European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update

David G Sweet, Virgilio P Carnielli, Gorm Greisen, Mikko Hallman, Katrin Klebermass-Schrehof, Eren Ozek, Arjan Te Pas, Richard Plavka, Charles C Roehr, Ola D Saugstad, Umberto Simeoni, Christian P Speer, Maximo Vento, Gerry H A Visser, Henry L Halliday, David G Sweet, Virgilio P Carnielli, Gorm Greisen, Mikko Hallman, Katrin Klebermass-Schrehof, Eren Ozek, Arjan Te Pas, Richard Plavka, Charles C Roehr, Ola D Saugstad, Umberto Simeoni, Christian P Speer, Maximo Vento, Gerry H A Visser, Henry L Halliday

Abstract

Respiratory distress syndrome (RDS) care pathways evolve slowly as new evidence emerges. We report the sixth version of "European Guidelines for the Management of RDS" by a panel of experienced European neonatologists and an expert perinatal obstetrician based on available literature up to end of 2022. Optimising outcome for babies with RDS includes prediction of risk of preterm delivery, appropriate maternal transfer to a perinatal centre, and appropriate and timely use of antenatal steroids. Evidence-based lung-protective management includes initiation of non-invasive respiratory support from birth, judicious use of oxygen, early surfactant administration, caffeine therapy, and avoidance of intubation and mechanical ventilation where possible. Methods of ongoing non-invasive respiratory support have been further refined and may help reduce chronic lung disease. As technology for delivering mechanical ventilation improves, the risk of causing lung injury should decrease, although minimising time spent on mechanical ventilation by targeted use of postnatal corticosteroids remains essential. The general care of infants with RDS is also reviewed, including emphasis on appropriate cardiovascular support and judicious use of antibiotics as being important determinants of best outcome. We would like to dedicate this guideline to the memory of Professor Henry Halliday who died on November 12, 2022.These updated guidelines contain evidence from recent Cochrane reviews and medical literature since 2019. Strength of evidence supporting recommendations has been evaluated using the GRADE system. There are changes to some of the previous recommendations as well as some changes to the strength of evidence supporting recommendations that have not changed. This guideline has been endorsed by the European Society for Paediatric Research (ESPR) and the Union of European Neonatal and Perinatal Societies (UENPS).

Keywords: Antenatal corticosteroids; Continuous positive airway pressure; Evidence-based practice; Mechanical ventilation; Non-invasive respiratory support; Nutrition; Oxygen supplementation; Patent ductus arteriosus; Preterm infant; Respiratory distress syndrome; Surfactant therapy; Thermoregulation.

Conflict of interest statement

Henry L. Halliday, Christian P. Speer, and Charles C. Roehr in the past have been consultants to Chiesi Farmaceutici, Parma, the manufacturer of a leading animal-derived surfactant preparation used to treat RDS and a caffeine product for treatment of apnoea of prematurity. Virgilio Carnielli is a member of the Chiesi Farmaceutici Advisory Board. Henry Halliday and Christian Speer are joint chief editors of Neonatology.

© 2023 S. Karger AG, Basel.

References

    1. Bell EF, Hintz SR, Hansen NI, Bann CM, Wyckoff MH, DeMauro SB, et al. Eunice kennedy shriver national institute of child health and human development neonatal research network. Mortality, in-hospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013-2018. JAMA. 2022 Jan 18;327((3)):248–263.
    1. Watkins PL, Dagle JM, Bell EF, Colaizy TT. Outcomes at 18 to 22 months of corrected age for infants born at 22 to 25 weeks of gestation in a center practicing active management. J Pediatr. 2020 Feb;217:52–58. e1.
    1. Haumont D, Modi N, Saugstad OD, Antetere R, NguyenBa C, Turner M, et al. Evaluating preterm care across Europe using the eNewborn European Network database. Pediatr Res. 2020 Sep;88((3)):484–495.
    1. Sweet D, Bevilacqua G, Carnielli V, Greisen G, Plavka R, Saugstad OD, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome. J Perinat Med. 2007;35((3)):175–186.
    1. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants: 2010 update. Neonatology. 2010 Jun;97((4)):402–417.
    1. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants: 2013 update. Neonatology. 2013;103((4)):353–368.
    1. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European consensus guidelines on the management of respiratory distress syndrome: 2016 update. Neonatology. 2017;111((2)):107–125.
    1. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A, et al. European consensus guidelines on the management of respiratory distress syndrome: 2019 update. Neonatology. 2019;115((4)):432–450.
    1. Guyatt GH, Oxman AD, Kunz R, Falck-Ytter Y, Vist GE, Liberati A, et al. Going from evidence to recommendations. BMJ. 2008 May 10;336((7652)):1049–1051.
    1. Diguisto C, Foix L'Helias L, Morgan AS, Ancel PY, Kayem G, Kaminski M, et al. Neonatal outcomes in extremely preterm newborns admitted to intensive care after No active antenatal management: a population-based cohort study. J Pediatr. 2018 Dec;203:150–155.
    1. Duley L, Meher S, Hunter KE, Seidler AL, Askie LM. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2019 Oct 30;2019((10)):CD004659.
    1. EPPPIC Group Evaluating Progestogens for Preventing Preterm birth International Collaborative (EPPPIC): meta-analysis of individual participant data from randomised controlled trials. Lancet. 2021;397((10280)):1183–1194.
    1. Norman JE. Progesterone and preterm birth. Int J Gynaecol Obstet. 2020 Jul;150((1)):24–30.
    1. Alfirevic Z, Stampalija T, Medley N. Cervical stitch (cerclage) for preventing preterm birth in singleton pregnancy. Cochrane Database Syst Rev. 2017 Jun 6;6((6)):CD008991.
    1. Middleton P, Gomersall JC, Gould JF, Shepherd E, Olsen SF, Makrides M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev. 2018 Nov 15;11((11)):CD003402.
    1. Melchor JC, Khalil A, Wing D, Schleussner E, Surbek D. Prediction of preterm delivery in symptomatic women using PAMG-1, fetal fibronectin and phIGFBP-1 tests: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018 Oct;52((4)):442–451.
    1. Marlow N, Bennett C, Draper ES, Hennessy EM, Morgan AS, Costeloe KL. Perinatal outcomes for extremely preterm babies in relation to place of birth in England: the EPICure 2 study. Arch Dis Child Fetal Neonatal Ed. 2014;99((3)):F181–8.
    1. Kenyon S, Boulvain M, Neilson JP. Antibiotics for preterm rupture of membranes. Cochrane Database Syst Rev. 2013 Dec 2;((12)):CD001058.
