Association of common gene variants in glucokinase regulatory protein with cardiorenal disease: A systematic review and meta-analysis

Pomme I H G Simons, Nynke Simons, Coen D A Stehouwer, Casper G Schalkwijk, Nicolaas C Schaper, Martijn C G J Brouwers, Pomme I H G Simons, Nynke Simons, Coen D A Stehouwer, Casper G Schalkwijk, Nicolaas C Schaper, Martijn C G J Brouwers

Abstract

Background: Small-molecules that disrupt the binding between glucokinase and glucokinase regulatory protein (GKRP) in the liver represent a potential new class of glucose-lowering drugs. It will, however, take years before their effects on clinically relevant cardiovascular endpoints are known. The purpose of this study was to estimate the effects of these drugs on cardiorenal outcomes by studying variants in the GKRP gene (GCKR) that mimic glucokinase-GKRP disruptors.

Methods: The MEDLINE and EMBASE databases were searched for studies reporting on the association between GCKR variants (rs1260326, rs780094, and rs780093) and coronary artery disease (CAD), estimated glomerular filtration rate (eGFR), and chronic kidney disease (CKD).

Results: In total 5 CAD studies (n = 274,625 individuals), 7 eGFR studies (n = 195,195 individuals), and 4 CKD studies (n = 31,642 cases and n = 408,432 controls) were included. Meta-analysis revealed a significant association between GCKR variants and CAD (OR:1.02 per risk allele, 95%CI:1.00-1.04, p = 0.01). Sensitivity analyses showed that replacement of one large, influential CAD study by two other, partly overlapping studies resulted in similar point estimates, albeit less precise (OR:1.02; 95%CI:0.98-1.06 and OR: 1.02; 95%CI: 0.99-1.04). GCKR was associated with an improved eGFR (+0.49 ml/min, 95%CI:0.10-0.89, p = 0.01) and a trend towards protection from CKD (OR:0.98, 95%CI:0.95-1.01, p = 0.13).

Conclusion: This study suggests that increased glucokinase-GKRP disruption has beneficial effects on eGFR, but these may be offset by a disadvantageous effect on coronary artery disease risk. Further studies are warranted to elucidate the mechanistic link between hepatic glucose metabolism and eGFR.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Meta-analysis of the relationship between…
Fig 1. Meta-analysis of the relationship between the GCKR effect allele and coronary artery disease (CAD).
*Number of individuals refers to the overall population.
Fig 2. Meta-analysis of the relationship between…
Fig 2. Meta-analysis of the relationship between the GCKR effect allele and creatinine-based estimated glomerular filtration rate (eGFR).
Fig 3. Meta-analysis of the relationship between…
Fig 3. Meta-analysis of the relationship between the GCKR effect allele and chronic kidney disease (CKD).

