.1038/eye.1995.100.
    1. Surazynski A., Liu Y., Miltyk W., Phang J.M. Nitric oxide regulates prolidase activity by serine/threonine phosphorylation. J. Cell. Biochem. 2005;96:1086–1094. doi: 10.1002/jcb.20631.
    1. Palka J.A., Phang J.M. Prolidase activity in fibroblasts is regulated by interaction of extracellular matrix with cell surface integrin receptors. J. Cell. Biochem. 1997;67:166–175. doi: 10.1002/(SICI)1097-4644(19971101)67:2<166::AID-JCB2>;2-V.
    1. Göncü T., Akal A., Adibelli F.M., Çakmak S., Sezen H., Ylmaz F. Tear Film and Serum Prolidase Activity and Oxidative Stress in Patients with Keratoconus. Cornea. 2015;34:1019–1023. doi: 10.1097/ICO.0000000000000510.
    1. Balasubramanian S.A., Mohan S., Pye D.C., Willcox M.D.P. Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus. Acta Ophthalmol. 2012;90:e303–e309. doi: 10.1111/j.1755-3768.2011.02369.x.
    1. Kao W.W., Vergnes J.-P., Ebert J., Sundar-Raj C., Brown S.I. Increased collagenase and gelatinase activities in keratoconus. Biochem. Biophys. Res. Commun. 1982;107:929–936. doi: 10.1016/0006-291X(82)90612-X.
    1. Nichols B.A. Conjunctiva. Microsc. Res. Tech. 1996;33:296–319. doi: 10.1002/(SICI)1097-0029(19960301)33:4<296::AID-JEMT2>;2-O.
    1. Yokoi N., Inatomi T., Kinoshita S. Surgery of the conjunctiva. Dev. Ophthalmol. 2008;41:138–158.
    1. de Paiva C.S. Effects of Aging in Dry Eye. Int. Ophthalmol. Clin. 2017;57:47–64. doi: 10.1097/IIO.0000000000000170.
    1. García-Posadas L., Hodges R.R., Li D., Shatos M.A., Storr-Paulsen T., Diebold Y., Dartt D.A. Interaction of IFN-γ with cholinergic agonists to modulate rat and human goblet cell function. Mucosal. Immunol. 2016;9:206–217. doi: 10.1038/mi.2015.53.
    1. De Paiva C.S., Raince J.K., McClellan A.J., Shanmugam K.P., Pangelinan S.B., A Volpe E., Corrales R.M., Farley W.J., Corry D.B., Li D.-Q., et al. Homeostatic control of conjunctival mucosal goblet cells by NKT-derived IL-13. Mucosal Immunol. 2011;4:397–408. doi: 10.1038/mi.2010.82.
    1. Wakamatsu T.H., Dogru M., Matsumoto Y., Kojima T., Kaido M., Ibrahim O.M.A., Sato E.A., Igarashi A., Ichihashi Y., Satake Y., et al. Evaluation of lipid oxidative stress status in Sjögren syndrome patients. Investig. Ophthalmol. Vis. Sci. 2013;54:201–210. doi: 10.1167/iovs.12-10325.
    1. Cejková J., Ardan T., Simonova Z., Cejka C., Malec J., Dotrelová D., Brunová B. Decreased expression of antioxidant enzymes in the conjunctival epithelium of dry eye (Sjögren’s syndrome) and its possible contribution to the development of ocular surface oxidative injuries. Histol. Histopathol. 2008;23:1477–1483.
    1. Malozhen S.A., Trufanov S.V., Krakhmaleva D.A. Pterygium: Etiology, pathogenesis, treatment. Vestn. Oftalmol. 2017;133:76–83. doi: 10.17116/oftalma2017133576-83.
    1. Hovanesian J.A., Starr C.E., Vroman D.T., Mah F.S., Gomes J.A., Farid M., Shamie N., Davidson R.S., John T., Holland E.J., et al. Surgical techniques and adjuvants for the management of primary and recurrent pterygia. J. Cataract. Refract. Surg. 2017;43:405–419. doi: 10.1016/j.jcrs.2017.03.002.
    1. Mudhar H.S. Update on conjunctival pathology. Indian J. Ophthalmol. 2017;65:797–807. doi: 10.4103/ijo.IJO_364_16.
    1. Austin P., Jakobiec F.A., Iwamoto T. Elastodysplasia and elastodystrophy as the pathologic bases of ocular pterygia and pinguecula. Ophthalmology. 1983;90:96–109. doi: 10.1016/S0161-6420(83)34594-2.
    1. Liu T., Liu Y., Xie L., He X., Bai J. Progress in the pathogenesis of pterygium. Curr. Eye Res. 2013;38:1191–1197. doi: 10.3109/02713683.2013.823212.
    1. Beatty S., Koh H.-H., Phil M., Henson D., Boulton M. The Role of Oxidative Stress in the Pathogenesis of Age-Related Macular Degeneration. Surv. Ophthalmol. 2000;45:115–134. doi: 10.1016/S0039-6257(00)00140-5.
    1. Kormanovski A., Parra F., Jarillo-Luna A., Lara-Padilla E., Pacheco-Yépez J., Campos-Rodriguez R. Oxidant/antioxidant state in tissue of prymary and recurrent pterygium. BMC Ophthalmol. 2014;14:149. doi: 10.1186/1471-2415-14-149.
    1. Chiang C.C., Tsai Y.-Y., Bau D.-T., Cheng Y.-W., Tseng S.-H., Wang R.-F., Tsai F.-J. Pterygium and genetic polymorphisms of the DNA repair enzymes XRCC1, XPA, and XPD. Mol. Vis. 2010;16:698–704.
    1. Bradley J.C., Yang W., Bradley R.H., Reid T.W., Schwab I.R. The science of pterygia. Br. J. Ophthalmol. 2010;94:815–820. doi: 10.1136/bjo.2008.151852.
    1. Anguria P., Kitinya J., Ntuli S., Carmichael T. The role of heredity in pterygium development. Int. J. Ophthalmol. 2014;7:563–573.
    1. Crowston J.G., Weinreb R.N. Glaucoma medication and aqueous humor dynamics. Curr. Opin. Ophthalmol. 2005;16:94–100. doi: 10.1097/01.icu.0000156136.20570.eb.
    1. Kimura A., Namekata K., Guo X., Noro T., Harada C., Harada T. Targeting Oxidative Stress for Treatment of Glaucoma and Optic Neuritis. Oxidative Med. Cell. Longev. 2017;2017:2817252. doi: 10.1155/2017/2817252.
    1. Wang M., Zheng Y. Oxidative stress and antioxidants in the trabecular meshwork. PeerJ. 2019;7:e8121. doi: 10.7717/peerj.8121.
    1. Babizhayev M.A. Current ocular drug delivery challenges for N-acetylcarnosine: Novel patented routes and modes of delivery, design for enhancement of therapeutic activity and drug delivery relationships. Recent Pat. Drug Deliv. Formul. 2009;3:229–265. doi: 10.2174/187221109789105621.
    1. Bill A. Some aspects of aqueous humour drainage. Pt 1Eye. 1993;7:14–19. doi: 10.1038/eye.1993.4.
    1. Ammar D.A., Hamweyah K.M., Kahook M.Y. Antioxidants Protect Trabecular Meshwork Cells from Hydrogen Peroxide-Induced Cell Death. Transl. Vis. Sci. Technol. 2012;1:4. doi: 10.1167/tvst.1.1.4.
    1. Saccà S.C., Izzotti A., Rossi P., Traverso C. Glaucomatous outflow pathway and oxidative stress. Exp. Eye Res. 2007;84:389–399. doi: 10.1016/j.exer.2006.10.008.
    1. Tian B., Geiger B., Epstein D.L., Kaufman P.L. Cytoskeletal involvement in the regulation of aqueous humor outflow. Investig. Ophthalmol. Vis. Sci. 2000;41:619–623.
    1. Izzotti A., Sacca’ S., Longobardi M., Cartiglia C. Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. Investig. Ophthalmol. Vis. Sci. 2009;50:5251–5258. doi: 10.1167/iovs.09-3871.
    1. Ferreira S.M., Lerner S., Brunzini R., Evelson P.A., Llesuy S.F. Oxidative stress markers in aqueous humor of glaucoma patients. Am. J. Ophthalmol. 2004;137:62–69. doi: 10.1016/S0002-9394(03)00788-8.
    1. Acott T.S., Kelley M.J. Extracellular matrix in the trabecular meshwork. Exp. Eye Res. 2008;86:543–561. doi: 10.1016/j.exer.2008.01.013.
    1. Lütjen-Drecoll E. Functional morphology of the trabecular meshwork in primate eyes. Prog. Retin. Eye Res. 1999;18:91–119. doi: 10.1016/S1350-9462(98)00011-1.