    1. Wolf HT, Huusom LD, Henriksen TB, Hegaard HK, Brok J, Pinborg A. Magnesium sulphate for fetal neuroprotection at imminent risk for preterm delivery: a systematic review with meta-analysis and trial sequential analysis. BJOG. 2020 Sep;127((10)):1180–1188.
    1. Haas DM, Caldwell DM, Kirkpatrick P, McIntosh JJ, Welton NJ. Tocolytic therapy for preterm delivery: systematic review and network meta-analysis. BMJ. 2012 Oct 9;345:e6226.
    1. Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017 Mar 21;3((3)):CD004454.
    1. Ehret DEY, Edwards EM, Greenberg LT, Bernstein IM, Buzas JS, Soll RF, et al. Association of antenatal steroid exposure with survival among infants receiving postnatal life support at 22 to 25 Weeks' gestation. JAMA Netw Open. 2018 Oct 5;1((6)):e183235.
    1. Cahill AG, Kaimal AJ, Kuller JA, Turrentine MA. ACOG Practice Advisory. Use of Antenatal Steroids at 22 weeks of gestation
    1. Gyamfi-Bannerman C, Thom EA, Blackwell SC, Tita AT, Reddy UM, Saade GR, et al. Antenatal betamethasone for women at risk for late preterm delivery. N Engl J Med. 2016 Apr 7;374((14)):1311–1320.
    1. Gulersen M, Gyamfi-Bannerman C, Greenman M, Lenchner E, Rochelson B, Bornstein E. Time interval from late preterm antenatal corticosteroid administration to delivery and the impact on neonatal outcomes. Am J Obstet Gynecol MFM. 2021 Sep;3((5)):100426.
    1. Kamath-Rayne BD, Rozance PJ, Goldenberg RL, Jobe AH. Antenatal corticosteroids beyond 34 weeks gestation: what do we do now? Am J Obstet Gynecol. 2016 Oct;215((4)):423–430.
    1. Ninan K, Liyanage SK, Murphy KE, Asztalos EV, McDonald SD. Evaluation of long-term outcomes associated with preterm exposure to antenatal corticosteroids: a systematic review and meta-analysis. JAMA Pediatr. 2022 Apr 11;176((6)):e220483.
    1. Norman M, Piedvache A, Børch K, Huusom LD, Bonamy AE, Howell EA, et al. Effective Perinatal Intensive Care in Europe (EPICE) research group. Association of short antenatal corticosteroid administration-to-birth intervals with survival and morbidity among very preterm infants: results from the EPICE cohort. JAMA Pediatr. 2017 Jul 1;171((7)):678–686.
    1. Crowther CA, Middleton PF, Voysey M, Askie L, Zhang S, Martlow TK, et al. Effects of repeat prenatal corticosteroids given to women at risk of preterm birth: an individual participant data meta-analysis. PLoS Med. 2019 Apr 12;16((4)):e1002771.
    1. Asztalos EV, Murphy KE, Willan AR, Matthews SG, Ohlsson A, Saigal S, et al. Multiple courses of antenatal corticosteroids for preterm birth study: outcomes in children at 5 years of age (MACS-5) JAMA Pediatr. 2013 Dec;167((12)):1102–1110.
    1. Räikkönen K, Gissler M, Kajantie E. Associations between maternal antenatal corticosteroid treatment and mental and behavioral disorders in children. JAMA. 2020 May 19;323((19)):1924–1933.
    1. Paules C, Pueyo V, Martí E, de Vilchez S, Burd I, Calvo P, et al. Threatened preterm labor is a risk factor for impaired cognitive development in early childhood. Am J Obstet Gynecol. 2017 Feb;216((2)):157.e1–7.
    1. Jobe AH, Kemp M, Schmidt A, Takahashi T, Newnham J, Milad M. Antenatal corticosteroids: a reappraisal of the drug formulation and dose. Pediatr Res. 2021;89((2)):318–325.
    1. Schmitz T, Doret-Dion M, Sentilhes L, Parant O, Claris O, Renesme L, et al. Neonatal outcomes for women at risk of preterm delivery given half dose versus full dose of antenatal betamethasone: a randomised, multicentre, double-blind, placebo-controlled, non-inferiority trial. Lancet. 2022 20;400((10352)):592–604.
    1. Saugstad OD. Delivery room management of term and preterm newly born infants. Neonatology. 2015;107((4)):365–371.
    1. Madar J, Roehr CC, Ainsworth S, Ersdal H, Morley C, Rüdiger M, et al. European Resuscitation Council Guidelines 2021: newborn resuscitation and support of transition of infants at birth. Resuscitation. 2021 Apr;161:291–326.
    1. Murphy MC, McCarthy LK, O'Donnell CPF. Crying and breathing by new-born preterm infants after early or delayed cord clamping. Arch Dis Child Fetal Neonatal Ed. 2020 May;105((3)):331–333.
    1. Fogarty M, Osborn DA, Askie L, Seidler AL, Hunter K, Lui K, et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018 Jan;218((1)):1–18.
    1. Robledo KP, Tarnow-Mordi WO, Rieger I, Suresh P, Martin A, Yeung C, et al. Effects of delayed versus immediate umbilical cord clamping in reducing death or major disability at 2 years corrected age among very preterm infants (APTS): a multicentre, randomised clinical trial. Lancet Child Adolesc Health. 2022 Mar;6((3)):150–157.
    1. Jasani B, Torgalkar R, Ye XY, Syed S, Shah PS. Association of umbilical cord management strategies with outcomes of preterm infants: a systematic review and network meta-analysis. JAMA Pediatr. 2021;175((4)):e210102.
    1. Katheria A, Reister F, Essers J, Mendler M, Hummler H, Subramaniam A, et al. Association of umbilical cord milking vs delayed umbilical cord clamping with death or severe intraventricular hemorrhage among preterm infants. JAMA. 2019 Nov 19;322((19)):1877–1886.
    1. Knol R, Brouwer E, van den Akker T, DeKoninck P, van Geloven N, Polglase GR, et al. Physiological-based cord clamping in very preterm infants - randomised controlled trial on effectiveness of stabilisation. Resuscitation. 2020 Feb 1;147:26–33.
    1. Dekker J, Hooper SB, Martherus T, Cramer SJE, van Geloven N, Te Pas AB. Repetitive versus standard tactile stimulation of preterm infants at birth - a randomized controlled trial. Resuscitation. 2018 Jun;127:37–43.
    1. Dekker J, Hooper SB, van Vonderen JJ, Witlox RSGM, Lopriore E, Te Pas AB. Caffeine to improve breathing effort of preterm infants at birth: a randomized controlled trial. Pediatr Res. 2017 Aug;82((2)):290–296.
