Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development

Dominik J Schaer, Francesca Vinchi, Giada Ingoglia, Emanuela Tolosano, Paul W Buehler, Dominik J Schaer, Francesca Vinchi, Giada Ingoglia, Emanuela Tolosano, Paul W Buehler

Abstract

Hemolysis, which occurs in many disease states, can trigger a diverse pathophysiologic cascade that is related to the specific biochemical activities of free Hb and its porphyrin component heme. Normal erythropoiesis and concomitant removal of senescent red blood cells (RBC) from the circulation occurs at rates of approximately 2 × 10(6) RBCs/second. Within this physiologic range of RBC turnover, a small fraction of hemoglobin (Hb) is released into plasma as free extracellular Hb. In humans, there is an efficient multicomponent system of Hb sequestration, oxidative neutralization and clearance. Haptoglobin (Hp) is the primary Hb-binding protein in human plasma, which attenuates the adverse biochemical and physiologic effects of extracellular Hb. The cellular receptor target of Hp is the monocyte/macrophage scavenger receptor, CD163. Following Hb-Hp binding to CD163, cellular internalization of the complex leads to globin and heme metabolism, which is followed by adaptive changes in antioxidant and iron metabolism pathways and macrophage phenotype polarization. When Hb is released from RBCs within the physiologic range of Hp, the potential deleterious effects of Hb are prevented. However, during hyper-hemolytic conditions or with chronic hemolysis, Hp is depleted and Hb readily distributes to tissues where it might be exposed to oxidative conditions. In such conditions, heme can be released from ferric Hb. The free heme can then accelerate tissue damage by promoting peroxidative reactions and activation of inflammatory cascades. Hemopexin (Hx) is another plasma glycoprotein able to bind heme with high affinity. Hx sequesters heme in an inert, non-toxic form and transports it to the liver for catabolism and excretion. In the present review we discuss the components of physiologic Hb/heme detoxification and their potential therapeutic application in a wide range of hemolytic conditions.

Keywords: CD163; haptoglobin; hemolysis; hemopexin; sickle cell disease; transfusion; vascular diseases.

Figures

Figure 1
Figure 1
Sequence of renal plasma clearance of hemoglobin: The sequence represents sustained intravascular hemolysis in a guinea pig model. The red color of Hb in plasma during hemolysis suggests ferrous Hb accumulation. In the presence of haptoglobin free Hb is sequestrated within the Hb-Hp complex. Processes of Hb-Hp clearance are saturated during massive hemolysis and the complex remains in circulation for an extended period of time, leading to the brownish color or ferric heme in bound Hb dimers, which is a result of auto-oxidation or reaction with NO or other oxidants in plasma. Free hemoglobin readily dissociates into dimers in plasma, leading to extensive glomerular filtration, which is blocked by Hp. The filtration of Hb leads to renal tubule iron deposition (brown) and hemoglobinuria. This is not observed in control animals or when Hp is administered and Hb remains sequestered in the Hb-Hp complex.
Figure 2
Figure 2
Diastolic (A) and systolic (B) systemic arterial blood pressure response after bolus infusion of free Hb followed by a bolus infusion of purified human Hp in guinea pigs. (C) HPLC analysis of guinea pig plasma after infusion of free Hb followed by Hp. The traces show free Hb co-eluting with an Hb standard (red). The Hb-Hp complex has a larger molecular weight, as indicated by the earlier elution time. The Hb-Hp complex has a long circulation half-life with detectable levels up to 50 h after infusion in this species. (D) NO reactions with free Hb in the vascular wall. Ferrous Hb (Fe2+) can react with the vasodilator NO via two reactions: (1) NO dioxygenation of oxy-Hb that generates nitrate (NO−3) and ferric Hb (Fe3+), and (2) iron nitrosylation of deoxy-Hb that occurs by direct iron binding of NO to non-liganded ferrous Hb (Fe2+). Both reactions lead to depletion of NO and explain the acute vasoactivity of extracellular Hb, which is attenuated by Hp.
Figure 3
Figure 3
Summary of intravascular/extravascular Hb/heme clearance and cellular/tissue distribution. The main components of the Hb/heme detoxification system are haptoglobin (Hp), which sequesters Hb in the oxidatively protected Hb-Hp complex and hemopexin (Hx). The Hb-Hp complex is cleared and metabolized by CD163+ macrophages. Alternatively, during more severe hemolysis, free heme—after release from ferric Hb—can be detoxified by the hemopexin (Hx) rescue pathway. In all scenarios heme is finally detoxified by the heme oxygenases, which provide free iron for export by ferroportin or, alternatively, storage in the ferritin complex. The physiologic clearance and detoxification organs for Hb/heme are the liver and spleen, respectively, while the primary targets of Hb/heme toxic activities are the vascular endothelium and the kidney.