    1. Babizhayev M.A., Brodskaya M.W. Fibronectin detection in drainage outflow system of human eyes in ageing and progression of open-angle glaucoma. Mech. Ageing Dev. 1989;47:145–157. doi: 10.1016/0047-6374(89)90017-1.
    1. Tamm E.R., Fuchshofer R. What increases outflow resistance in primary open-angle glaucoma? Surv. Ophthalmol. 2007;52((Suppl. S2)):S101–S104. doi: 10.1016/j.survophthal.2007.08.002.
    1. Scott P.A., Lu Z., Liu Y., Gong H. Relationships between increased aqueous outflow facility during washout with the changes in hydrodynamic pattern and morphology in bovine aqueous outflow pathways. Exp. Eye Res. 2009;89:942–949. doi: 10.1016/j.exer.2009.08.002.
    1. Tamm E.R., Russell P., Johnson D.H., Piatigorsky J. Human and monkey trabecular meshwork accumulate alpha B-crystallin in response to heat shock and oxidative stress. Investig. Ophthalmol. Vis. Sci. 1996;37:2402–2413.
    1. Tektas O.Y., Lütjen-Drecoll E. Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp. Eye Res. 2009;88:769–775. doi: 10.1016/j.exer.2008.11.025.
    1. Kahn M.G., Giblin F.J., Epstein D.L. Glutathione in calf trabecular meshwork and its relation to aqueous humor outflow facility. Investig. Ophthalmol. Vis. Sci. 1983;24:1283–1287.
    1. Zhao J., Giblin F.J., Epstein D.L. Oxidative stress in the trabecular meshwork (Review) Int. J. Mol. Med. 2016;38:995–1002. doi: 10.3892/ijmm.2016.2714.
    1. He Y., Leung K.W., Zhang Y.-H., Duan S., Zhong X.-F., Jiang R.-Z., Peng Z., Tombran-Tink J., Ge J. Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: Protection by antioxidants. Investig. Ophthalmol. Vis. Sci. 2008;49:1447–1458. doi: 10.1167/iovs.07-1361.
    1. Pokrovskaya O., O’Brien C. What’s in a Gene? Pseudoexfoliation Syndrome and Pigment Dispersion Syndrome in the Same Patient. Case Rep. Ophthalmol. 2016;7:54–60. doi: 10.1159/000443697.
    1. Mastronikolis S., Pagkalou M., Plotas P., Kagkelaris K., Georgakopoulos C.D. Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review) Exp. Ther. Med. 2022;24:602. doi: 10.3892/etm.2022.11539.
    1. Benoist d’Azy C., Pereira B., Chiambaretta F., Dutheil F. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis. PLoS ONE. 2016;11:e0166915. doi: 10.1371/journal.pone.0166915.
    1. Shirakami T., Yamanaka M., Fujihara J., Matsuoka Y., Gohto Y., Obana A., Tanito M. Advanced Glycation End Product Accumulation in Subjects with Open-Angle Glaucoma with and without Exfoliation. Antioxidants. 2020;9:755. doi: 10.3390/antiox9080755.
    1. Zeppieri M. Pigment dispersion syndrome: A brief overview. J. Clin. Transl. Res. 2022;8:344–350.
    1. Mermoud A. Physiopathology of uveitic glaucoma. Klin. Monbl. Augenheilkd. 1997;210:269–273. doi: 10.1055/s-2008-1035052.
    1. Moorthy R.S., Mermoud A., Baerveldt G., Minckler D.S., Lee P.P., Rao N.A. Glaucoma associated with uveitis. Surv. Ophthalmol. 1997;41:361–394. doi: 10.1016/S0039-6257(97)00006-4.
    1. Dumbrăveanu L., Cușnir V., Bobescu D. A review of neovascular glaucoma. Etiopathogenesis and treatment. Rom. J. Ophthalmol. 2021;65:315–329.
    1. Barac I.R., Pop M.D., Gheorghe A.I., Taban C. Neovascular secondary glaucoma, etiology and pathogenesis. Rom. J. Ophthalmol. 2015;59:24–28.
    1. Sun C., Zhang H., Tang Y., Chen Y., Li Y., Nie C., Gu J., Luo L., Wang Z. Aqueous Inflammation and Ischemia-Related Biomarkers in Neovascular Glaucoma with Stable Iris Neovascularization. Curr. Eye Res. 2020;45:1504–1513. doi: 10.1080/02713683.2020.1762226.
    1. Tezel G. Oxidative stress in glaucomatous neurodegeneration: Mechanisms and consequences. Prog. Retin. Eye Res. 2006;25:490–513. doi: 10.1016/j.preteyeres.2006.07.003.
    1. Matthews A.G. The lens and cataracts. Vet. Clin. N. Am. Equine. Pract. 2004;20:393–415. doi: 10.1016/j.cveq.2004.04.009.
    1. Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. Biochem. J. 2012;441:523–540. doi: 10.1042/BJ20111451.
    1. Rose R.C., Richer S., Bode A.M. Ocular oxidants and antioxidant protection. Proc. Soc. Exp. Biol. Med. 1998;217:397–407. doi: 10.3181/00379727-217-44250.
    1. Ohia S.E., Opere C.A., Leday A.M. Pharmacological consequences of oxidative stress in ocular tissues. Mutat. Res. 2005;579:22–36. doi: 10.1016/j.mrfmmm.2005.03.025.
    1. Opere C., Tang L., Imler M., Kim J., Okoye M., Ohia S. Regulation of uveal sympathetic neurotransmission by peroxides. Investig. Ophthalmol. Vis. Sci. 1997;38:842–847.
    1. Gilgun-Sherki Y., Rosenbaum Z., Melamed E., Offen D. Antioxidant therapy in acute central nervous system injury: Current state. Pharmacol. Rev. 2002;54:271–284. doi: 10.1124/pr.54.2.271.
    1. Csukas S.C., Green K. Effects of intracameral hydrogen peroxide in the rabbit anterior chamber. Investig. Ophthalmol. Vis. Sci. 1988;29:335–339.
    1. Artola A., Alio J.L., Bellot J.L., Ruiz J.M. Lipid peroxidation in the iris and its protection by means of viscoelastic substances (sodium hyaluronate and hydroxypropylmethylcellulose) Ophthalmic. Res. 1993;25:172–176. doi: 10.1159/000267286.
    1. Van der Vliet A., Bast A. Effect of oxidative stress on receptors and signal transmission. Chem. Biol. Interact. 1992;85:95–116. doi: 10.1016/0009-2797(92)90055-P.
    1. Flammer J., Haefliger I.O., Orgül S., Resink T. Vascular dysregulation: A principal risk factor for glaucomatous damage? J. Glaucoma. 1999;8:212–219. doi: 10.1097/00061198-199906000-00012.
    1. Zhang K., Zhu X., Lu Y. The Proteome of Cataract Markers: Focus on Crystallins. Adv Clin. Chem. 2018;86:179–210.
    1. Delbarre M., Froussart-Maille F. Signs, symptoms, and clinical forms of cataract in adults. J. Fr. Ophtalmol. 2020;43:653–659. doi: 10.1016/j.jfo.2019.11.009.
    1. Engelbrecht C., Sardinha L.R., Rizzo L.V. Cytokine and Chemokine Concentration in the Tear of Patients with Age-Related Cataract. Curr Eye Res. 2020;45:1101–1106. doi: 10.1080/02713683.2020.1715445.
    1. Waris G., Ahsan H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J. Carcinog. 2006;5:14. doi: 10.1186/1477-3163-5-14.
    1. Lü J.M., Lin P.H., Yao Q., Chen C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010;14:840–860. doi: 10.1111/j.1582-4934.2009.00897.x.
    1. Ung L., Pattamatta U., Carnt N., Wilkinson-Berka J.L., Liew G., White A.J. Oxidative stress and reactive oxygen species: A review of their role in ocular disease. Clin. Sci. 2017;131:2865–2883. doi: 10.1042/CS20171246.
    1. Kukreja R.C., Hess M.L. The oxygen free radical system: From equations through membrane-protein interactions to cardiovascular injury and protection. Cardiovasc. Res. 1992;26:641–655. doi: 10.1093/cvr/26.7.641.
    1. Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001.
    1. Sawada H., Fukuchi T., Abe H. Oxidative stress markers in aqueous humor of patients with senile cataracts. Curr. Eye Res. 2009;34:36–41. doi: 10.1080/02713680802500960.