    1. Ines F, Hutson S, Coughlin K, Hopper A, Banerji A, Uy C, et al. Multicentre, randomised trial of preterm infants receiving caffeine and less invasive surfactant administration compared with caffeine and early continuous positive airway pressure (CaLI trial): study protocol. BMJ Open. 2021 Jan 22;11((1)):e038343.
    1. Subramaniam P, Ho JJ, Davis PG. Prophylactic or very early initiation of Continuous Positive Airway Pressure (CPAP) for preterm infants. Cochrane Database Syst Rev. 2021 Oct 18;10((10)):CD001243.
    1. Bamat N, Fierro J, Mukerji A, Wright CJ, Millar D, Kirpalani H. Nasal continuous positive airway pressure levels for the prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2021 Nov 30;11((11)):CD012778.
    1. Kirpalani H, Ratcliffe SJ, Keszler M, Davis PG, Foglia EE, Te Pas A, et al. Effect of sustained inflations vs intermittent positive pressure ventilation on bronchopulmonary dysplasia or death among extremely preterm infants: the SAIL randomized clinical trial. JAMA. 2019 Mar 26;321((12)):1165–1175.
    1. Kuypers KLAM, Lamberska T, Martherus T, Dekker J, Böhringer S, Hooper SB, et al. The effect of a face mask for respiratory support on breathing in preterm infants at birth. Resuscitation. 2019 Nov;144:178–184.
    1. Mangat A, Bruckner M, Schmölzer GM. Face mask versus nasal prong or nasopharyngeal tube for neonatal resuscitation in the delivery room: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2021 Sep;106((5)):561–567.
    1. Donaldsson S, Drevhammar T, Li Y, Bartocci M, Rettedal SI, Lundberg F, et al. Comparison of respiratory support after delivery in infants born before 28 Weeks' gestational age: the CORSAD randomized clinical trial. JAMA Pediatr. 2021 Sep 1;175((9)):911–918.
    1. Abiramalatha T, Ramaswamy VV, Bandyopadhyay T, Pullattayil AK, Thanigainathan S, Trevisanuto D, et al. Delivery room interventions for hypothermia in preterm neonates: a systematic review and network meta-analysis. JAMA Pediatr. 2021 Sep 1;175((9)):e210775.
    1. Cavallin F, Doglioni N, Allodi A, Battajon N, Vedovato S, Capasso L, et al. Thermal management with and without servo-controlled system in preterm infants immediately after birth: a multicentre, randomised controlled study. Arch Dis Child Fetal Neonatal Ed. 2021 Nov;106((6)):572–577.
    1. McCarthy LK, Molloy EJ, Twomey AR, Murphy JF, O'Donnell CP. A randomized trial of exothermic mattresses for preterm newborns in polyethylene bags. Pediatrics. 2013 Jul;132((1)):e135–41.
    1. Thamrin V, Saugstad OD, Tarnow-Mordi W, Wang YA, Lui K, Wright IM, et al. Preterm infant outcomes after randomization to initial resuscitation with FiO2 0.21 or 1.0. J Pediatr. 2018 Oct;201:55–61. e1.
    1. Kapadia V, Oei JL, Finer N, Rich W, Rabi Y, Wright IM, et al. Outcomes of delivery room resuscitation of bradycardic preterm infants: a retrospective cohort study of randomised trials of high vs low initial oxygen concentration and an individual patient data analysis. Resuscitation. 2021 Oct;167:209–217.
    1. Anton O, Fernandez R, Rendon-Morales E, Aviles-Espinosa R, Jordan H, Rabe H. Heart rate monitoring in newborn babies: a systematic review. Neonatology. 2019;116((3)):199–210.
    1. Abbey NV, Mashruwala V, Weydig HM, Steven Brown L, Ramon EL, Ibrahim J, et al. Electrocardiogram for heart rate evaluation during preterm resuscitation at birth: a randomized trial. Pediatr Res. 2022;91((6)):1445–1451.
    1. Hawkes GA, Hawkes CP, Kenosi M, Demeulemeester J, Livingstone V, Ryan CA, et al. Auscultate, palpate and tap: time to re-evaluate. Acta Paediatr. 2016 Feb;105((2)):178–182.
    1. de Medeiros SM, Mangat A, Polglase GR, Sarrato GZ, Davis PG, Schmölzer GM. Respiratory function monitoring to improve the outcomes following neonatal resuscitation: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2022 Jan 20;107((6)):589–596.
    1. Lui K, Jones LJ, Foster JP, Davis PG, Ching SK, Oei JL, et al. Lower versus higher oxygen concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth. Cochrane Database Syst Rev. 2018 May 4;5((5)):CD010239.
    1. Saugstad OD, Kapadia V, Oei JL. Oxygen in the first minutes of life in very preterm infants. Neonatology. 2021;118((2)):218–224.
    1. Dekker J, Martherus T, Lopriore E, Giera M, McGillick EV, Hutten J, et al. The effect of initial high versus low FiO2 on breathing effort in preterm infants at birth: a randomized controlled trial. Front Pediatr. 2019 Dec 12;7:504.
    1. Herting E, Härtel C, Göpel W. Less invasive surfactant administration: best practices and unanswered questions. Curr Opin Pediatr. 2020 Apr;32((2)):228–234.
    1. Evans P, Shults J, Weinberg DD, Napolitano N, Ades A, Johnston L, et al. Intubation competence during neonatal fellowship training. Pediatrics. 2021 Jul;148((1)):e2020036145.
    1. Garvey AA, Dempsey EM. Simulation in neonatal resuscitation. Front Pediatr. 2020 Feb 25;8:59.
    1. O'Shea JE, Kirolos S, Thio M, Kamlin COF, Davis PG. Neonatal videolaryngoscopy as a teaching aid: the trainees' perspective. Arch Dis Child Fetal Neonatal Ed. 2021 Mar;106((2)):168–171.
    1. Walter-Nicolet E, Courtois E, Milesi C, Ancel PY, Beuchée A, Tourneux P, et al. Premedication practices for delivery room intubations in premature infants in France: results from the EPIPAGE 2 cohort study. PLoS One. 2019 Apr 10;14((4)):e0215150.
    1. Norman M, Jonsson B, Wallström L, Sindelar R. Respiratory support of infants born at 22-24 weeks of gestational age. Semin Fetal Neonatal Med. 2022 Apr;27((2)):101328.
    1. Stevens TP, Harrington EW, Blennow M, Soll RF. Early surfactant administration with brief ventilation versus selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev. 2007 Oct;2007((4)):CD003063.
    1. Abdel-Latif ME, Davis PG, Wheeler KI, De Paoli AG, Dargaville PA. Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev. 2021 May 10;5((5)):CD011672.