References

    1. Ackers G. K., Halvorson H. R. (1974). The linkage between oxygenation and subunit dissociation in human hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 71, 4312–4316. 10.1073/pnas.71.11.4312
    1. Andersen C. B., Torvund-Jensen M., Nielsen M. J., De Oliveira C. L., Hersleth H. P., Andersen N. H., et al. . (2012). Structure of the haptoglobin-haemoglobin complex. Nature 489, 456–459. 10.1038/nature11369
    1. Andersen M. N., Mouritzen C. V., Gabrielli E. R. (1966). Mechanisms of plasma hemoglobin clearance after acute hemolysis in dogs: serum haptoglobin levels and selective deposition in liver and kidney. Ann. Surg. 164, 905–912. 10.1097/00000658-196611000-00019
    1. Asleh R., Guetta J., Kalet-Litman S., Miller-Lotan R., Levy A. P. (2005). Haptoglobin genotype- and diabetes-dependent differences in iron-mediated oxidative stress in vitro and in vivo. Circ. Res. 96, 435–441. 10.1161/01.RES.0000156653.05853.b9
    1. Asleh R., Marsh S., Shilkrut M., Binah O., Guetta J., Lejbkowicz F., et al. . (2003). Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ. Res. 92, 1193–1200. 10.1161/01.RES.0000076889.23082.F1
    1. Azarov I., He X., Jeffers A., Basu S., Ucer B., Hantgan R. R., et al. . (2008). Rate of nitric oxide scavenging by hemoglobin bound to haptoglobin. Nitric Oxide 18, 296–302. 10.1016/j.niox.2008.02.006
    1. Bachli E. B., Schaer D. J., Walter R. B., Fehr J., Schoedon G. (2006). Functional expression of the CD163 scavenger receptor on acute myeloid leukemia cells of monocytic lineage. J. Leukoc. Biol. 79, 312–318. 10.1189/jlb.0605309
    1. Baek J. H., D'agnillo F., Vallelian F., Pereira C. P., Williams M. C., Jia Y., et al. . (2012). Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in guinea pigs by haptoglobin therapy. J. Clin. Invest. 122, 1444–1458. 10.1172/JCI59770
    1. Baek J. H., Zhang X., Williams M. C., Schaer D. J., Buehler P. W., D'agnillo F. (2014). Extracellular Hb enhances cardiac toxicity in endotoxemic guinea pigs: protective role of haptoglobin. Toxins (Basel). 6, 1244–1259. 10.3390/toxins6041244
    1. Balla G., Jacob H. S., Eaton J. W., Belcher J. D., Vercellotti G. M. (1991). Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler. Thromb. 11, 1700–1711. 10.1161/01.ATV.11.6.1700
    1. Balla J., Jacob H. S., Balla G., Nath K., Eaton J. W., Vercellotti G. M. (1993). Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc. Natl. Acad. Sci. U.S.A. 90, 9285–9289. 10.1073/pnas.90.20.9285
    1. Ballarin J., Arce Y., Torra Balcells R., Diaz Encarnacion M., Manzarbeitia F., Ortiz A., et al. . (2011). Acute renal failure associated to paroxysmal nocturnal haemoglobinuria leads to intratubular haemosiderin accumulation and CD163 expression. Nephrol. Dial. Transplant. 26, 3408–3411. 10.1093/ndt/gfr391
    1. Belcher J. D., Beckman J. D., Balla G., Balla J., Vercellotti G. (2010). Heme degradation and vascular injury. Antioxid. Redox Signal. 12, 233–248. 10.1089/ars.2009.2822
    1. Belcher J. D., Bryant C. J., Nguyen J., Bowlin P. R., Kielbik M. C., Bischof J. C., et al. . (2003). Transgenic sickle mice have vascular inflammation. Blood 101, 3953–3959. 10.1182/blood-2002-10-3313
    1. Belcher J. D., Chen C., Nguyen J., Milbauer L., Abdulla F., Alayash A. I., et al. . (2014). Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123, 377–390. 10.1182/blood-2013-04-495887
    1. Belcher J. D., Marker P. H., Weber J. P., Hebbel R. P., Vercellotti G. M. (2000). Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion. Blood 96, 2451–2459.