    1. Kannabiran C., Balasubramanian D. Molecular genetics of cataract. Indian J. Ophthalmol. 2000;48:5–13.
    1. Oh M.S., Carroll H.J. The anion gap. Engl. J. Med. 1977;297:814–817. doi: 10.1056/NEJM197710132971507.
    1. Delaye M., Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature. 1983;302:415–417. doi: 10.1038/302415a0.
    1. Makley L.N., McMenimen K.A., DeVree B.T., Goldman J.W., McGlasson B.N., Rajagopal P., Dunyak B.M., McQuade T.J., Thompson A.D., Sunahara R., et al. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science. 2015;350:674–677. doi: 10.1126/science.aac9145.
    1. Lampi K.J., Lampi K.J., Ma Z., Shih M., Shearer T.R., Smith J.B., Smith D.L., David L.L. Sequence analysis of betaA3, betaB3, and betaA4 crystallins completes the identification of the major proteins in young human lens. J. Biol. Chem. 1997;272:2268–2275. doi: 10.1074/jbc.272.4.2268.
    1. Robinson N.E., Lampi K.J., Speir J.P., Kruppa G., Easterling M., Robinson A.B. Quantitative measurement of young human eye lens crystallins by direct injection Fourier transform ion cyclotron resonance mass spectrometry. Mol. Vis. 2006;12:704–711.
    1. Lampi K.J., Ma Z., Hanson S.R., Azuma M., Shih M., Shearer T.R., Smith D.L., Smith J.B., David L.L. Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry. Exp. Eye Res. 1998;67:31–43. doi: 10.1006/exer.1998.0481.
    1. Zhu X.J., Zhu X.J., Zhang K.K., He W.W., Du Y., Hooi M., Lu Y. Racemization at the Asp 58 residue in αA-crystallin from the lens of high myopic cataract patients. J. Cell. Mol. Med. 2018;22:1118–1126. doi: 10.1111/jcmm.13363.
    1. Nakamura T., Sakai M., Sadakane Y., Haga T., Goto Y., Kinouchi T., Saito T., Fujii N. Differential rate constants of racemization of aspartyl and asparaginyl residues in human alpha A-crystallin mutants. Biochim. Biophys. Acta. 2008;1784:1192–1199. doi: 10.1016/j.bbapap.2008.04.008.
    1. Simeonova G.P., Krastev S.Z., Simeonov R.S. Immunological and pathological investigations in equine experimental uveitis. Vet. Res. Commun. 2016;40:107–115. doi: 10.1007/s11259-016-9659-4.
    1. Braakhuis A.J., Donaldson C.I., Lim J.C., Donaldson P.J. Nutritional Strategies to Prevent Lens Cataract: Current Status and Future Strategies. Nutrients. 2019;11:1186. doi: 10.3390/nu11051186.
    1. Tarwadi K.V., Chiplonkar S.A., Agte V. Dietary and nutritional biomarkers of lens degeneration, oxidative stress and micronutrient inadequacies in Indian cataract patients. Clin. Nutr. 2008;27:464–472. doi: 10.1016/j.clnu.2008.01.014.
    1. Balne P.K., Au V.B., Tong L., Ghosh A., Agrawal M., Connolly J., Agrawal R. Bead Based Multiplex Assay for Analysis of Tear Cytokine Profiles. J. Vis. Exp. 2017;128:e55993. doi: 10.3791/55993.
    1. Willcox M.D., Argüeso P., Georgiev G.A., Holopainen J.M., Laurie G.W., Millar T.J., Papas E.B., Rolland J.P., Schmidt T.A., Stahl U., et al. TFOS DEWS II Tear Film Report. Ocul. Surf. 2017;15:366–403. doi: 10.1016/j.jtos.2017.03.006.
    1. Chiva A. Electrophoresis of tear proteins as a new diagnostic tool for two high risk groups for dry eye: Computer users and contact lens wearers. J. Med. Life. 2011;4:228–233.
    1. Hagan S. Biomarkers of ocular surface disease using impression cytology. Biomark. Med. 2017;11:1135–1147. doi: 10.2217/bmm-2017-0124.
    1. Villani E., Bonsignore F., Cantalamessa E., Serafino M., Nucci P. Imaging Biomarkers for Dry Eye Disease. Eye Contact Lens. 2020;46((Suppl. S2)):S141–S145. doi: 10.1097/ICL.0000000000000650.
    1. Baudouin C., Irkeç M., Messmer E.M., Benítez-Del-Castillo J.M., Bonini S., Figueiredo F.C., Geerling G., Labetoulle M., Lemp M., Rolando M., et al. Clinical impact of inflammation in dry eye disease: Proceedings of the ODISSEY group meeting. Acta Ophthalmol. 2018;96:111–119. doi: 10.1111/aos.13436.
    1. Roy N.S., Wei Y., Kuklinski E., Asbell P.A. The Growing Need for Validated Biomarkers and Endpoints for Dry Eye Clinical Research. Investig. Ophthalmol. Vis. Sci. 2017;58:BIO1–BIO19. doi: 10.1167/iovs.17-21709.
    1. Sullivan B.D., Crews L., Messmer E.M., Foulks G.N., Nichols K.K., Baenninger P., Geerling G., Figueiredo F., Lemp M.A. Correlations between commonly used objective signs and symptoms for the diagnosis of dry eye disease: Clinical implications. Acta Ophthalmol. 2014;92:161–166. doi: 10.1111/aos.12012.
    1. Careba I., Chiva A., Totir M., Ungureanu E., Gradinaru S. Tear lipocalin, lysozyme and lactoferrin concentrations in postmenopausal women. J. Med. Life. 2015;8:94–98.
    1. Versura P., Nanni P., Bavelloni A., Blalock W.L., Piazzi M., Roda A., Campos E.C. Tear proteomics in evaporative dry eye disease. Eye. 2010;24:1396–1402. doi: 10.1038/eye.2010.7.
    1. Tamhane M., Cabrera-Ghayouri S., Abelian G., Viswanath V. Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm. Res. 2019;36:1–35. doi: 10.1007/s11095-019-2569-8.
    1. Hagan S., Martin E., Enríquez-de-Salamanca A. Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J. 2016;7:1–20. doi: 10.1186/s13167-016-0065-3.
    1. Zhou L., Beuerman R.W., Chan C.M., Zhao S.Z., Li X.R., Yang H., Tong L., Liu S., Stern M.E., Tan D. Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J. Proteome. Res. 2009;8:4889–4905. doi: 10.1021/pr900686s.
    1. Choi W., Lian C., Ying L., Kim G.E., You I.C., Park S.H., Yoon K.C. Expression of Lipid Peroxidation Markers in the Tear Film and Ocular Surface of Patients with Non-Sjogren Syndrome: Potential Biomarkers for Dry Eye Disease. Curr. Eye Res. 2016;41:1143–1149. doi: 10.3109/02713683.2015.1098707.
    1. Labbé A., Brignole-Baudouin F., Baudouin C. Ocular surface investigations in dry eye. J. Fr. Ophtalmol. 2007;30:76–97. doi: 10.1016/S0181-5512(07)89557-X.
    1. Nichols J.J., Willcox M.D.P., Bron A.J., Belmonte C., Ciolino J.B., Craig J.P., Dogru M., Foulks G.N., Jones L., Nelson J.D., et al. The TFOS International Workshop on Contact Lens Discomfort: Executive summary. Investig. Ophthalmol Vis. Sci. 2013;54:TFOS7–TFOS13. doi: 10.1167/iovs.13-13212.
    1. D’Souza S., Tong L. Practical issues concerning tear protein assays in dry eye. Eye Vis. 2014;1:1–12. doi: 10.1186/s40662-014-0006-y.
    1. Kramann C., Boehm N., Lorenz K., Wehrwein N., Stoffelns B.M., Pfeiffer N., Grus F.H. Effect of contact lenses on the protein composition in tear film: A ProteinChip study. Graefes Arch. Clin. Exp. Ophthalmol. 2011;249:233–243. doi: 10.1007/s00417-010-1456-0.
    1. Belin M.W., Jang H.S., Borgstrom M. Keratoconus: Diagnosis and Staging. Cornea. 2022;41:1–11. doi: 10.1097/ICO.0000000000002781.
    1. Katipoğlu Z., Mirza E., Oltulu R., Katipoglu B. May Monocyte/HDL Cholesterol Ratio (MHR) and Neutrophil/Lymphocyte Ratio (NLR) Be an Indicator of Inflammation and Oxidative Stress in Patients with Keratoconus? Ocul. Immunol. Inflamm. 2020;28:632–636. doi: 10.1080/09273948.2019.1611876.
    1. McKay T.B., Hjortdal J., Priyadarsini S., Karamichos D. Acute hypoxia influences collagen and matrix metalloproteinase expression by human keratoconus cells in vitro. PLoS ONE. 2017;12:e0176017. doi: 10.1371/journal.pone.0176017.
    1. Lackner E.M., Matthaei M., Meng H., Ardjomand N., Eberhart C.G., Jun A.S. Design and analysis of keratoconus tissue microarrays. Cornea. 2014;33:49–55. doi: 10.1097/ICO.0000000000000012.