    1. De Luca D, de Winter JP. Less invasive surfactant administration: all that glitters is not gold. Eur J Pediatr. 2020 Aug;179((8)):1295–1296.
    1. Dargaville PA, Kamlin COF, Orsini F, Wang X, De Paoli AG, Kanmaz Kutman HG, et al. Effect of minimally invasive surfactant therapy vs sham treatment on death or bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome: the OPTIMIST-A randomized clinical trial. JAMA. 2021 Dec 28;326((24)):2478–2487.
    1. Härtel C, Herting E, Humberg A, Hanke K, Mehler K, Keller T, et al. Association of administration of surfactant using less invasive methods with outcomes in extremely preterm infants less than 27 Weeks of gestation. JAMA Netw Open. 2022 Aug 1;5((8)):e2225810.
    1. Reynolds P, Bustani P, Darby C, Fernandez Alvarez JR, Fox G, Jones S, et al. Less-invasive surfactant administration for neonatal respiratory distress syndrome: a consensus guideline. Neonatology. 2021;118((5)):586–592.
    1. Herting E, Kribs A, Härtel C, von der Wense A, Weller U, Hoehn T, et al. Two-year outcome data suggest that Less Invasive Surfactant Administration (LISA) is safe. Results from the follow-up of the randomized controlled AMV (Avoid Mechanical Ventilation) study. Eur J Pediatr. 2020 Aug;179((8)):1309–1313.
    1. Federici C, Fornaro G, Roehr CC. Cost-saving effect of early less invasive surfactant administration versus continuous positive airway pressure therapy alone for preterm infants with respiratory distress syndrome. Eur J Hosp Pharm. 2022;29((6)):346–352.
    1. Moschino L, Ramaswamy VV, Reiss IKM, Baraldi E, Roehr CC, Simons SHP. Sedation for less invasive surfactant administration in preterm infants: a systematic review and meta-analysis. Pediatr Res. 2022 Jun 2
    1. Krajewski P, Szpecht D, Hożejowski R. Premedication practices for less invasive surfactant administration - results from a nationwide cohort study. J Matern Fetal Neonatal Med. 2020 Dec 25;:1–5.
    1. Roberts KD, Brown R, Lampland AL, Leone TA, Rudser KD, Finer NN, et al. Laryngeal mask airway for surfactant administration in neonates: a randomized, controlled trial. J Pediatr. 2018 Feb;193:40–46. e1.
    1. Gallup JA, Ndakor SM, Pezzano C, Pinheiro JMB. Randomized trial of surfactant therapy via laryngeal mask airway versus brief tracheal intubation in neonates born preterm. J Pediatr. 2022 Oct 12;3476((22)):S002200891–5.
    1. Gaertner VD, Thomann J, Bassler D, Rüegger CM. Surfactant nebulization to prevent intubation in preterm infants: a systematic review and meta-analysis. Pediatrics. 2021;148((5)):e2021052504.
    1. Murphy MC, Galligan M, Molloy B, Hussain R, Doran P, O'Donnell C. Study protocol for the POPART study-prophylactic oropharyngeal surfactant for preterm infants: a randomised trial. BMJ Open. 2020 Jul 20;10((7)):e035994.
    1. Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012 Nov 14;11((11)):CD001456.
    1. Verder H, Albertsen P, Ebbesen F, Greisen G, Robertson B, Bertelsen A, et al. Nasal continuous positive airway pressure and early surfactant therapy for respiratory distress syndrome in newborns of less than 30 weeks' gestation. Pediatrics. 1999 Feb;103((2)):E24.
    1. Gulczyńska E, Szczapa T, Hożejowski R, Borszewska-Kornacka MK, Rutkowska M. Fraction of inspired oxygen as a predictor of CPAP failure in preterm infants with respiratory distress syndrome: a prospective multicenter study. Neonatology. 2019;116((2)):171–178.
    1. Dell'Orto V, Nobile S, Correani A, Marchionni P, Giretti I, Rondina C, et al. Early nasal continuous positive airway pressure failure prediction in preterm infants less than 32 weeks gestational age suffering from respiratory distress syndrome. Pediatr Pulmonol. 2021 Dec;56((12)):3879–3886.
    1. Wright CJ, Glaser K, Speer CP, Härtel C, Roehr CC. Noninvasive ventilation and exogenous surfactant in times of ever decreasing gestational age: how do we make the most of these tools? J Pediatr. 2022;247:138–146.
    1. Capasso L, Pacella D, Migliaro F, De Luca D, Raimondi F. Can lung ultrasound score accurately predict the need for surfactant replacement in preterm neonates? A systematic review and meta-analysis protocol. PLoS One. 2021 Jul 28;16((7)):e0255332.
    1. Heiring C, Verder H, Schousboe P, Jessen TE, Bender L, Ebbesen F, et al. Predicting respiratory distress syndrome at birth using a fast test based on spectroscopy of gastric aspirates: 2. Clinical part. Acta Paediatr. 2020 Feb;109((2)):285–290.
    1. Ramaswamy VV, Abiramalatha T, Bandyopadhyay T, Boyle E, Roehr CC. Surfactant therapy in late preterm and term neonates with respiratory distress syndrome: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2022 Jul;107((4)):393–397.
    1. Lanciotti L, Correani A, Pasqualini M, Antognoli L, Dell'Orto VG, Giorgetti C, et al. Respiratory distress syndrome in preterm infants of less than 32 weeks: what difference does giving 100 or 200 mg/kg of exogenous surfactant make? Pediatr Pulmonol. 2022 May 16;57((9)):2067–2073.
    1. Singh N, Halliday HL, Stevens TP, Suresh G, Soll R, Rojas-Reyes MX. Comparison of animal-derived surfactants for the prevention and treatment of respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2015 Dec;2015:CD010249.
    1. Ramanathan R, Biniwale M, Sekar K, Hanna N, Golombek S, Bhatia J, et al. Synthetic surfactant CHF5633 compared with poractant alfa in the treatment of neonatal respiratory distress syndrome: a multicenter, double-blind, randomized, controlled clinical trial. J Pediatr. 2020 Oct;225:90–96. e1.
    1. Zhong YY, Li JC, Liu YL, Zhao XB, Male M, Song DK. Early intratracheal administration of corticosteroid and pulmonary surfactant for preventing bronchopulmonary dysplasia in preterm infants with neonatal respiratory distress syndrome: a meta-analysis. Curr Med Sci. 2019 Jun;39((3)):493–499.
    1. Askie LM, Darlow BA, Finer N, Schmidt B, Stenson B, Tarnow-Mordi W, et al. Association between oxygen saturation targeting and death or disability in extremely preterm infants in the neonatal oxygenation prospective meta-analysis collaboration. JAMA. 2018 Jun 5;319((21)):2190–2201.