References

    1. Meininger GE, Scott R, Alba M, Shentu Y, Luo E, Amin H, et al. Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes. Diabetes Care. 2011;34(12):2560–6. 10.2337/dc11-1200 ; PubMed Central PMCID: PMC3220852.
    1. Denney WS, Denham DS, Riggs MR, Amin NB. Glycemic Effect and Safety of a Systemic, Partial Glucokinase Activator, PF-04937319, in Patients With Type 2 Diabetes Mellitus Inadequately Controlled on Metformin-A Randomized, Crossover, Active-Controlled Study. Clinical pharmacology in drug development. 2016;5(6):517–27. 10.1002/cpdd.261 .
    1. Sarabu R, Bizzarro FT, Corbett WL, Dvorozniak MT, Geng W, Grippo JF, et al. Discovery of piragliatin—first glucokinase activator studied in type 2 diabetic patients. Journal of medicinal chemistry. 2012;55(16):7021–36. 10.1021/jm3008689 .
    1. Johnson D, Shepherd RM, Gill D, Gorman T, Smith DM, Dunne MJ. Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a glucokinase activator. Diabetes. 2007;56(6):1694–702. 10.2337/db07-0026 .
    1. Agius L. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J. 2008;414(1):1–18. Epub 2008/07/25. 10.1042/BJ20080595 .
    1. Pfefferkorn JA, Guzman-Perez A, Litchfield J, Aiello R, Treadway JL, Pettersen J, et al. Discovery of (S)-6-(3-cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotini c acid as a hepatoselective glucokinase activator clinical candidate for treating type 2 diabetes mellitus. Journal of medicinal chemistry. 2012;55(3):1318–33. 10.1021/jm2014887 .
    1. de la Iglesia N, Veiga-da-Cunha M, Van Schaftingen E, Guinovart JJ, Ferrer JC. Glucokinase regulatory protein is essential for the proper subcellular localisation of liver glucokinase. FEBS letters. 1999;456(2):332–8. .
    1. van Schaftingen E, Vandercammen A, Detheux M, Davies DR. The regulatory protein of liver glucokinase. Adv Enzyme Regul. 1992;32:133–48. Epub 1992/01/01. .
    1. Lloyd DJ, St Jean DJ Jr., Kurzeja RJ, Wahl RC, Michelsen K, Cupples R, et al. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors. Nature. 2013;504(7480):437–40. Epub 2013/11/15. 10.1038/nature12724 .
    1. Walker VM, Davey Smith G, Davies NM, Martin RM. Mendelian randomization: a novel approach for the prediction of adverse drug events and drug repurposing opportunities. Int J Epidemiol. 2017;46(6):2078–89. Epub 2017/10/19. 10.1093/ije/dyx207 ; PubMed Central PMCID: PMCPMC5837479.
    1. Brouwers MC, Jacobs C, Bast A, Stehouwer CD, Schaper NC. Modulation of Glucokinase Regulatory Protein: A Double-Edged Sword? Trends Mol Med. 2015;21(10):583–94. 10.1016/j.molmed.2015.08.004 .
    1. Orho-Melander M, Melander O, Guiducci C, Perez-Martinez P, Corella D, Roos C, et al. Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes. 2008;57(11):3112–21. Epub 2008/08/06. 10.2337/db08-0516 ; PubMed Central PMCID: PMCPMC2570409.
    1. Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011;7(3):e1001324 Epub 2011/03/23. 10.1371/journal.pgen.1001324 ; PubMed Central PMCID: PMCPMC3053321.
    1. Matsuo H, Yamamoto K, Nakaoka H, Nakayama A, Sakiyama M, Chiba T, et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Annals of the rheumatic diseases. 2016;75(4):652–9. 10.1136/annrheumdis-2014-206191 ; PubMed Central PMCID: PMC4819613.
    1. Kottgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, Glazer NL, et al. New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010;42(5):376–84. Epub 2010/04/13. 10.1038/ng.568 ; PubMed Central PMCID: PMCPMC2997674.
    1. Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PR, Orho-Melander M, et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet. 2009;18(21):4081–8. Epub 2009/08/01. 10.1093/hmg/ddp357 ; PubMed Central PMCID: PMCPMC2758140.
    1. Rees MG, Wincovitch S, Schultz J, Waterstradt R, Beer NL, Baltrusch S, et al. Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk. Diabetologia. 2012;55(1):114–22. Epub 2011/11/01. 10.1007/s00125-011-2348-5 ; PubMed Central PMCID: PMCPMC3276843.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. The BMJ. 2009;339:b2535 10.1136/bmj.b2535 PMC2714657.