    1. Balmus I.M., Alexa A.I., Ciuntu R.-E., Danielescu C., Stoica B., Cojocaru S.I., Ciobica A., Cantemir A. Oxidative stress markers dynamics in keratoconus patients’ tears before and after corneal collagen crosslinking procedure. Exp. Eye Res. 2020;190:107897. doi: 10.1016/j.exer.2019.107897.
    1. Kılıç R., Ayraktar A.C., Bayraktar S., Kurt A., Kavutçu M. Evaluation of Serum Superoxide Dismutase Activity, Malondialdehyde, and Zinc and Copper Levels in Patients With Keratoconus. Cornea. 2016;35:1512–1515. doi: 10.1097/ICO.0000000000001018.
    1. Abdul-Maksoud R.S., Fouad R.A., Elsayed T.G., Ibrahem R.A., Badawi A.E. The impact of catalase and glutathione peroxidase-1 genetic polymorphisms on their enzyme activities among Egyptian patients with keratoconus. J. Gene Med. 2020;22:e3192. doi: 10.1002/jgm.3192.
    1. Saijyothi A.V., Fowjana J., Madhumathi S., Rajeshwari M., Thennarasu M., Prema P., Angayarkanni N. Tear fluid small molecular antioxidants profiling shows lowered glutathione in keratoconus. Exp. Eye Res. 2012;103:41–46. doi: 10.1016/j.exer.2012.07.010.
    1. Arnal E., Peris-Martínez C., Menezo J.L., Johnsen-Soriano S., Romero F.J. Oxidative stress in keratoconus? Investig. Ophthalmol. Vis. Sci. 2011;52:8592–8597. doi: 10.1167/iovs.11-7732.
    1. Tekin S., Seven E. Assessment of serum catalase, reduced glutathione, and superoxide dismutase activities and malondialdehyde levels in keratoconus patients. Eye. 2022;36:2062–2066. doi: 10.1038/s41433-021-01753-1.
    1. Horwath-Winter J., Kirchengast S., Meinitzer A., Wachswender C., Faschinger C., Schmut O. Determination of uric acid concentrations in human tear fluid, aqueous humour and serum. Acta Ophthalmol. 2009;87:188–192. doi: 10.1111/j.1755-3768.2008.01215.x.
    1. Bamdad S., Owji N., Bolkheir A. Association Between Advanced Keratoconus and Serum Levels of Zinc, Calcium, Magnesium, Iron, Copper, and Selenium. Cornea. 2018;37:1306–1310. doi: 10.1097/ICO.0000000000001661.
    1. Zarei-Ghanavati S., Ahaghi B., Hassanzadeh S., Ghayour-Mobarhan M., Hakimi H.R., Eghbali P. Serum 25-Hydroxyvitamin D, Selenium, Zinc and Copper in Patients with Keratoconus. J. Curr. Ophthalmol. 2020;32:26–31. doi: 10.1016/j.joco.2019.06.003.
    1. Balasubramanian S.A., Pye D.C., Willcox M.D. Levels of lactoferrin, secretory IgA and serum albumin in the tear film of people with keratoconus. Exp. Eye Res. 2012;96:132–137. doi: 10.1016/j.exer.2011.12.010.
    1. Gupta P.K., Berdahl J.P., Chan C.C.M.F., Rocha K.M., Yeu E., Ayres B., Farid M., Lee W.B., Beckman K.A., Kim T., et al. The corneal endothelium: Clinical review of endothelial cell health and function. J. Cataract. Refract. Surg. 2021;47:1218–1226. doi: 10.1097/j.jcrs.0000000000000650.
    1. Epstein S.P., Gadaria-Rathod N., Wei Y., Maguire M.G., Asbell P.A. HLA-DR expression as a biomarker of inflammation for multicenter clinical trials of ocular surface disease. Exp. Eye Res. 2013;111:95–104. doi: 10.1016/j.exer.2013.03.018.
    1. Roebuck K.A., Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J. Leukoc. Biol. 1999;66:876–888. doi: 10.1002/jlb.66.6.876.
    1. Jones D.T., Jones D.T., Monroy D., Ji Z., Atherton S.S., Pflugfelder S.C. Sjögren’s syndrome: Cytokine and Epstein-Barr viral gene expression within the conjunctival epithelium. Investig. Ophthalmol. Vis. Sci. 1994;35:3493–3504.
    1. Tsubota K., Fujihara T., Saito K., Takeuchi T. Conjunctival epithelium expression of HLA-DR in dry eye patients. Ophthalmologica. 1999;213:16–19. doi: 10.1159/000027387.
    1. Schindowski K., Schindowski K., Leutner S., Müller W.E., Eckert A. Age-related changes of apoptotic cell death in human lymphocytes. Neurobiol. Aging. 2000;21:661–670. doi: 10.1016/S0197-4580(00)00171-8.
    1. Liu C.W., Lee T.L., Chen Y.C., Liang C.J., Wang S.H., Lue J.H., Tsai J.S., Lee S.W., Chen S.H., Yang Y.F., et al. PM(2.5)-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-κB-dependent pathway. Part. Fibre Toxicol. 2018;15:1–16. doi: 10.1186/s12989-018-0240-x.
    1. Barbosa F.L., Xiao Y., Bian F., Coursey T.G., Ko B.Y., Clevers H., De Paiva C.S., Pflugfelder S.C. Goblet Cells Contribute to Ocular Surface Immune Tolerance-Implications for Dry Eye Disease. Int. J. Mol. Sci. 2017;18:978. doi: 10.3390/ijms18050978.
    1. McCauley H.A., Liu C.-Y., Attia A.C., Wikenheiser-Brokamp K.A., Zhang Y., Whitsett J.A., Guasch G. TGFβ signaling inhibits goblet cell differentiation via SPDEF in conjunctival epithelium. Development. 2014;141:4628–4639. doi: 10.1242/dev.117804.
    1. Marko C.K., Menon B.B., Chen G., Whitsett J.A., Clevers H., Gipson I.K. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye. Am. J. Pathol. 2013;183:35–48. doi: 10.1016/j.ajpath.2013.03.017.
    1. Nelson J.D., Wright J.C. Conjunctival goblet cell densities in ocular surface disease. Arch. Ophthalmol. 1984;102:1049–1051. doi: 10.1001/archopht.1984.01040030851031.
    1. Sommer A. Effects of vitamin A deficiency on the ocular surface. Ophthalmology. 1983;90:592–600. doi: 10.1016/S0161-6420(83)34512-7.
    1. Palace V.P., Khaper N., Qin Q., Singal P.K. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic. Biol. Med. 1999;26:746–761. doi: 10.1016/S0891-5849(98)00266-4.
    1. Dogru M., Matsumoto Y., Okada N., Igarashi A., Fukagawa K., Shimazaki J., Tsubota K., Fujishima H. Alterations of the ocular surface epithelial MUC16 and goblet cell MUC5AC in patients with atopic keratoconjunctivitis. Allergy. 2008;63:1324–1334. doi: 10.1111/j.1398-9995.2008.01781.x.
    1. Takeyama K., Dabbagh K., Shim J.J., Dao-Pick T., Ueki I.F., Nadel J.A. Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: Role of neutrophils. J. Immunol. 2000;164:1546–1552. doi: 10.4049/jimmunol.164.3.1546.
    1. Dreyfuss J.L., Regatieri C.V., Coelho B., Barbosa J.B., De Freitas D., Nader H., Martins J.R. Altered hyaluronic acid content in tear fluid of patients with adenoviral conjunctivitis. An. Acad. Bras. Cienc. 2015;87:455–462. doi: 10.1590/0001-3765201520140122.
    1. Grishko V., Xu M., Ho R., Mates A., Watson S., Kim J.T., Wilson G.L., Pearsall A.W. Effects of hyaluronic acid on mitochondrial function and mitochondria-driven apoptosis following oxidative stress in human chondrocytes. J. Biol. Chem. 2009;284:9132–9139. doi: 10.1074/jbc.M804178200.
    1. Shoji J. Ocular allergy test and biomarkers on the ocular surface: Clinical test for evaluating the ocular surface condition in allergic conjunctival diseases. Allergol. Int. 2020;69:496–504. doi: 10.1016/j.alit.2020.05.003.
    1. Kurtul B.E., Kabatas E.U., Boybeyi S.D., Caglar A.A., Ozer P.A. Increased red cell distribution width levels in children with seasonal allergic conjunctivitis. Int. Ophthalmol. 2018;38:1079–1084. doi: 10.1007/s10792-017-0563-x.