    1. Saugstad OD. Oxygenation of the immature infant: a commentary and recommendations for oxygen saturation targets and alarm limits. Neonatology. 2018;114((1)):69–75.
    1. Liu T, Tomlinson LA, Yu Y, Ying GS, Quinn GE, Binenbaum G, et al. Changes in institutional oxygen saturation targets are associated with an increased rate of severe retinopathy of prematurity. J AAPOS. 2022 Feb;26((1)):18.e1–6.
    1. Söderström F, Normann E, Holmström G, Larsson E, Ahlsson F, Sindelar R, et al. Reduced rate of treated retinopathy of prematurity after implementing lower oxygen saturation targets. J Perinatol. 2019 Mar;39((3)):409–414.
    1. Gentle SJ, Abman SH, Ambalavanan N. Oxygen therapy and pulmonary hypertension in preterm infants. Clin Perinatol. 2019;46((3)):611–619.
    1. Ali SK, Jayakar RV, Marshall AP, Gale TJ, Dargaville PA. Preliminary study of automated oxygen titration at birth for preterm infants. Arch Dis Child Fetal Neonatal Ed. 2022 Feb 9;107((5)):539–544.
    1. Claure N, Bancalari E. New modes of respiratory support for the premature infant: automated control of inspired oxygen concentration. Clin Perinatol. 2021 Dec;48((4)):843–853.
    1. Dargaville PA, Marshall AP, Ladlow OJ, Bannink C, Jayakar R, Eastwood-Sutherland C, et al. Automated control of oxygen titration in preterm infants on non-invasive respiratory support. Arch Dis Child Fetal Neonatal Ed. 2022 Jan;107((1)):39–44.
    1. Ramaswamy VV, Abiramalatha T, Bandyopadhyay T, Shaik NB, Pullattayil S AK, Cavallin F, et al. Delivery room CPAP in improving outcomes of preterm neonates in low-and middle-income countries: a systematic review and network meta-analysis. Resuscitation. 2022 Jan;170:250–263.
    1. Ho JJ, Subramaniam P, Davis PG. Continuous positive airway pressure (CPAP) for respiratory distress in preterm infants. Cochrane Database Syst Rev. 2020 Oct 15;10((10)):CD002271.
    1. Subramaniam P, Ho JJ, Davis PG. Prophylactic nasal continuous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev. 2016 Jun 14;((6)):CD001243.
    1. Owen LS, Manley BJ, Davis PG, Doyle LW. The evolution of modern respiratory care for preterm infants. Lancet. 2017 Apr 22;389((10079)):1649–1659.
    1. Backes CH, Notestine JL, Lamp JM, Balough JC, Notestine AM, Alfred CM, et al. Evaluating the efficacy of Seattle-PAP for the respiratory support of premature neonates: study protocol for a randomized controlled trial. Trials. 2019 Jan 18;20((1)):63.
    1. Jensen CF, Sellmer A, Ebbesen F, Cipliene R, Johansen A, Hansen RM, et al. Sudden vs pressure wean from nasal continuous positive airway pressure in infants born before 32 weeks of gestation: a randomized clinical trial. JAMA Pediatr. 2018 Sep 1;172((9)):824–831.
    1. Falk M, Gunnarsdottir K, Baldursdottir S, Donaldsson S, Jonsson B, Drevhammar T. Interface leakage during neonatal CPAP treatment: a randomised, cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2021 Nov;106((6)):663–667.
    1. Bashir T, Murki S, Kiran S, Reddy VK, Oleti TP. Nasal mask' in comparison with “nasal prongs” or “rotation of nasal mask with nasal prongs” reduce the incidence of nasal injury in preterm neonates supported on nasal Continuous Positive Airway Pressure (nCPAP): a randomized controlled trial. PLoS One. 2019 Jan 31;14((1)):e0211476.
    1. Malakian A, Aramesh MR, Agahin M, Dehdashtian M. Non-invasive duo positive airway pressure ventilation versus nasal continuous positive airway pressure in preterm infants with respiratory distress syndrome: a randomized controlled trial. BMC Pediatr. 2021 Jul 6;21((1)):301.
    1. Moretti C, Gizzi C. Synchronized nasal intermittent positive pressure ventilation. Clin Perinatol. 2021 Dec;48((4)):745–759.
    1. Ramaswamy VV, More K, Roehr CC, Bandiya P, Nangia S. Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: systematic review and network meta-analysis. Pediatr Pulmonol. 2020 Nov;55((11)):2940–2963.
    1. Ramaswamy VV, Bandyopadhyay T, Nanda D, Bandiya P, More K, Oommen VI, et al. Efficacy of noninvasive respiratory support modes as postextubation respiratory support in preterm neonates: a systematic review and network meta-analysis. Pediatr Pulmonol. 2020 Nov;55((11)):2924–2939.
    1. Fischer HS, Bohlin K, Bührer C, Schmalisch G, Cremer M, Reiss I, et al. Nasal high-frequency oscillation ventilation in neonates: a survey in five European countries. Eur J Pediatr. 2015 Apr;174((4)):465–471.
    1. Gaertner VD, Waldmann AD, Davis PG, Bassler D, Springer L, Thomson J, et al. Lung volume distribution in preterm infants on non-invasive high-frequency ventilation. Arch Dis Child Fetal Neonatal. 2022 Jan 31;107((5)):551–557.
    1. Li J, Chen L, Shi Y. Nasal high-frequency oscillatory ventilation versus nasal continuous positive airway pressure as primary respiratory support strategies for respiratory distress syndrome in preterm infants: a systematic review and meta-analysis. Eur J Pediatr. 2022 Jan;181((1)):215–223.
    1. Zhu XW, Zhao JN, Tang SF, Yan J, Shi Y. Noninvasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with moderate-severe respiratory distress syndrome: a preliminary report. Pediatr Pulmonol. 2017 Aug;52((8)):1038–1042.
    1. Roehr CC, Yoder BA, Davis PG, Ives K. Evidence support and guidelines for using heated, humidified, high-flow nasal cannulae in Neonatology: oxford nasal high-flow therapy meeting. Clin Perinatol. 20152016 Dec;43((4)):693–705.
    1. Dysart K, Miller TL, Wolfson MR, Shaffer TH. Research in high flow therapy: mechanisms of action. Respir Med. 2009 Oct;103((10)):1400–1405.
    1. Wilkinson D, Andersen C, O'Donnell CP, De Paoli AG, Manley BJ. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2016 Feb 22;2:CD006405.
    1. Roberts CT, Owen LS, Manley BJ, Frøisland DH, Donath SM, Dalziel KM, et al. Nasal high-flow therapy for primary respiratory support in preterm infants. N Engl J Med. 2016 Sep 22;375((12)):1142–1151.