    1. Billings F. T. T., Ball S. K., Roberts L. J., 2nd., Pretorius M. (2011). Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic. Biol. Med. 50, 1480–1487. 10.1016/j.freeradbiomed.2011.02.011
    1. Boretti F. S., Baek J. H., Palmer A. F., Schaer D. J., Buehler P. W. (2014). Modeling hemoglobin and hemoglobin:haptoglobin complex clearance in a non-rodent species-pharmacokinetic and therapeutic implications. Front. Physiol. 5:385. 10.3389/fphys.2014.00385
    1. Boretti F. S., Buehler P. W., D'agnillo F., Kluge K., Glaus T., Butt O. I., et al. . (2009). Sequestration of extracellular hemoglobin within a haptoglobin complex decreases its hypertensive and oxidative effects in dogs and guinea pigs. J. Clin. Invest. 119, 2271–2280. 10.1172/JCI39115
    1. Boutaud O., Moore K. P., Reeder B. J., Harry D., Howie A. J., Wang S., et al. . (2010). Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc. Natl. Acad. Sci. U.S.A. 107, 2699–2704. 10.1073/pnas.0910174107
    1. Boyle J. J., Harrington H. A., Piper E., Elderfield K., Stark J., Landis R. C., et al. . (2009). Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am. J. Pathol. 174, 1097–1108. 10.2353/ajpath.2009.080431
    1. Boyle J. J., Johns M., Kampfer T., Nguyen A. T., Game L., Schaer D. J., et al. . (2012). Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ. Res. 110, 20–33. 10.1161/CIRCRESAHA.111.247577
    1. Buechler C., Ritter M., Orso E., Langmann T., Klucken J., Schmitz G. (2000). Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J. Leukoc. Biol. 67, 97–103.
    1. Buehler P. W., Abraham B., Vallelian F., Linnemayr C., Pereira C. P., Cipollo J. F., et al. . (2009). Haptoglobin preserves the CD163 hemoglobin scavenger pathway by shielding hemoglobin from peroxidative modification. Blood 113, 2578–2586. 10.1182/blood-2008-08-174466
    1. Buehler P. W., D'agnillo F., Hoffman V., Alayash A. I. (2007). Effects of endogenous ascorbate on oxidation, oxygenation, and toxicokinetics of cell-free modified hemoglobin after exchange transfusion in rat and guinea pig. J. Pharmacol. Exp. Ther. 323, 49–60. 10.1124/jpet.107.126409
    1. Buehler P. W., D'agnillo F., Schaer D. J. (2010). Hemoglobin-based oxygen carriers: from mechanisms of toxicity and clearance to rational drug design. Trends Mol. Med. 16, 447–457. 10.1016/j.molmed.2010.07.006
    1. Buehler P. W., Vallelian F., Mikolajczyk M. G., Schoedon G., Schweizer T., Alayash A. I., et al. . (2008). Structural stabilization in tetrameric or polymeric hemoglobin determines its interaction with endogenous antioxidant scavenger pathways. Antioxid. Redox Signal. 10, 1449–1462. 10.1089/ars.2008.2028
    1. Bunn H. F., Esham W. T., Bull R. W. (1969). The renal handling of hemoglobin. I. Glomerular filtration. J. Exp. Med. 129, 909–923. 10.1084/jem.129.5.909
    1. Bunn H. F., Jandl J. H. (1968). Exchange of heme among hemoglobins and between hemoglobin and albumin. J. Biol. Chem. 243, 465–475.
    1. Butt O. I., Buehler P. W., D'agnillo F. (2010). Differential induction of renal heme oxygenase and ferritin in ascorbate and nonascorbate producing species transfused with modified cell-free hemoglobin. Antioxid. Redox Signal. 12, 199–208. 10.1089/ars.2009.2798
    1. Cahill L. E., Levy A. P., Chiuve S. E., Jensen M. K., Wang H., Shara N. M., et al. . (2013). Haptoglobin genotype is a consistent marker of coronary heart disease risk among individuals with elevated glycosylated hemoglobin. J. Am. Coll. Cardiol. 61, 728–737. 10.1016/j.jacc.2012.09.063
    1. Chiabrando D., Vinchi F., Fiorito V., Mercurio S., Tolosano E. (2014). Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front. Pharmacol. 5:61. 10.3389/fphar.2014.00061
    1. Cid M. C., Grant D. S., Hoffman G. S., Auerbach R., Fauci A. S., Kleinman H. K. (1993). Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J. Clin. Invest. 91, 977–985. 10.1172/JCI116319
    1. Cooper C. E., Schaer D. J., Buehler P. W., Wilson M. T., Reeder B. J., Silkstone G., et al. . (2013). Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine beta145. Antioxid. Redox Signal. 18, 2264–2273. 10.1089/ars.2012.4547
    1. Dalton J., Podmore A. (2011). Enriched Haptoglobin Polymers for the Treatment of Disease. US Patent Application 20110021418.