    1. Gueudry J., Muraine M. Anterior uveitis. J. Fr. Ophtalmol. 2018;41:e11–e21. doi: 10.1016/j.jfo.2017.11.003.
    1. Bloch-Michel E., Nussenblatt R.B. International Uveitis Study Group recommendations for the evaluation of intraocular inflammatory disease. Am. J. Ophthalmol. 1987;103:234–235. doi: 10.1016/S0002-9394(14)74235-7.
    1. Hunter R.S., Lobo A.M. Current diagnostic approaches to infectious anterior uveitis. Int. Ophthalmol. Clin. 2011;51:145–156. doi: 10.1097/IIO.0b013e31822d6807.
    1. Nguyen A.M., Sève P., Le Scanff J., Gambrelle J., Fleury J., Broussolle C., Grange J.D., Kodjikian L. Clinical and etiological aspects of uveitis: A retrospective study of 121 patients referred to a tertiary centre of ophthalmology. Rev. Med. Interne. 2011;32:9–16. doi: 10.1016/j.revmed.2010.07.020.
    1. McKay K.M., Jacobs D.S. In Vivo Confocal Microscopy of Keratic Precipitates in Uveitis. Int. Ophthalmol. Clin. 2019;59:95–103. doi: 10.1097/IIO.0000000000000290.
    1. Wertheim M.S., Mathers W.D., Planck S.J., Martin T.M., Suhler E.B., Smith J.R., Rosenbaum J.T. In vivo confocal microscopy of keratic precipitates. Arch. Ophthalmol. 2004;122:1773–1781. doi: 10.1001/archopht.122.12.1773.
    1. Ganesh S.K., Roopleen, Biswas J., Veena N. Role of high-resolution computerized tomography (HRCT) of the chest in granulomatous uveitis: A tertiary uveitis clinic experience from India. Ocul. Immunol. Inflamm. 2011;19:51–57. doi: 10.3109/09273948.2010.525680.
    1. Doycheva D., Pfannenberg C., Hetzel J., Deuter C.M.E., Pavesio C., Kempf V.A.J., Schuelen E., Aschoff P., Rao N., Zierhut M. Presumed tuberculosis-induced retinal vasculitis, diagnosed with positron emission tomography (18F-FDG-PET/CT), aspiration biopsy, and culture. Ocul. Immunol. Inflamm. 2010;18:194–199. doi: 10.3109/09273948.2010.483318.
    1. Doycheva D., Deuter C., Hetzel J., Frick J.-S., Aschoff P., Schuelen E., Zierhut M., Pfannenberg C. The use of positron emission tomography/CT in the diagnosis of tuberculosis-associated uveitis. Br. J. Ophthalmol. 2011;95:1290–1294. doi: 10.1136/bjo.2010.182659.
    1. Lalvani A. Diagnosing tuberculosis infection in the 21st century: New tools to tackle an old enemy. Chest. 2007;131:1898–1906. doi: 10.1378/chest.06-2471.
    1. Kato A., Ishihara M., Mizuki N. Interferon-induced sarcoidosis with uveitis as the initial symptom: A case report and review of the literature. J. Med. Case. Rep. 2021;15:568. doi: 10.1186/s13256-021-03181-x.
    1. Harper T.W., Miller D., Schiffman J.C., Davis J.L. Polymerase chain reaction analysis of aqueous and vitreous specimens in the diagnosis of posterior segment infectious uveitis. Am J. Ophthalmol. 2009;147:140–147.e2. doi: 10.1016/j.ajo.2008.07.043.
    1. Rothova A., de Boer J.H., Loon N.H.T.D.-V., Postma G., de Visser L., Zuurveen S.J., Schuller M., Weersink A.J., van Loon A.M., de Groot-Mijnes J.D. Usefulness of aqueous humor analysis for the diagnosis of posterior uveitis. Ophthalmology. 2008;115:306–311. doi: 10.1016/j.ophtha.2007.05.014.
    1. Choi W., Kang H.G., Choi E.Y., Kim S.S., Kim C.Y., Koh H.J., Lee S.C., Kim M. Clinical utility of aqueous humor polymerase chain reaction and serologic testing for suspected infectious uveitis: A single-center retrospective study in South Korea. BMC Ophthalmol. 2020;20:242. doi: 10.1186/s12886-020-01513-x.
    1. Sugita S., Shimizu N., Watanabe K., Mizukami M., Morio T., Sugamoto Y., Mochizuki M. Use of multiplex PCR and real-time PCR to detect human herpes virus genome in ocular fluids of patients with uveitis. Br. J. Ophthalmol. 2008;92:928–932. doi: 10.1136/bjo.2007.133967.
    1. Hamid S., Gul A., Hamid Q. Relationship of cytokines and AGE products in diabetic and non-diabetic patients with cataract. Int. J. Health. Sci. 2016;10:507–515. doi: 10.12816/0048891.
    1. Dong Y., Mu G.-Y., Chen F., Zhao R.-L., Wang M., Wang B. Correlation between MMP-2 gene polymorphism and cataract susceptibility. Eur. Rev. Med. Pharmacol. Sci. 2019;23:3167–3172.
    1. Klein B.E., Klein B.E., Klein R., Lee K.E., Knudtson M.D., Tsai M.Y. Markers of inflammation, vascular endothelial dysfunction, and age-related cataract. Am. J. Ophthalmol. 2006;141:116–122. doi: 10.1016/j.ajo.2005.08.021.
    1. Zheng Y., Rao Y.-Q., Li J.-K., Huang Y., Zhao P., Li J. Age-related pro-inflammatory and pro-angiogenic changes in human aqueous humor. Int. J. Ophthalmol. 2018;11:196–200.
    1. Mitrović S., Kelava T., Šućur A., Grčević D. Levels of Selected Aqueous Humor Mediators (IL-10, IL-17, CCL2, VEGF, FasL) in Diabetic Cataract. Ocul. Immunol. Inflamm. 2016;24:159–166. doi: 10.3109/09273948.2014.949779.
    1. Wishart T.F.L., Flokis M., Shu D.Y., Das S.J., Lovicu F.J. Hallmarks of lens aging and cataractogenesis. Exp. Eye. Res. 2021;210:108709. doi: 10.1016/j.exer.2021.108709.
    1. Singh S. Role of Malondialdehyde (MDA) in senile cataract. J. Med. Res. 2016;2:44–46.
    1. Bhatia R.P., Rai R., Rao G.R. Role of malondialdehyde and superoxide dismutase in cataractogenesis. Ann. Ophthalmol. 2006;38:103–106. doi: 10.1385/AO:38:2:103.
    1. Kaur J., Kukreja S., Kaur A., Malhotra N., Kaur R. The oxidative stress in cataract patients. J. Clin. Diagn. Res. 2012;6:1629–1632. doi: 10.7860/JCDR/2012/4856.2626.
    1. Kisić B., Kisić B., Žorić L., Dolićanin Z., Mitić R., Mirić M. The Impact of Senile Cataract Maturity on Blood Oxidative Stress Markers and Glutathione-Dependent Antioxidants: Relations with Lens Variables. J. Med. Biochem. 2012;31:184–192.
    1. Yildirim Z., Yildirim F., Uçgun N.I., Kiliç N., Yıldırım F. The evaluation of the oxidative stress parameters in nondiabetic and diabetic senile cataract patients. Biol. Trace. Elem. Res. 2009;128:135–143. doi: 10.1007/s12011-008-8258-9.
    1. Kaczmarczyk-Sedlak I., Folwarczna J., Sedlak L., Zych M., Wojnar W., Szumińska I., Wyględowska-Promieńska D., Mrukwa-Kominek E., Szumińska I. Effect of caffeine on biomarkers of oxidative stress in lenses of rats with streptozotocin-induced diabetes. Arch. Med. Sci. 2019;15:1073–1080. doi: 10.5114/aoms.2019.85461.
    1. Alapure B., Praveen M.R., Gajjar D., Vasavada A.R., Rajkumar S., Johar K. Matrix metalloproteinase-9 activity in human lens epithelial cells of cortical, posterior subcapsular, and nuclear cataracts. J. Cataract. Refract. Surg. 2009;34:2063–2067. doi: 10.1016/j.jcrs.2008.08.016.
    1. Augustin A.J., Spitznas M., Kaviani N., Meller D., Koch F.H., Grus F., Göbbels M.J. Oxidative reactions in the tear fluid of patients suffering from dry eyes. Graefes Arch. Clin. Exp. Ophthalmol. 1995;233:694–698. doi: 10.1007/BF00164671.
    1. Wakamatsu T.H., Dogru M., Tsubota K. Tearful relations: Oxidative stress, inflammation and eye diseases. Arq. Bras. Oftalmol. 2008;71((Suppl. S6)):72–79.