    1. Hodgson KA, Manley BJ, Davis PG. Is nasal high flow inferior to continuous positive airway pressure for neonates? Clin Perinatol. 2019 Sep;46((3)):537–551.
    1. Zivanovic S, Scrivens A, Panza R, Reynolds P, Laforgia N, Ives KN, et al. Nasal high-flow therapy as primary respiratory support for preterm infants without the need for rescue with nasal continuous positive airway pressure. Neonatology. 2019;115((2)):175–181.
    1. Bruet S, Butin M, Dutheil F. Systematic review of high-flow nasal cannula versus continuous positive airway pressure for primary support in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2022 Jan;107((1)):56–59.
    1. Firestone KS, Beck J, Stein H. Neurally adjusted ventilatory assist for noninvasive support in neonates. Clin Perinatol. 2016 Dec;43((4)):707–724.
    1. Makker K, Cortez J, Jha K, Shah S, Nandula P, Lowrie D, et al. Comparison of extubation success using Noninvasive Positive Pressure Ventilation (NIPPV) versus noninvasive neurally adjusted ventilatory assist (NI-NAVA) J Perinatol. 2020 Aug;40((8)):1202–1210.
    1. Dargaville PA, Gerber A, Johansson S, De Paoli AG, Kamlin CO, Orsini F, et al. Incidence and outcome of CPAP failure in preterm infants. Pediatrics. 2016 Jul;138((1)):e20153985.
    1. Chawla S, Natarajan G, Shankaran S, Carper B, Brion LP, Keszler M, et al. Markers of successful extubation in extremely preterm infants, and morbidity after failed extubation. J Pediatr. 2017 Oct;189:113–119. e2.
    1. Klingenberg C, Wheeler KI, McCallion N, Morley CJ, Davis PG. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst Rev. 2017 Oct 17;10((10)):CD003666.
    1. Keszler M, Nassabeh-Montazami S, Abubakar K. Evolution of tidal volume requirement during the first 3 weeks of life in infants <800 g ventilated with volume guarantee. Arch Dis Child Fetal Neonatal Ed. 2009 Jul;94((4)):F279–82.
    1. National Institute for Clinical Excellence Specialist neonatal respiratory care: evidence reviews for respiratory support FINAL (April 2019) .
    1. Wallström L, Sjöberg A, Sindelar R. Early volume targeted ventilation in preterm infants born at 22-25 weeks of gestational age. Pediatr Pulmonol. 2021 May;56((5)):1000–1007.
    1. Hunt KA, Dassios T, Greenough A. Proportional Assist Ventilation (PAV) versus neurally adjusted ventilator assist (NAVA): effect on oxygenation in infants with evolving or established bronchopulmonary dysplasia. Eur J Pediatr. 2020 Jun;179((6)):901–908.
    1. Beck J, Sinderby C. Neurally adjusted ventilatory assist in newborns. Clin Perinatol. 2021 Dec;48((4)):783–811.
    1. Cools F, Offringa M, Askie LM. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2015 Mar 19;((3)):CD000104.
    1. De Jaegere AP, Deurloo EE, van Rijn RR, Offringa M, van Kaam AH. Individualized lung recruitment during high-frequency ventilation in preterm infants is not associated with lung hyperinflation and air leaks. Eur J Pediatr. 2016 Aug;175((8)):1085–1090.
    1. Iscan B, Duman N, Tuzun F, Kumral A, Ozkan H. Impact of volume guarantee on high-frequency oscillatory ventilation in preterm infants: a randomized crossover clinical trial. Neonatology. 2015;108((4)):277–282.
    1. Garrido F, Gonzalez-Caballero JL, Lomax R, Dady I. The immediate efficacy of inhaled nitric oxide treatment in preterm infants with acute respiratory failure during neonatal transport. Acta Paediatr. 2020 Feb;109((2)):309–313.
    1. Aikio O, Metsola J, Vuolteenaho R, Perhomaa M, Hallman M. Transient defect in nitric oxide generation after rupture of fetal membranes and responsiveness to inhaled nitric oxide in very preterm infants with hypoxic respiratory failure. J Pediatr. 2012 Sep;161((3)):397–403. e1.
    1. Blazek EV, East CE, Jauncey-Cooke J, Bogossian F, Grant CA, Hough J. Lung recruitment manoeuvres for reducing mortality and respiratory morbidity in mechanically ventilated neonates. Cochrane Database Syst Rev. 2021 Mar 30;3((3)):CD009969.
    1. Vento G, Ventura ML, Pastorino R, van Kaam AH, Carnielli V, Cools F, et al. Lung recruitment before surfactant administration in extremely preterm neonates with respiratory distress syndrome (IN-REC-SUR-E): a randomised, unblinded, controlled trial. Lancet Respir Med. 2021 Feb;9((2)):159–166.
    1. Ferguson KN, Roberts CT, Manley BJ, Davis PG. Interventions to improve rates of successful extubation in preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2017 Feb 1;171((2)):165–174.
    1. Danan C, Durrmeyer X, Brochard L, Decobert F, Benani M, Dassieu G. A randomized trial of delayed extubation for the reduction of reintubation in extremely preterm infants. Pediatr Pulmonol. 2008 Feb;43((2)):117–124.
    1. Shalish W, Kanbar L, Kovacs L, Chawla S, Keszler M, Rao S, et al. Assessment of extubation readiness using spontaneous breathing trials in extremely preterm neonates. JAMA Pediatr. 2020 Feb 1;174((2)):178–185.
    1. Gupta D, Greenberg RG, Sharma A, Natarajan G, Cotten M, Thomas R, et al. A predictive model for extubation readiness in extremely preterm infants. J Perinatol. 2019 Dec;39((12)):1663–1669.
    1. Buzzella B, Claure N, D'Ugard C, Bancalari E. A randomized controlled trial of two nasal continuous positive airway pressure levels after extubation in preterm infants. J Pediatr. 2014 Jan;164((1)):46–51.
    1. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007 Nov 8;357((19)):1893–1902.
    1. Davis PG, Schmidt B, Roberts RS, Doyle LW, Asztalos E, Haslam R, et al. Caffeine for apnea of prematurity trial: benefits may vary in subgroups. J Pediatr. 2010 Mar;156((3)):382–387.
    1. Nylander Vujovic S, Nava C, Johansson M, Bruschettini M. Confounding biases in studies on early- versus late-caffeine in preterm infants: a systematic review. Pediatr Res. 2020 Sep;88((3)):357–364.
    1. Elmowafi M, Mohsen N, Nour I, Nasef N. Prophylactic versus therapeutic caffeine for apnea of prematurity: a randomized controlled trial. J Matern Fetal Neonatal Med. 2021 Mar 26;:1–9.