    1. Delanghe J., Allcock K., Langlois M., Claeys L., De Buyzere M. (2000). Fast determination of haptoglobin phenotype and calculation of hemoglobin binding capacity using high pressure gel permeation chromatography. Clin. Chim. Acta 291, 43–51. 10.1016/S0009-8981(99)00194-1
    1. Doherty D. H., Doyle M. P., Curry S. R., Vali R. J., Fattor T. J., Olson J. S., et al. . (1998). Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat. Biotechnol. 16, 672–676. 10.1038/nbt0798-672
    1. Droste A., Sorg C., Hogger P. (1999). Shedding of CD163, a novel regulatory mechanism for a member of the scavenger receptor cysteine-rich family. Biochem. Biophys. Res. Commun. 256, 110–113. 10.1006/bbrc.1999.0294
    1. Etzerodt A., Kjolby M., Nielsen M. J., Maniecki M., Svendsen P., Moestrup S. K. (2013). Plasma clearance of hemoglobin and haptoglobin in mice and effect of CD163 gene targeting disruption. Antioxid. Redox Signal. 18, 2254–2263. 10.1089/ars.2012.4605
    1. Etzerodt A., Maniecki M. B., Moller K., Moller H. J., Moestrup S. K. (2010). Tumor necrosis factor alpha-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163. J. Leukoc. Biol. 88, 1201–1205. 10.1189/jlb.0410235
    1. Faivre-Fiorina B., Caron A., Fassot C., Fries I., Menu P., Labrude P., et al. . (1999). Presence of hemoglobin inside aortic endothelial cells after cell-free hemoglobin administration in guinea pigs. Am. J. Physiol. 276, H766–H770.
    1. Figueiredo R. T., Fernandez P. L., Mourao-Sa D. S., Porto B. N., Dutra F. F., Alves L. S., et al. . (2007). Characterization of heme as activator of Toll-like receptor 4. J. Biol. Chem. 282, 20221–20229. 10.1074/jbc.M610737200
    1. Finn A. V., Nakano M., Polavarapu R., Karmali V., Saeed O., Zhao X., et al. . (2012). Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J. Am. Coll. Cardiol. 59, 166–177. 10.1016/j.jacc.2011.10.852
    1. Fortes G. B., Alves L. S., De Oliveira R., Dutra F. F., Rodrigues D., Fernandez P. L., et al. . (2012). Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 119, 2368–2375. 10.1182/blood-2011-08-375303
    1. Galicia G., Maes W., Verbinnen B., Kasran A., Bullens D., Arredouani M., et al. . (2009). Haptoglobin deficiency facilitates the development of autoimmune inflammation. Eur. J. Immunol. 39, 3404–3412. 10.1002/eji.200939291
    1. Gattoni M., Boffi A., Sarti P., Chiancone E. (1996). Stability of the heme-globin linkage in alphabeta dimers and isolated chains of human hemoglobin. A study of the heme transfer reaction from the immobilized proteins to albumin. J. Biol. Chem. 271, 10130–10136. 10.1074/jbc.271.17.10130
    1. Ghosh S., Adisa O. A., Chappa P., Tan F., Jackson K. A., Archer D. R., et al. . (2013). Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J. Clin. Invest. 123, 4809–4820. 10.1172/JCI64578
    1. Gladwin M. T., Kanias T., Kim-Shapiro D. B. (2012). Hemolysis and cell-free hemoglobin drive an intrinsic mechanism for human disease. J. Clin. Invest. 122, 1205–1208. 10.1172/JCI62972
    1. Gladwin M. T., Sachdev V., Jison M. L., Shizukuda Y., Plehn J. F., Minter K., et al. . (2004). Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N. Engl. J. Med. 350, 886–895. 10.1056/NEJMoa035477
    1. Griffon N., Baudin V., Dieryck W., Dumoulin A., Pagnier J., Poyart C., et al. . (1998). Tetramer-dimer equilibrium of oxyhemoglobin mutants determined from auto-oxidation rates. Protein Sci. 7, 673–680. 10.1002/pro.5560070316
    1. Hashimoto K., Nomura K., Nakano M., Sasaki T., Kurosawa H. (1993). Pharmacological intervention for renal protection during cardiopulmonary bypass. Heart Vessels 8, 203–210. 10.1007/BF01744743
    1. Hintz K. A., Rassias A. J., Wardwell K., Moss M. L., Morganelli P. M., Pioli P. A., et al. . (2002). Endotoxin induces rapid metalloproteinase-mediated shedding followed by up-regulation of the monocyte hemoglobin scavenger receptor CD163. J. Leukoc. Biol. 72, 711–717
    1. Homann B., Kult J., Weis K. H. (1977). [On the use of concentrated haptoglobin in the treatment of a haemolytic transfusion accident of the ABO-system (author's transl)]. Anaesthesist 26, 485–488.