    1. Dogru M., Matsumoto Y., Yamamoto Y., Goto E., Saiki M., Shimazaki J., Takebayashi T., Tsubota K. Lactoferrin in Sjögren’s syndrome. Ophthalmology. 2007;114:2366–2367. doi: 10.1016/j.ophtha.2007.06.027.
    1. Sethu S., Shetty R., Deshpande K., Pahuja N., Chinnappaiah N., Agarwal A., Sharma A., Ghosh A. Correlation between tear fluid and serum vitamin D levels. Eye Vis. 2016;3:1–5. doi: 10.1186/s40662-016-0053-7.
    1. Peponis V., Papathanasiou M., Kapranou A., Magkou C., Tyligada A., Melidonis A., Drosos T., Sitaras N.M. Protective role of oral antioxidant supplementation in ocular surface of diabetic patients. Br. J. Ophthalmol. 2002;86:1369–1373. doi: 10.1136/bjo.86.12.1369.
    1. Jin K.W., Ro J.W., Shin Y.J., Hyon J.Y., Wee W.R., Park S.G. Correlation of vitamin D levels with tear film stability and secretion in patients with dry eye syndrome. Acta Ophthalmol. 2017;95:e230–e235. doi: 10.1111/aos.13241.
    1. Cui X., Xiang J., Zhu W., Wei A., Le Q., Xu J., Zhou X. Vitamin A Palmitate and Carbomer Gel Protects the Conjunctiva of Patients With Long-term Prostaglandin Analogs Application. J. Glaucoma. 2016;25:487–492. doi: 10.1097/IJG.0000000000000316.
    1. Huang J.Y., Yeh P.T., Hou Y.C. A randomized, double-blind, placebo-controlled study of oral antioxidant supplement therapy in patients with dry eye syndrome. Clin. Ophthalmol. 2016;10:813–820.
    1. Dobrzynska M., Napierala M., Florek E. Flavonoid Nanoparticles: A Promising Approach for Cancer Therapy. Biomolecules. 2020;10:1268. doi: 10.3390/biom10091268.
    1. Xue B., Huang J., Zhang H., Li B., Xu M., Zhang Y., Xie M., Li X. Micronized curcumin fabricated by supercritical CO(2) to improve antibacterial activity against Pseudomonas aeruginosa. Artif. Cells Nanomed. Biotechnol. 2020;48:1135–1143. doi: 10.1080/21691401.2020.1815755.
    1. Favero G., Moretti E., Krajčíková K., Tomečková V., Rezzani R. Evidence of Polyphenols Efficacy against Dry Eye Disease. Antioxidants. 2021;10:190. doi: 10.3390/antiox10020190.
    1. Lin M., Sun X., Ye S., Chen Y., Gao J., Yuan F., Lin N., Lawson T., Liu Y., Deng R. A new antioxidant made from a pterostilbene functionalized graphene nanocomposite as an efficient treatment for dry eye disease. Front. Chem. 2022;10:942578. doi: 10.3389/fchem.2022.942578.
    1. van ‘t Erve T.J. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F(2α) Redox. Biol. 2018;17:284–296. doi: 10.1016/j.redox.2018.05.003.
    1. Dennis E.A., Norris P.C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 2015;15:511–523. doi: 10.1038/nri3859.
    1. Gomes J.A., Rapuano C.J., Belin M.W., Ambrósio R. Global Consensus on Keratoconus Diagnosis. Cornea. 2015;34:e38–e39. doi: 10.1097/ICO.0000000000000623.
    1. Cheung I.M., McGhee C.N., Sherwin T. Beneficial effect of the antioxidant riboflavin on gene expression of extracellular matrix elements, antioxidants and oxidases in keratoconic stromal cells. Clin. Exp. Optom. 2014;97:349–355. doi: 10.1111/cxo.12138.
    1. Pastori V., Tavazzi S., Lecchi M. Lactoferrin-loaded contact lenses: Eye protection against oxidative stress. Cornea. 2015;34:693–697. doi: 10.1097/ICO.0000000000000435.
    1. Reiss G.R., Werness P.G., Zollman P.E., Brubaker R.F. Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. Arch. Ophthalmol. 1986;104:753–755. doi: 10.1001/archopht.1986.01050170143039.
    1. Gross R.L. The effect of ascorbate on wound healing. Int. Ophthalmol. Clin. 2000;40:51–57. doi: 10.1097/00004397-200010000-00004.
    1. Gujral G.S., Gujral G.S., Askari S., Ahmad S., Zakir S.M. Topical vitamin C, vitamin E, and acetylcysteine as corneal wound healing agents: A comparative study. Indian J. Ophthalmol. 2020;68:2935–2939.
    1. Azari A.A., Arabi A. Conjunctivitis: A Systematic Review. J. Ophthalmic. Vis. Res. 2020;15:372–395. doi: 10.18502/jovr.v15i3.7456.
    1. Tredici C., Fasciani R., Villano A., Gambini G., Caporossi A. Efficacy of eye drops containing crosslinked hyaluronic acid and CoQ10 in restoring ocular health exposed to chlorinated water. Eur. J. Ophthalmol. 2020;30:430–438. doi: 10.1177/1120672120907311.
    1. López-de la Rosa A., Pinto-Fraga J., Arauzo F.B., Rodríguez R.U., González-García M.J. Safety and Efficacy of an Artificial Tear Containing 0.3% Hyaluronic Acid in the Management of Moderate-to-Severe Dry Eye Disease. Eye Contact Lens. 2017;43:383–388. doi: 10.1097/ICL.0000000000000284.
    1. Pinto-Fraga J., de la Rosa A.L., Arauzo F.B., Rodríguez R.U., González-García M.J. Efficacy and Safety of 0.2% Hyaluronic Acid in the Management of Dry Eye Disease. Eye Contact Lens. 2017;43:57–63. doi: 10.1097/ICL.0000000000000236.
    1. Demir U., Demir T., Ilhan N. The protective effect of alpha-lipoic acid against oxidative damage in rabbit conjunctiva and cornea exposed to ultraviolet radiation. Ophthalmologica. 2005;219:49–53. doi: 10.1159/000081783.
    1. Chen B.Y., Lin A.P.-C., Chang L.-S., Huang T.-P., Liu H.-J., Luk C.-P., Lo Y.-L., Chang H.-H. Dietary α-lipoic acid prevents UVB-induced corneal and conjunctival degeneration through multiple effects. Investig. Ophthalmol. Vis. Sci. 2013;54:6757–6766. doi: 10.1167/iovs.12-10891.
    1. Destefanis S., Giretto D., Muscolo M.C., Di Cerbo A., Guidetti G., Canello S., Giovazzino A., Centenaro S., Terrazzano G. Clinical evaluation of a nutraceutical diet as an adjuvant to pharmacological treatment in dogs affected by Keratoconjunctivitis sicca. BMC Vet. Res. 2016;12:214.
    1. Unsal A.I.A., Kocaturk T., Gunel C., Meteoglu I., Omurlu I.K., Cakmak H., Demirci B. Effect of Pycnogenol® on an experimental rat model of allergic conjunctivitis. Graefes Arch. Clin. Exp. Ophthalmol. 2018;256:1299–1304. doi: 10.1007/s00417-018-3988-7.
    1. Katsinas N., Rodríguez-Rojo S., Enríquez-de-Salamanca A. Olive Pomace Phenolic Compounds and Extracts Can Inhibit Inflammatory- and Oxidative-Related Diseases of Human Ocular Surface Epithelium. Antioxidants. 2021;10:1150. doi: 10.3390/antiox10071150.
    1. Park J.H., Kang S.-S., Kim J.Y., Tchah H. The Antioxidant N-Acetylcysteine Inhibits Inflammatory and Apoptotic Processes in Human Conjunctival Epithelial Cells in a High-Glucose Environment. Investig. Ophthalmol. Vis. Sci. 2015;56:5614–5621. doi: 10.1167/iovs.15-16909.
    1. Balci Y.I., Acer S., Yagci R., Kucukatay V., Sarbay H., Bozkurt K., Polat A. N-acetylcysteine supplementation reduces oxidative stress for cytosine arabinoside in rat model. Int. Ophthalmol. 2017;37:209–214. doi: 10.1007/s10792-016-0259-7.
    1. Chen Y., Hong X. Effects of carvedilol reduce conjunctivitis through changes in inflammation, NGF and VEGF levels in a rat model. Exp. Ther. Med. 2016;11:1987–1992. doi: 10.3892/etm.2016.3140.
    1. Lee H.J., Kim B.-M., Shin S., Kim T.-Y., Chung S.-H. Superoxide dismutase 3 attenuates experimental Th2-driven allergic conjunctivitis. Clin. Immunol. 2017;176:49–54. doi: 10.1016/j.clim.2016.12.010.