    1. Chavez L, Bancalari E. Caffeine: some of the evidence behind its use and abuse in the preterm infant. Neonatology. 2022;119((4)):428–432.
    1. Saroha V, Patel RM. Caffeine for preterm infants: fixed standard dose, adjustments for age or high dose? Semin Fetal Neonatal Med. 2020 Dec;25((6)):101178.
    1. Woodgate PG, Davies MW. Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants. Cochrane Database Syst Rev. 2001;2001((2)):CD002061.
    1. Wong SK, Chim M, Allen J, Butler A, Tyrrell J, Hurley T, et al. Carbon dioxide levels in neonates: what are safe parameters? Pediatr Res. 2022 Apr;91((5)):1049–1056.
    1. Doyle LW, Cheong JL, Hay S, Manley BJ, Halliday HL. Late (≥ 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2021 Oct 21;11((11)):CD001146.
    1. Doyle LW, Cheong JL, Hay S, Manley BJ, Halliday HL. Late (≥ 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2021 Nov 11;11((11)):CD001145.
    1. Doyle LW, Halliday HL, Ehrenkranz RA, Davis PG, Sinclair JC. An update on the impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk of bronchopulmonary dysplasia. J Pediatr. 2014 Dec;165((6)):1258–1260.
    1. Doyle LW, Davis PG, Morley CJ, McPhee A, Carlin JB, DART Study Investigators Low-dose dexamethasone facilitates extubation among chronically ventilator-dependent infants: a multicenter, international, randomized, controlled trial. Pediatrics. 2006 Jan;117((1)):75–83.
    1. Doyle LW, Davis PG, Morley CJ, McPhee A, Carlin JB, DART Study Investigators Outcome at 2 years of age of infants from the DART study: a multicenter, international, randomized, controlled trial of low-dose dexamethasone. Pediatrics. 2007 Apr;119((4)):716–721.
    1. Shaffer ML, Baud O, Lacaze-Masmonteil T, Peltoniemi OM, Bonsante F, Watterberg KL. Effect of prophylaxis for early adrenal insufficiency using low-dose hydrocortisone in very preterm infants: an individual patient data meta-analysis. J Pediatr. 2019 Apr;207:136–142. e5.
    1. Rousseau C, Guichard M, Saliba E, Morel B, Favrais G. Duration of mechanical ventilation is more critical for brain growth than postnatal hydrocortisone in extremely preterm infants. Eur J Pediatr. 2021 Nov;180((11)):3307–3315.
    1. Renolleau C, Toumazi A, Bourmaud A, Benoist JF, Chevenne D, Mohamed D, et al. Association between baseline cortisol serum concentrations and the effect of prophylactic hydrocortisone in extremely preterm infants. J Pediatr. 2021 Jul;234:65–70. e3.
    1. Fontijn JR, Bassler D. Early systemic steroids in preventing bronchopulmonary dysplasia: are we moving closer to a benefit-risk-adapted treatment strategy? J Pediatr. 2021 Jul;234:12–13.
    1. Shah SS, Ohlsson A, Halliday HL, Shah VS. Inhaled versus systemic corticosteroids for preventing bronchopulmonary dysplasia in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 2017 Jan 4;10((10)):CD002058.
    1. Ramaswamy VV, Bandyopadhyay T, Nanda D, Bandiya P, Ahmed J, Garg A, et al. Assessment of postnatal corticosteroids for the prevention of bronchopulmonary dysplasia in preterm neonates: a systematic review and network meta-analysis. JAMA Pediatr. 2021 Jun 1;175((6)):e206826.
    1. Bassler D, Shinwell ES, Hallman M, Jarreau PH, Plavka R, Carnielli V, et al. Long-term effects of inhaled budesonide for bronchopulmonary dysplasia. N Engl J Med. 2018 Jan 11;378((2)):148–157.
    1. Lemyre B, Dunn M, Thebaud B. Postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia in preterm infants. Paediatr Child Health. 2020 Aug;25((5)):322–331.
    1. Bellù R, Romantsik O, Nava C, de Waal KA, Zanini R, Bruschettini M. Opioids for newborn infants receiving mechanical ventilation. Cochrane Database Syst Rev. 2021 Mar 17;3((3)):CD013732.
    1. Ozawa Y, Ades A, Foglia EE, DeMeo S, Barry J, Sawyer T, et al. Premedication with neuromuscular blockade and sedation during neonatal intubation is associated with fewer adverse events. J Perinatol. 2019 Jun;39((6)):848–856.
    1. van Weteringen W, van Essen T, Gangaram-Panday NH, Goos TG, de Jonge RCJ, Reiss IKM. Validation of a new transcutaneous tcPO2/tcPCO2 sensor with an optical oxygen measurement in preterm neonates. Neonatology. 2020;117((5)):628–636.
    1. Greisen G, Hansen ML, Rasmussen MIS, Vestager M, Hyttel-Sørensen S, Hahn GH. Cerebral oximetry in preterm infants-to use or not to use, that is the question. Front Pediatr. 2022 Feb 2;9:747660.
    1. de Siqueira Caldas JP, Ferri WAG, Marba STM, Aragon DC, Guinsburg R, de Almeida MFB, et al. Admission hypothermia, neonatal morbidity, and mortality: evaluation of a multicenter cohort of very low birth weight preterm infants according to relative performance of the center. Eur J Pediatr. 2019 Jul;178((7)):1023–1032.
    1. Sharma D, Farahbakhsh N, Sharma S, Sharma P, Sharma A. Role of kangaroo mother care in growth and breast feeding rates in Very Low Birth Weight (VLBW) neonates: a systematic review. J Matern Fetal Neonatal Med. 2019 Jan;32((1)):129–142.
    1. Prevention of Group B. Streptococcal early-onset disease in newborns: ACOG committee opinion summary, number 797. Obstet Gynecol. 2020 Feb;135((2)):489–492.
    1. Rajar P, Saugstad OD, Berild D, Dutta A, Greisen G, Lausten-Thomsen U, et al. Antibiotic stewardship in premature infants: a systematic review. Neonatology. 2020;117((6)):673–686.
    1. Capin I, Hinds A, Vomero B, Roth P, Blau J. Are early-onset sepsis evaluations and empiric antibiotics mandatory for all neonates admitted with respiratory distress? Am J Perinatol. 2022 Mar;39((4)):444–448.
    1. Barrington KJ. Management during the first 72 h of age of the periviable infant: an evidence-based review. Semin Perinatol. 2014 Feb;38((1)):17–24.
    1. Hartnoll G, Bétrémieux P, Modi N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch Dis Child Fetal Neonatal Ed. 2000 Jan;82((1)):F24–8.