    1. Hvidberg V., Maniecki M. B., Jacobsen C., Hojrup P., Moller H. J., Moestrup S. K. (2005). Identification of the receptor scavenging hemopexin-heme complexes. Blood 106, 2572–2579. 10.1182/blood-2005-03-1185
    1. Imaizumi H., Tsunoda K., Ichimiya N., Okamoto T., Namiki A. (1994). Repeated large-dose haptoglobin therapy in an extensively burned patient: case report. J. Emerg. Med. 12, 33–37. 10.1016/0736-4679(94)90009-4
    1. Janz D. R., Bastarache J. A., Sills G., Wickersham N., May A. K., Bernard G. R., et al. . (2013). Association between haptoglobin, hemopexin and mortality in adults with sepsis. Crit. Care 17, R272. 10.1186/cc13108
    1. Jeney V., Balla J., Yachie A., Varga Z., Vercellotti G. M., Eaton J. W., et al. . (2002). Pro-oxidant and cytotoxic effects of circulating heme. Blood 100, 879–887. 10.1182/blood.V100.3.879
    1. Jia Y., Buehler P. W., Boykins R. A., Venable R. M., Alayash A. I. (2007). Structural basis of peroxide-mediated changes in human hemoglobin: a novel oxidative pathway. J. Biol. Chem. 282, 4894–4907. 10.1074/jbc.M609955200
    1. Kaempfer T., Duerst E., Gehrig P., Roschitzki B., Rutishauser D., Grossmann J., et al. . (2011). Extracellular hemoglobin polarizes the macrophage proteome toward Hb-clearance, enhanced antioxidant capacity and suppressed HLA class 2 expression. J. Proteome Res. 10, 2397–2408. 10.1021/pr101230y
    1. Kamboh M. I., Bunker C. H., Nwankwo M. U., Ferrell R. E. (1993). Hemopexin: a unique genetic polymorphism in populations of African ancestry. Hum. Biol. 65, 655–660.
    1. Komarova Y., Malik A. B. (2010). Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu. Rev. Physiol. 72, 463–493. 10.1146/annurev-physiol-021909-135833
    1. Kormoczi G. F., Saemann M. D., Buchta C., Peck-Radosavljevic M., Mayr W. R., Schwartz D. W., et al. . (2006). Influence of clinical factors on the haemolysis marker haptoglobin. Eur. J. Clin. Invest. 36, 202–209. 10.1111/j.1365-2362.2006.01617.x
    1. Kristiansen M., Graversen J. H., Jacobsen C., Sonne O., Hoffman H. J., Law S. K., et al. . (2001). Identification of the haemoglobin scavenger receptor. Nature 409, 198–201. 10.1038/35051594
    1. Langlois M. R., Delanghe J. R. (1996). Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem. 42, 1589–1600.
    1. Larsen R., Gozzelino R., Jeney V., Tokaji L., Bozza F. A., Japiassu A. M., et al. . (2010). A central role for free heme in the pathogenesis of severe sepsis. Sci. Transl. Med. 2, 51ra71. 10.1126/scitranslmed.3001118
    1. Law S. K., Micklem K. J., Shaw J. M., Zhang X. P., Dong Y., Willis A. C., et al. . (1993). A new macrophage differentiation antigen which is a member of the scavenger receptor superfamily. Eur. J. Immunol. 23, 2320–2325. 10.1002/eji.1830230940
    1. Levy A. P., Asleh R., Blum S., Levy N. S., Miller-Lotan R., Kalet-Litman S., et al. . (2010). Haptoglobin: basic and clinical aspects. Antioxid. Redox Signal. 12, 293–304. 10.1089/ars.2009.2793
    1. Levy A. P., Purushothaman K. R., Levy N. S., Purushothaman M., Strauss M., Asleh R., et al. . (2007). Downregulation of the hemoglobin scavenger receptor in individuals with diabetes and the Hp 2-2 genotype: implications for the response to intraplaque hemorrhage and plaque vulnerability. Circ. Res. 101, 106–110. 10.1161/CIRCRESAHA.107.149435