    1. Wei Y., Troger A., Spahiu V., Perekhvatova N., Skulachev M., Petrov A., Chernyak B., Asbell P. The Role of SKQ1 (Visomitin) in Inflammation and Wound Healing of the Ocular Surface. Ophthalmol. Ther. 2019;8:63–73. doi: 10.1007/s40123-018-0158-2.
    1. Elgouhary S.M., Elmazar H.F., Naguib M.I., Bayomy N.R. Role of oxidative stress and vascular endothelial growth factor expression in pterygium pathogenesis and prevention of pterygium recurrence after surgical excision. Int. Ophthalmol. 2020;40:2593–2606. doi: 10.1007/s10792-020-01440-2.
    1. Chen Y.Y., Tsai C.-F., Tsai M.-C., Hsu Y.-W., Lu F.-J. Inhibitory effects of rosmarinic acid on pterygium epithelial cells through redox imbalance and induction of extrinsic and intrinsic apoptosis. Exp. Eye Res. 2017;160:96–105. doi: 10.1016/j.exer.2017.05.008.
    1. López-Montemayor P., Zavala J., Montalvo-Parra M.D., Guerrero-Ramírez G.I., Mayolo-Deloisa K., Enriquez-Ochoa D., Martínez-García B., Loya-García D., Guerrero-Martínez A.M., Valdez-García J.E. Phytochemical Profile and Antioxidant and Antiproliferative Activity of Sedum dendroideum on Pterygium Fibroblasts. Evid. Based. Complement. Altern. Med. 2021;2021:5814221. doi: 10.1155/2021/5814221.
    1. Lingham G., Kugelman J., Charng J., Lee S.S., Yazar S., McKnight C.M., Coroneo M.T., Lucas R.M., Brown H., Stevenson L.J., et al. Conjunctival ultraviolet autofluorescence area decreases with age and sunglasses use. Br. J. Ophthalmol. 2021;2021:320284. doi: 10.1136/bjophthalmol-2021-320284.
    1. Shiratori K., Ohgami K., Ilieva I., Jin X.-H., Koyama Y., Miyashita K., Yoshida K., Kase S., Ohno S. Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp. Eye. Res. 2005;81:422–428. doi: 10.1016/j.exer.2005.03.002.
    1. Jin X.H., Ohgami K., Shiratori K., Suzuki Y., Hirano T., Koyama Y., Yoshida K., Ilieva I., Iseki K., Ohno S. Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats. Investig. Ophthalmol. Vis. Sci. 2006;47:2562–2568. doi: 10.1167/iovs.05-1429.
    1. Ohgami K., Ilieva I., Shiratori K., Koyama Y., Yoshida K., Kase S., Suzuki Y., Ohno S., Jin X.-H., Kitaichi N., et al. Anti-inflammatory effects of aronia extract on rat endotoxin-induced uveitis. Investig. Ophthalmol. Vis. Sci. 2005;46:275–281. doi: 10.1167/iovs.04-0715.
    1. Ohgami K., Shiratori K., Kotake S., Nishida T., Mizuki N., Yazawa K., Ohno S. Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Investig. Ophthalmol. Vis. Sci. 2003;44:2694–2701. doi: 10.1167/iovs.02-0822.
    1. van Rooij J., thoe Schwartzenberg S.G., Mulder P.G., Baarsma S.G. Oral vitamins C and E as additional treatment in patients with acute anterior uveitis: A randomised double masked study in 145 patients. Br. J. Ophthalmol. 1999;83:1277–1282. doi: 10.1136/bjo.83.11.1277.
    1. Qin Y.J., Chu K.O., Yip Y.W.Y., Li W.Y., Yang Y.P., Chan K.P., Ren J.L., Chan S.O., Pang C.P. Green tea extract treatment alleviates ocular inflammation in a rat model of endotoxin-induced uveitis. PLoS ONE. 2014;9:e103995. doi: 10.1371/journal.pone.0103995.
    1. Sato K., Kanai K., Ozaki M., Kagawa T., Kita M., Yamashita Y., Nagai N., Tajima K. Preventive effects of tyrosol, a natural phenolic compound, on anterior uveitis induced by anterior chamber paracentesis in healthy beagle dogs. J. Vet. Med. Sci. 2019;81:573–576. doi: 10.1292/jvms.18-0723.
    1. Lal B., Kapoor A.K., Asthana O.P., Agrawal P.K., Prasad R., Kumar P., Srimal R.C. Efficacy of curcumin in the management of chronic anterior uveitis. Phytother. Res. 1999;13:318–322. doi: 10.1002/(SICI)1099-1573(199906)13:4<318::AID-PTR445>;2-7.
    1. Allegri P., Mastromarino A., Neri P. Management of chronic anterior uveitis relapses: Efficacy of oral phospholipidic curcumin treatment. Long-term follow-up. Clin. Ophthalmol. 2010;4:1201–1206.
    1. Yang C.H., Yang C.H., Fang I.M., Lin C.P., Yang C.M., Chen M.S. Effects of the NF-kappaB inhibitor pyrrolidine dithiocarbamate on experimentally induced autoimmune anterior uveitis. Investig. Ophthalmol. Vis. Sci. 2005;46:1339–1347. doi: 10.1167/iovs.04-0640.
    1. Fang I.M., Yang C.-H., Lin C.-P., Yang C.-M., Chen M.-S. Effects of pyrrolidine dithiocarbamate, an NF-kappaB inhibitor, on cytokine expression and ocular inflammation in experimental autoimmune anterior uveitis. J. Ocul. Pharmacol. Ther. 2005;21:95–106. doi: 10.1089/jop.2005.21.95.
    1. Bora N.S., Sohn J.-H., Bora P.S., Kaplan H.J., Kulkarni P. Anti-inflammatory effects of specific cyclooxygenase 2,5-lipoxygenase, and inducible nitric oxide synthase inhibitors on experimental autoimmune anterior uveitis (EAAU) Ocul. Immunol. Inflamm. 2005;13:183–189. doi: 10.1080/09273940590928643.
    1. Chesnokova N.B., Neroev V.V., Beznos O.V., Beyshenova G.A., Panova I.G., Tatikolov A.S. Effects of dexamethasone and superoxide dismutase instillations on clinical course of uveitis and local biochemical processes (experimental study) Vestn. Oftalmol. 2015;131:71–75. doi: 10.17116/oftalma2015131371-75.
    1. Beyer-Mears A., Farnsworth P.N. Diminished sugar cataractogenesis by quercetin. Exp. Eye Res. 1979;28:709–716. doi: 10.1016/0014-4835(79)90071-X.
    1. Ramana B.V., Raju T.N., Kumar V.V., Reddy P.U.M. Defensive role of quercetin against imbalances of calcium, sodium, and potassium in galactosemic cataract. Biol. Trace Elem. Res. 2007;119:35–41. doi: 10.1007/s12011-007-0045-5.
    1. Alexiou P., Pegklidou K., Chatzopoulou M., Nicolaou I., Demopoulos V.J. Aldose reductase enzyme and its implication to major health problems of the 21(st) century. Curr. Med. Chem. 2009;16:734–752. doi: 10.2174/092986709787458362.
    1. Singh A., Bodakhe S.H. Resveratrol delay the cataract formation against naphthalene-induced experimental cataract in the albino rats. J. Biochem. Mol. Toxicol. 2020;34:e22420. doi: 10.1002/jbt.22420.
    1. Doganay S., Borazan M., Iraz M., Çiğremiş Y. The effect of resveratrol in experimental cataract model formed by sodium selenite. Curr. Eye Res. 2006;31:147–153. doi: 10.1080/02713680500514685.
    1. Higashi Y., Higashi K., Mori A., Sakamoto K., Ishii K., Nakahara T. Anti-cataract Effect of Resveratrol in High-Glucose-Treated Streptozotocin-Induced Diabetic Rats. Biol. Pharm. Bull. 2018;41:1586–1592. doi: 10.1248/bpb.b18-00328.
    1. Alvarez-Rivera F., Concheiro A., Alvarez-Lorenzo C. Epalrestat-loaded silicone hydrogels as contact lenses to address diabetic-eye complications. Eur. J. Pharm. Biopharm. 2018;122:126–136. doi: 10.1016/j.ejpb.2017.10.016.
    1. Zhang S., Chai F.-Y., Yan H., Guo Y., Harding J. Effects of N-acetylcysteine and glutathione ethyl ester drops on streptozotocin-induced diabetic cataract in rats. Mol. Vis. 2008;14:862–870.
    1. Carey J.W., Pinarci E.Y., Penugonda S., Karacal H., Ercal N. In vivo inhibition of l-buthionine-(S,R)-sulfoximine-induced cataracts by a novel antioxidant, N-acetylcysteine amide. Free Radic. Biol. Med. 2011;50:722–729. doi: 10.1016/j.freeradbiomed.2010.12.017.