    1. Osborn DA, Schindler T, Jones LJ, Sinn JK, Bolisetty S. Higher versus lower amino acid intake in parenteral nutrition for newborn infants. Cochrane Database Syst Rev. 2018 Mar 5;3((3)):CD005949.
    1. Mihatsch WA, Braegger C, Bronsky J, Cai W, Campoy C, Carnielli V, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition. Clin Nutr. 2018 Dec;37((6 Pt B)):2303–2305.
    1. Kim K, Kim NJ, Kim SY. Safety and efficacy of early high parenteral lipid supplementation in preterm infants: a systematic review and meta-analysis. Nutrients. 2021 May 2;13((5)):1535.
    1. Morgan J, Bombell S, McGuire W. Early trophic feeding versus enteral fasting for very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2013 Mar 28;((3)):CD000504.
    1. Oddie SJ, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2021;8((8)):CD001241.
    1. Quigley M, Embleton ND, McGuire W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. 2019 Jul 19;7((7)):CD002971.
    1. Dempsey E, El-Khuffash A. Clinical trials in hemodynamic support: past, present, and future. Clin Perinatol. 2020 Sep;47((3)):641–652.
    1. Thewissen L, Naulaers G, Hendrikx D, Caicedo A, Barrington K, Boylan G, et al. Cerebral oxygen saturation and autoregulation during hypotension in extremely preterm infants. Pediatr Res. 2021 Aug;90((2)):373–380.
    1. Batton B, Li L, Newman NS, Das A, Watterberg KL, Yoder BA, et al. Evolving blood pressure dynamics for extremely preterm infants. J Perinatol. 2014 Apr;34((4)):301–305.
    1. Nestaas E. Neonatologist performed echocardiography for evaluating the newborn infant. Front Pediatr. 2022 Mar 24;10:853205.
    1. Finn D, Roehr CC, Ryan CA, Dempsey EM. Optimising intravenous volume resuscitation of the newborn in the delivery room: practical considerations and gaps in knowledge. Neonatology. 2017;112((2)):163–171.
    1. Subhedar NV, Shaw NJ. Dopamine versus dobutamine for hypotensive preterm infants. Cochrane Database Syst Rev. 2003;3:CD001242.
    1. Masumoto K, Kusuda S. Hemodynamic support of the micropreemie: should hydrocortisone never be left out? Semin Fetal Neonatal Med. 2021 Jun;26((3)):101222.
    1. Rozé JC, Cambonie G, Marchand-Martin L, Gournay V, Durrmeyer X, Durox M, et al. Association between early screening for patent ductus arteriosus and in-hospital mortality among extremely preterm infants. JAMA. 2015 Jun 23-30;313((24)):2441–2448.
    1. Liebowitz M, Clyman RI. Prophylactic indomethacin compared with delayed conservative management of the patent ductus arteriosus in extremely preterm infants: effects on neonatal outcomes. J Pediatr. 2017 Aug;187:119–126. e1.
    1. Ohlsson A, Walia R, Shah SS. Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants. Cochrane Database Syst Rev. 2020 Feb 11;2((2)):CD003481.
    1. Ohlsson A, Shah PS. Paracetamol (acetaminophen) for patent ductus arteriosus in preterm or low birth weight infants. Cochrane Database Syst Rev. 2020 Jan 27;1((1)):CD010061.
    1. Mitra S, Florez ID, Tamayo ME, Mbuagbaw L, Vanniyasingam T, Veroniki AA, et al. Association of placebo, indomethacin, ibuprofen, and acetaminophen with closure of hemodynamically significant patent ductus arteriosus in preterm infants: a systematic review and meta-analysis. JAMA. 2018 Mar 27;319((12)):1221–1238.
    1. Juujärvi S, Saarela T, Pokka T, Hallman M, Aikio O. Intravenous paracetamol for neonates: long-term diseases not escalated during 5 years of follow-up. Arch Dis Child Fetal Neonatal Ed. 2021 Mar;106((2)):178–183.
    1. Schmidt B, Davis P, Moddemann D, Ohlsson A, Roberts RS, Saigal S, et al. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med. 2001 Jun 28;344((26)):1966–1972.
    1. Hundscheid T, Donders R, Onland W, Kooi EMW, Vijlbrief DC, de Vries WB, et al. Multi-centre, randomised non-inferiority trial of early treatment versus expectant management of patent ductus arteriosus in preterm infants (the BeNeDuctus trial): statistical analysis plan. Trials. 2021 Sep 15;22((1)):627.
    1. Weisz DE, Mirea L, Rosenberg E, Jang M, Ly L, Church PT, et al. Association of patent ductus arteriosus ligation with death or neurodevelopmental impairment among extremely preterm infants. JAMA Pediatr. 2017 May 1;171((5)):443–449.
    1. Kirpalani H, Bell EF, Hintz SR, Tan S, Schmidt B, Chaudhary AS, et al. Higher or lower hemoglobin transfusion thresholds for preterm infants. N Engl J Med. 2020 Dec 31;383((27)):2639–2651.
    1. Franz AR, Engel C, Bassler D, Rüdiger M, Thome UH, Maier RF, et al. Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants: the ETTNO randomized clinical trial. JAMA. 2020 Aug 11;324((6)):560–570.
    1. Bell EF. Red cell transfusion thresholds for preterm infants: finally some answers. Arch Dis Child Fetal Neonatal Ed. 2022 Mar;107((2)):126–130.
    1. Deshpande S, Suryawanshi P, Ahya K, Maheshwari R, Gupta S. Surfactant therapy for early onset pneumonia in late preterm and term neonates needing mechanical ventilation. J Clin Diagn Res. 2017 Aug;11((8)):SC09–12.
    1. Aziz A, Ohlsson A. Surfactant for pulmonary haemorrhage in neonates. Cochrane Database Syst Rev. 2020 Feb 3;2((2)):CD005254.
    1. El Shahed AI, Dargaville PA, Ohlsson A, Soll R. Surfactant for meconium aspiration syndrome in term and late preterm infants. Cochrane Database Syst Rev. 2014 Dec 14;2014((12)):CD002054.
    1. Hascoët JM, Picaud JC, Ligi I, Blanc T, Moreau F, Pinturier MF, et al. Late surfactant administration in very preterm neonates with prolonged respiratory distress and pulmonary outcome at 1 Year of age: a randomized clinical trial. JAMA Pediatr. 2016 Apr;170((4)):365–372.
    1. Williams E, Greenough A. Respiratory support of infants with congenital diaphragmatic hernia. Front Pediatr. 2021 Dec 24;9:808317.

Source: PubMed

3
Subscribe