    1. Liang X., Lin T., Sun G., Beasley-Topliffe L., Cavaillon J. M., Warren H. S. (2009). Hemopexin down-regulates LPS-induced proinflammatory cytokines from macrophages. J. Leukoc. Biol. 86, 229–235. 10.1189/jlb.1208742
    1. Lin S., Yin Q., Zhong Q., Lv F. L., Zhou Y., Li J. Q., et al. . (2012a). Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J. Neuroinflammation 9, 46. 10.1186/1742-2094-9-46
    1. Lin T., Sammy F., Yang H., Thundivalappil S., Hellman J., Tracey K. J., et al. . (2012b). Identification of hemopexin as an anti-inflammatory factor that inhibits synergy of hemoglobin with HMGB1 in sterile and infectious inflammation. J. Immunol. 189, 2017–2022. 10.4049/jimmunol.1103623
    1. Lipiski M., Deuel J. W., Baek J. H., Engelsberger W. R., Buehler P. W., Schaer D. J. (2013). Human Hp1-1 and Hp2-2 phenotype-specific haptoglobin therapeutics are both effective in vitro and in guinea pigs to attenuate hemoglobin toxicity. Antioxid. Redox Signal. 19, 1619–1633. 10.1089/ars.2012.5089
    1. Madsen M., Moller H. J., Nielsen M. J., Jacobsen C., Graversen J. H., Van Den Berg T., et al. . (2004). Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region. J. Biol. Chem. 279, 51561–51567. 10.1074/jbc.M409629200
    1. Marinkovic S., Baumann H. (1990). Structure, hormonal regulation, and identification of the interleukin-6- and dexamethasone-responsive element of the rat haptoglobin gene. Mol. Cell. Biol. 10, 1573–1583.
    1. Matheson B., Razynska A., Kwansa H., Bucci E. (2000). Appearance of dissociable and cross-linked hemoglobins in the renal hilar lymph. J. Lab. Clin. Med. 135, 459–464. 10.1067/mlc.2000.106458
    1. Miller Y. I., Altamentova S. M., Shaklai N. (1997). Oxidation of low-density lipoprotein by hemoglobin stems from a heme-initiated globin radical: antioxidant role of haptoglobin. Biochemistry 36, 12189–12198. 10.1021/bi970258a
    1. Minneci P. C., Deans K. J., Zhi H., Yuen P. S., Star R. A., Banks S. M., et al. . (2005). Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J. Clin. Invest. 115, 3409–3417. 10.1172/JCI25040
    1. Mollan T. L., Jia Y., Banerjee S., Wu G., Kreulen R. T., Tsai A. L., et al. . (2014). Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin. Free Radic. Biol. Med. 69, 265–277. 10.1016/j.freeradbiomed.2014.01.030
    1. Moller H. J., Moestrup S. K., Weis N., Wejse C., Nielsen H., Pedersen S. S., et al. . (2006). Macrophage serum markers in pneumococcal bacteremia: prediction of survival by soluble CD163. Crit. Care Med. 34, 2561–2566. 10.1097/01.CCM.0000239120.32490.AB
    1. Moller H. J., Peterslund N. A., Graversen J. H., Moestrup S. K. (2002). Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma. Blood 99, 378–380. 10.1182/blood.V99.1.378
    1. Moreno P. R., Purushothaman K. R., Purushothaman M., Muntner P., Levy N. S., Fuster V., et al. . (2008). Haptoglobin genotype is a major determinant of the amount of iron in the human atherosclerotic plaque. J. Am. Coll. Cardiol. 52, 1049–1051. 10.1016/j.jacc.2008.06.029
    1. Muller-Eberhard U., Javid J., Liem H. H., Hanstein A., Hanna M. (1968). Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood 32, 811–815.
    1. Murray R. K., Connell G. E., Pert J. H. (1961). The role of haptoglobin in the clearance and distribution of extracorpuscular hemoglobin. Blood 17, 45–53.