    1. Sparso T, Andersen G, Nielsen T, Burgdorf KS, Gjesing AP, Nielsen AL, et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia. 2008;51(1):70–5. 10.1007/s00125-007-0865-z .
    1. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. 2010;50(4):1088–10.
    1. Higgins JP, White IR, Anzures-Cabrera J. Meta-analysis of skewed data: combining results reported on log-transformed or raw scales. Stat Med. 2008;27(29):6072–92. 10.1002/sim.3427 ; PubMed Central PMCID: PMC2978323.
    1. Viechtbauer W. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software. 2010;36:1–48.
    1. Lian J, Guo J, Chen Z, Jiang Q, Ye H, Huang X, et al. Positive association between GCKR rs780093 polymorphism and coronary heart disease in the aged Han Chinese. Dis Markers. 2013;35(6):863–8. Epub 2014/01/05. 10.1155/2013/215407 ; PubMed Central PMCID: PMCPMC3871702.
    1. Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet. 2017;49(9):1385–91. Epub 2017/07/18. 10.1038/ng.3913 .
    1. Raffield LM, Cox AJ, Carr JJ, Freedman BI, Hicks PJ, Langefeld CD, et al. Analysis of a cardiovascular disease genetic risk score in the Diabetes Heart Study. Acta Diabetol. 2015;52(4):743–51. Epub 2015/02/24. 10.1007/s00592-015-0720-5 ; PubMed Central PMCID: PMCPMC4506855.
    1. Takeuchi F, Isono M, Katsuya T, Yokota M, Yamamoto K, Nabika T, et al. Association of genetic variants influencing lipid levels with coronary artery disease in Japanese individuals. PLoS One. 2012;7(9):e46385 Epub 2012/10/11. 10.1371/journal.pone.0046385 ; PubMed Central PMCID: PMCPMC3458872.
    1. Zhou YJ, Hong SC, Yin RX, Yang Q, Cao XL, Chen WX. Polymorphisms in the GCKR are associated with serum lipid traits, the risk of coronary artery disease and ischemic stroke. Int J Clin Exp Med. 2015;8(7):10678–86. Epub 2015/09/18. ; PubMed Central PMCID: PMCPMC4565242.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. 10.1136/bmj.327.7414.557 ; PubMed Central PMCID: PMC192859.
    1. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002 Epub 2011/07/26. 10.1136/bmj.d4002 .
    1. Higgins JPT, Green S, (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from .
    1. Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet. 2017;49(9):1385–91. 10.1038/ng.3913 .
    1. Zhao W, Rasheed A, Tikkanen E, Lee JJ, Butterworth AS, Howson JMM, et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat Genet. 2017;49(10):1450–7. 10.1038/ng.3943 ; PubMed Central PMCID: PMC5844224.
    1. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics. 2013;45(1):25–33. 10.1038/ng.2480 .
    1. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8. Epub 2011/03/08. 10.1038/ng.784 ; PubMed Central PMCID: PMCPMC3119261.
    1. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30. Epub 2015/09/08. 10.1038/ng.3396 ; PubMed Central PMCID: PMCPMC4589895.
    1. Yamada Y, Nishida T, Ichihara S, Kato K, Fujimaki T, Oguri M, et al. Identification of chromosome 3q28 and ALPK1 as susceptibility loci for chronic kidney disease in Japanese individuals by a genome-wide association study. J Med Genet. 2013;50(6):410–8. Epub 2013/03/30. 10.1136/jmedgenet-2013-101518 .
    1. Sveinbjornsson G, Mikaelsdottir E, Palsson R, Indridason OS, Holm H, Jonasdottir A, et al. Rare mutations associating with serum creatinine and chronic kidney disease. Hum Mol Genet. 2014;23(25):6935–43. Epub 2014/08/02. 10.1093/hmg/ddu399 .
    1. Bonetti S, Trombetta M, Boselli ML, Turrini F, Malerba G, Trabetti E, et al. Variants of GCKR affect both beta-cell and kidney function in patients with newly diagnosed type 2 diabetes: the Verona newly diagnosed type 2 diabetes study 2. Diabetes Care. 2011;34(5):1205–10. Epub 2011/03/18. 10.2337/dc10-2218 ; PubMed Central PMCID: PMCPMC3114499.
    1. Deshmukh HA, Palmer CN, Morris AD, Colhoun HM. Investigation of known estimated glomerular filtration rate loci in patients with type 2 diabetes. Diabet Med. 2013;30(10):1230–5. Epub 2013/04/17. 10.1111/dme.12211 ; PubMed Central PMCID: PMCPMC4204276.