    1. Yigit E.A., Ercal N. Release of N-acetylcysteine and N-acetylcysteine amide from contact lenses. Eye Contact Lens. 2013;39:335–340. doi: 10.1097/ICL.0b013e3182a2f8bc.
    1. Babizhayev M.A., Guiotto A., Kasus-Jacobi A. N-Acetylcarnosine and histidyl-hydrazide are potent agents for multitargeted ophthalmic therapy of senile cataracts and diabetic ocular complications. J. Drug Target. 2009;17:36–63. doi: 10.1080/10611860802438736.
    1. Babizhayev M.A., Deyev A.I., Yermakova V.N., Semiletov Y.A., Davydova N.G., Kurysheva N.I., Zhukotskii A.V., Goldman I.M. N-Acetylcarnosine, a natural histidine-containing dipeptide, as a potent ophthalmic drug in treatment of human cataracts. Peptides. 2001;22:979–994. doi: 10.1016/S0196-9781(01)00407-7.
    1. Babizhayev M.A., Deyev A.I., Yermakova V.N., Semiletov Y.A., Davydova N.G., Doroshenko V.S., Zhukotskii A.V., Goldman I.M. Efficacy of N-acetylcarnosine in the treatment of cataracts. Drugs R & D. 2002;3:87–103.
    1. Babizhayev M., Deyev A., Yermakova V., Remenshchikov V., Bours J. Revival of the Lens Transparency with N-Acetylcarnosine. Curr. Drug Ther. 2006;100:91–116. doi: 10.2174/157488506775268425.
    1. Babizhayev M.A., Burke L., Micans P., Richer S.P. N-Acetylcarnosine sustained drug delivery eye drops to control the signs of ageless vision: Glare sensitivity, cataract amelioration and quality of vision currently available treatment for the challenging 50,000-patient population. Clin. Interv. Aging. 2009;4:31–50. doi: 10.2147/CIA.S4090.
    1. Klepac N., Rudeš Z., Klepac R. Effects of melatonin on plasma oxidative stress in rats with streptozotocin induced diabetes. Biomed. Pharmacother. 2006;60:32–35. doi: 10.1016/j.biopha.2005.08.005.
    1. Aksoy N., Sabuncu T., Aksoy S. Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem. Funct. 2003;21:121–125. doi: 10.1002/cbf.1006.
    1. Khorsand M., Akmali M., Sharzad S., Beheshtitabar M. Melatonin Reduces Cataract Formation and Aldose Reductase Activity in Lenses of Streptozotocin-induced Diabetic Rat. Iran. J. Med. Sci. 2016;41:305–313.
    1. Taysi S., Memisogullari R., Koc M., Yazici A.T., Aslankurt M., Gumustekin K., Al B., Ozabacigil F., Yilmaz A., Ozder H.T. Melatonin reduces oxidative stress in the rat lens due to radiation-induced oxidative injury. Int. J. Radiat. Biol. 2008;84:803–808. doi: 10.1080/09553000802390932.
    1. Anwar M.M., Moustafa M.A. The effect of melatonin on eye lens of rats exposed to ultraviolet radiation. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 2001;129:57–63. doi: 10.1016/S1532-0456(01)00180-6.
    1. Karslioglu I., Ertekin M.V., Taysi S., Koçer I., Sezen O., Gepdiremen A., Koç M., Bakan N. Radioprotective effects of melatonin on radiation-induced cataract. J. Radiat. Res. 2005;46:277–282. doi: 10.1269/jrr.46.277.
    1. Hegde K., Varma S. Protective effect of ascorbate against oxidative stress in the mouse lens. Biochim. Biophys. Acta. 2004;1670:12–18. doi: 10.1016/j.bbagen.2003.10.007.
    1. Shang F., Lu M., Dudek E., Reddan J., Taylor A. Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. Free Radic. Biol. Med. 2003;34:521–530. doi: 10.1016/S0891-5849(02)01304-7.
    1. Ishikawa Y., Hashizume K., Kishimoto S., Tezuka Y., Nishigori H., Yamamoto N., Kondo Y., Maruyama N., Ishigami A., Kurosaka D. Effect of vitamin C depletion on UVR-B induced cataract in SMP30/GNL knockout mice. Exp. Eye Res. 2012;94:85–89. doi: 10.1016/j.exer.2011.11.010.
    1. Reddy V.N., Giblin F.J., Lin L.R., Chakrapani B. The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium. Investig. Ophthalmol. Vis. Sci. 1998;39:344–350.
    1. Özkaya D., Naziroğlu M., Armağan A., Demirel A., Köroglu B.K., Çolakoğlu N., Kükner A., Sönmez T.T. Dietary vitamin C and E modulates oxidative stress induced-kidney and lens injury in diabetic aged male rats through modulating glucose homeostasis and antioxidant systems. Cell Biochem. Funct. 2011;29:287–293. doi: 10.1002/cbf.1749.
    1. Ravindran R.D., Vashist P., Gupta S.K., Young I.S., Maraini G., Camparini M., Jayanthi R., John N., Fitzpatrick K.E., Chakravarthy U., et al. Inverse association of vitamin C with cataract in older people in India. Ophthalmology. 2011;118:1958–1965.e2. doi: 10.1016/j.ophtha.2011.03.016.
    1. Mares J.A., Voland R., Adler R., Tinker L., Millen A.E., Moeller S.M., Chappell R.J., Neuhouser M.L., Sarto G.E., CAREDS Group Healthy diets and the subsequent prevalence of nuclear cataract in women. Arch. Ophthalmol. 2010;128:738–749. doi: 10.1001/archophthalmol.2010.84.
    1. Pastor-Valero M. Fruit and vegetable intake and vitamins C and E are associated with a reduced prevalence of cataract in a Spanish Mediterranean population. BMC Ophthalmol. 2013;13:52. doi: 10.1186/1471-2415-13-52.
    1. Theodoropoulou S., Samoli E., Theodossiadis P.G., Papathanassiou M., Lagiou A., Lagiou P., Tzonou A. Diet and cataract: A case-control study. Int. Ophthalmol. 2014;34:59–68. doi: 10.1007/s10792-013-9795-6.
    1. Christen W.G., Glynn R.J., Sesso H.D., Kurth T., MacFadyen J., Bubes V., Buring J.E., Manson J.E., Gaziano J.M. Age-related cataract in a randomized trial of vitamins E and C in men. Arch. Ophthalmol. 2010;128:1397–1405. doi: 10.1001/archophthalmol.2010.266.
    1. Christen W.G., Glynn R.J., Chew E.Y., Buring J.E. Vitamin E and age-related cataract in a randomized trial of women. Ophthalmology. 2008;115:822–829.e1. doi: 10.1016/j.ophtha.2007.06.040.
    1. Gritz D.C., Srinivasan M., Smith S.D., Kim U., Lietman T.M., Wilkins J.H., Priyadharshini B., John R.K., Aravind S., Prajna N.V., et al. The Antioxidants in Prevention of Cataracts Study: Effects of antioxidant supplements on cataract progression in South India. Br. J. Ophthalmol. 2006;90:847–851. doi: 10.1136/bjo.2005.088104.
    1. Christen W.G., Glynn R.J., Gaziano J.M., Darke A.K., Crowley J.J., Goodman P.J., Lippman S.M., Lad T.E., Bearden J.D., Goodman G.E., et al. Age-related cataract in men in the selenium and vitamin e cancer prevention trial eye endpoints study: A randomized clinical trial. JAMA Ophthalmol. 2015;133:17–24. doi: 10.1001/jamaophthalmol.2014.3478.
    1. McNeil J.J., Robman L., Tikellis G., Sinclair M.I., McCarty C.A., Taylor H.R. Vitamin E supplementation and cataract: Randomized controlled trial. Ophthalmology. 2004;111:75–84. doi: 10.1016/j.ophtha.2003.04.009.
    1. Rautiainen S., Rautiainen S., Lindblad B.E., Morgenstern R., Wolk A. Vitamin C supplements and the risk of age-related cataract: A population-based prospective cohort study in women. Am. J. Clin. Nutr. 2010;91:487–493. doi: 10.3945/ajcn.2009.28528.
    1. Zheng Selin J., Selin J.Z., Rautiainen S., Lindblad B.E., Morgenstern R., Wolk A. High-dose supplements of vitamins C and E, low-dose multivitamins, and the risk of age-related cataract: A population-based prospective cohort study of men. Am. J. Epidemiol. 2013;177:548–555. doi: 10.1093/aje/kws279.
    1. Age-Related Eye Disease Study Research Group A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch. Ophthalmol. 2001;119:1417–1436. doi: 10.1001/archopht.119.10.1417.

Source: PubMed

3
Subscribe