    1. Nagy E., Eaton J. W., Jeney V., Soares M. P., Varga Z., Galajda Z., et al. . (2010). Red cells, hemoglobin, heme, iron, and atherogenesis. Arterioscler. Thromb. Vasc. Biol. 30, 1347–1353. 10.1161/ATVBAHA.110.206433
    1. Nakai K., Sakuma I., Ohta T., Ando J., Kitabatake A., Nakazato Y., et al. . (1998). Permeability characteristics of hemoglobin derivatives across cultured endothelial cell monolayers. J. Lab. Clin. Med. 132, 313–319. 10.1016/S0022-2143(98)90045-2
    1. Natanson C., Kern S. J., Lurie P., Banks S. M., Wolfe S. M. (2008). Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA 299, 2304–2312. 10.1001/jama.299.19.jrv80007
    1. Niethammer P., Grabher C., Look A. T., Mitchison T. J. (2009). A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999. 10.1038/nature08119
    1. Olson J. S., Foley E. W., Rogge C., Tsai A. L., Doyle M. P., Lemon D. D. (2004). NO scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic. Biol. Med. 36, 685–697. 10.1016/j.freeradbiomed.2003.11.030
    1. Pimenova T., Pereira C. P., Gehrig P., Buehler P. W., Schaer D. J., Zenobi R. (2010). Quantitative mass spectrometry defines an oxidative hotspot in hemoglobin that is specifically protected by haptoglobin. J. Proteome Res. 9, 4061–4070. 10.1021/pr100252e
    1. Pimenova T., Pereira C. P., Schaer D. J., Zenobi R. (2009). Characterization of high molecular weight multimeric states of human haptoglobin and hemoglobin-based oxygen carriers by high-mass MALDI MS. J. Sep. Sci. 32, 1224–1230. 10.1002/jssc.200800625
    1. Purushothaman K. R., Purushothaman M., Levy A. P., Lento P. A., Evrard S., Kovacic J. C., et al. . (2012). Increased expression of oxidation-specific epitopes and apoptosis are associated with haptoglobin genotype: possible implications for plaque progression in human atherosclerosis. J. Am. Coll. Cardiol. 60, 112–119. 10.1016/j.jacc.2012.04.011
    1. Qian Q., Nath K. A., Wu Y., Daoud T. M., Sethi S. (2010). Hemolysis and acute kidney failure. Am. J. Kidney Dis. 56, 780–784. 10.1053/j.ajkd.2010.03.025
    1. Reeder B. J., Grey M., Silaghi-Dumitrescu R. L., Svistunenko D. A., Bulow L., Cooper C. E., et al. . (2008). Tyrosine residues as redox cofactors in human hemoglobin: implications for engineering nontoxic blood substitutes. J. Biol. Chem. 283, 30780–30787. 10.1074/jbc.M804709200
    1. Reiter C. D., Wang X., Tanus-Santos J. E., Hogg N., Cannon R. O., 3rd., Schechter A. N., et al. . (2002). Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 8, 1383–1389. 10.1038/nm1202-799
    1. Rolla S., Ingoglia G., Bardina V., Silengo L., Altruda F., Novelli F., et al. . (2013). Acute-phase protein hemopexin is a negative regulator of Th17 response and experimental autoimmune encephalomyelitis development. J. Immunol. 191, 5451–5459. 10.4049/jimmunol.1203076
    1. Rother R. P., Bell L., Hillmen P., Gladwin M. T. (2005). The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293, 1653–1662. 10.1001/jama.293.13.1653
    1. Schaer C. A., Deuel J. W., Bittermann A. G., Rubio I. G., Schoedon G., Spahn D. R., et al. . (2013a). Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage. Cell Death Differ. 20, 1569–1579. 10.1038/cdd.2013.113
    1. Schaer C. A., Laczko E., Schoedon G., Schaer D. J., Vallelian F. (2013b). Chloroquine interference with hemoglobin endocytic trafficking suppresses adaptive heme and iron homeostasis in macrophages: the paradox of an antimalarial agent. Oxid. Med. Cell. Longev. 2013, 870472. 10.1155/2013/870472
    1. Schaer C. A., Vallelian F., Imhof A., Schoedon G., Schaer D. J. (2007). CD163-expressing monocytes constitute an endotoxin-sensitive Hb clearance compartment within the vascular system. J. Leukoc. Biol. 82, 106–110. 10.1189/jlb.0706453
    1. Schaer D. J., Boretti F. S., Hongegger A., Poehler D., Linnscheid P., Staege H., et al. . (2001). Molecular cloning and characterization of the mouse CD163 homologue, a highly glucocorticoid-inducible member of the scavenger receptor cysteine-rich family. Immunogenetics 53, 170–177. 10.1007/s002510100304
    1. Schaer D. J., Boretti F. S., Schoedon G., Schaffner A. (2002). Induction of the CD163-dependent haemoglobin uptake by macrophages as a novel anti-inflammatory action of glucocorticoids. Br. J. Haematol. 119, 239–243. 10.1046/j.1365-2141.2002.03790.x