    1. Hishida A, Takashima N, Turin TC, Kawai S, Wakai K, Hamajima N, et al. GCK, GCKR polymorphisms and risk of chronic kidney disease in Japanese individuals: data from the J-MICC Study. J Nephrol. 2014;27(2):143–9. Epub 2014/02/19. 10.1007/s40620-013-0025-0 .
    1. Okada Y, Sim X, Go MJ, Wu JY, Gu D, Takeuchi F, et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet. 2012;44(8):904–9. Epub 2012/07/17. 10.1038/ng.2352 ; PubMed Central PMCID: PMCPMC4737645.
    1. Pattaro C, Teumer A, Gorski M, Chu AY, Li M, Mijatovic V, et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun. 2016;7:10023 Epub 2016/02/03. 10.1038/ncomms10023 ; PubMed Central PMCID: PMCPMC4735748.
    1. Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P, et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet. 2011;43(11):1131–8. Epub 2011/10/18. 10.1038/ng.970 ; PubMed Central PMCID: PMCPMC3482372.
    1. Kozian DH, Barthel A, Cousin E, Brunnhofer R, Anderka O, Marz W, et al. Glucokinase-activating GCKR polymorphisms increase plasma levels of triglycerides and free fatty acids, but do not elevate cardiovascular risk in the Ludwigshafen Risk and Cardiovascular Health Study. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2010;42(7):502–6. 10.1055/s-0030-1249637 .
    1. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45(11):1345–52. 10.1038/ng.2795 ; PubMed Central PMCID: PMC3904346.
    1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C-y. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. New England Journal of Medicine. 2004;351(13):1296–305. 10.1056/NEJMoa041031 .
    1. Gu Y, Mao Y, Li H, Zhao S, Yang Y, Gao H, et al. Long-term renal changes in the liver-specific glucokinase knockout mouse: implications for renal disease in MODY2. Translational research: the journal of laboratory and clinical medicine. 2011;157(3):111–6. 10.1016/j.trsl.2010.11.003 PMC3654931.
    1. Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6):e1000504 Epub 2009/06/09. 10.1371/journal.pgen.1000504 .
    1. Musso G, Gambino R, Tabibian JH, Ekstedt M, Kechagias S, Hamaguchi M, et al. Association of Non-alcoholic Fatty Liver Disease with Chronic Kidney Disease: A Systematic Review and Meta-analysis. PLOS Medicine. 2014;11(7):e1001680 10.1371/journal.pmed.1001680
    1. De Cosmo S, Viazzi F, Pacilli A, Giorda C, Ceriello A, Gentile S, et al. Serum Uric Acid and Risk of CKD in Type 2 Diabetes. Clinical journal of the American Society of Nephrology: CJASN. 2015;10(11):1921–9. Epub 2015/09/06. 10.2215/CJN.03140315 ; PubMed Central PMCID: PMCPMC4633786.
    1. Lanktree MB, Theriault S, Walsh M, Pare G. HDL Cholesterol, LDL Cholesterol, and Triglycerides as Risk Factors for CKD: A Mendelian Randomization Study. Am J Kidney Dis. 2017. 10.1053/j.ajkd.2017.06.011 .
    1. Simons N, Dekker JM, van Greevenbroek MM, Nijpels G, t Hart LM, van der Kallen CJ, et al. A Common Gene Variant in Glucokinase Regulatory Protein Interacts With Glucose Metabolism on Diabetic Dyslipidemia: the Combined CODAM and Hoorn Studies. Diabetes Care. 2016;39(10):1811–7. Epub 2016/09/24. 10.2337/dc16-0153 .
    1. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what's changed and why it matters. Kidney international. 2017;92(1):26–36. 10.1016/j.kint.2017.04.006 .
    1. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16. Epub 2010/01/19. ng.520 [pii] 10.1038/ng.520 .
    1. Tam CH, Wang Y, Lee HM, Luk AO, Tong PC, Chan MH, et al. Early gene-diet interaction between glucokinase regulatory protein (GCKR) polymorphism, vegetable and fish intakes in modulating triglyceride levels in healthy adolescents. Nutr Metab Cardiovasc Dis. 2015;25(10):951–8. 10.1016/j.numecd.2015.06.011 .
    1. Rousseaux J, Duhamel A, Dumont J, Dallongeville J, Molnar D, Widhalm K, et al. The n-3 long-chain PUFAs modulate the impact of the GCKR Pro446Leu polymorphism on triglycerides in adolescents. J Lipid Res. 2015;56(9):1774–80. 10.1194/jlr.M057570 ; PubMed Central PMCID: PMC4548781.

Source: PubMed

3
Subscribe