    1. Schaer D. J., Buehler P. W., Alayash A. I., Belcher J. D., Vercellotti G. M. (2013c). Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121, 1276–1284. 10.1182/blood-2012-11-451229
    1. Schaer D. J., Schaer C. A., Buehler P. W., Boykins R. A., Schoedon G., Alayash A. I., et al. . (2006). CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin. Blood 107, 373–380. 10.1182/blood-2005-03-1014
    1. Schaer D. J., Schleiffenbaum B., Kurrer M., Imhof A., Bachli E., Fehr J., et al. . (2005). Soluble hemoglobin-haptoglobin scavenger receptor CD163 as a lineage-specific marker in the reactive hemophagocytic syndrome. Eur. J. Haematol. 74, 6–10. 10.1111/j.1600-0609.2004.00318.x
    1. Shen H., Song Y., Colangelo C. M., Wu T., Bruce C., Scabia G., et al. . (2012). Haptoglobin activates innate immunity to enhance acute transplant rejection in mice. J. Clin. Invest. 122, 383–387. 10.1172/JCI58344
    1. Silverman T. A., Weiskopf R. B. (2009). Hemoglobin-based oxygen carriers: current status and future directions. Transfusion 49, 2495–2515. 10.1111/j.1537-2995.2009.02356.x
    1. Silverman T. A., Weiskopf R. B., Planning C., The S. (2009). Hemoglobin-based oxygen carriers: current status and future directions. Anesthesiology 111, 946–963. 10.1097/ALN.0b013e3181ba3c2c
    1. Spiller F., Costa C., Souto F. O., Vinchi F., Mestriner F. L., Laure H. J., et al. . (2011). Inhibition of neutrophil migration by hemopexin leads to increased mortality due to sepsis in mice. Am. J. Respir. Crit. Care Med. 183, 922–931. 10.1164/rccm.201002-0223OC
    1. Subramanian K., Du R., Tan N. S., Ho B., Ding J. L. (2013). CD163 and IgG codefend against cytotoxic hemoglobin via autocrine and paracrine mechanisms. J. Immunol. 190, 5267–5278. 10.4049/jimmunol.1202648
    1. Tanaka K., Kanamori Y., Sato T., Kondo C., Katayama Y., Yada I., et al. . (1991). Administration of haptoglobin during cardiopulmonary bypass surgery. ASAIO Trans. 37, M482–M483.
    1. Tolosano E., Hirsch E., Patrucco E., Camaschella C., Navone R., Silengo L., et al. . (1999). Defective recovery and severe renal damage after acute hemolysis in hemopexin-deficient mice. Blood 94, 3906–3914.
    1. Vallelian F., Deuel J. W., Opitz L., Schaer C. A., Puglia M., Lönn M., et al. . (2014). Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress. Cell Death Differ. [Epub ahead of print]. 10.1038/cdd.2014.154
    1. Vallelian F., Pimenova T., Pereira C. P., Abraham B., Mikolajczyk M. G., Schoedon G., et al. . (2008). The reaction of hydrogen peroxide with hemoglobin induces extensive alpha-globin crosslinking and impairs the interaction of hemoglobin with endogenous scavenger pathways. Free Radic. Biol. Med. 45, 1150–1158. 10.1016/j.freeradbiomed.2008.07.013
    1. Vallelian F., Schaer C. A., Kaempfer T., Gehrig P., Duerst E., Schoedon G., et al. . (2010). Glucocorticoid treatment skews human monocyte differentiation into a hemoglobin-clearance phenotype with enhanced heme-iron recycling and antioxidant capacity. Blood 116, 5347–5356. 10.1182/blood-2010-04-277319
    1. Vinchi F., De Franceschi L., Ghigo A., Townes T., Cimino J., Silengo L., et al. . (2013). Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases. Circulation 127, 1317–1329. 10.1161/CIRCULATIONAHA.112.130179
    1. Vinchi F., Gastaldi S., Silengo L., Altruda F., Tolosano E. (2008). Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload. Am. J. Pathol. 173, 289–299. 10.2353/ajpath.2008.071130
    1. Wagener F. A., Eggert A., Boerman O. C., Oyen W. J., Verhofstad A., Abraham N. G., et al. . (2001). Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98, 1802–1811. 10.1182/blood.V98.6.1802
    1. Weaver L. K., Hintz-Goldstein K. A., Pioli P. A., Wardwell K., Qureshi N., Vogel S. N., et al. . (2006). Pivotal advance: activation of cell surface Toll-like receptors causes shedding of the hemoglobin scavenger receptor CD163. J. Leukoc. Biol. 80, 26–35. 10.1189/jlb.1205756
    1. Zwadlo G., Voegeli R., Schulze Osthoff K., Sorg C. (1987). A monoclonal antibody to a novel differentiation antigen on human macrophages associated with the down-regulatory phase of the inflammatory process. Exp. Cell Biol. 55, 295–304.

Source: PubMed

3
Subscribe