Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage

Iris C Vermeulen Windsant, Norbert C J de Wit, Jonas T C Sertorio, Annemarie A van Bijnen, Yuri M Ganushchak, John H Heijmans, Jose E Tanus-Santos, Michael J Jacobs, Jos G Maessen, Wim A Buurman, Iris C Vermeulen Windsant, Norbert C J de Wit, Jonas T C Sertorio, Annemarie A van Bijnen, Yuri M Ganushchak, John H Heijmans, Jose E Tanus-Santos, Michael J Jacobs, Jos G Maessen, Wim A Buurman

Abstract

Introduction: Acute kidney injury (AKI) and intestinal injury negatively impact patient outcome after cardiac surgery. Enhanced nitric oxide (NO) consumption due to intraoperative intravascular hemolysis, may play an important role in this setting. This study investigated the impact of hemolysis on plasma NO consumption, AKI, and intestinal tissue damage, after cardiac surgery.

Methods: Hemolysis (by plasma extracellular (free) hemoglobin; fHb), plasma NO-consumption, plasma fHb-binding capacity by haptoglobin (Hp), renal tubular injury (using urinary N-Acetyl-β-D-glucosaminidase; NAG), intestinal mucosal injury (through plasma intestinal fatty acid binding protein; IFABP), and AKI were studied in patients undergoing off-pump cardiac surgery (OPCAB, N = 7), on-pump coronary artery bypass grafting (CABG, N = 30), or combined CABG and valve surgery (CABG+Valve, N = 30).

Results: FHb plasma levels and NO-consumption significantly increased, while plasma Hp concentrations significantly decreased in CABG and CABG+Valve patients (p < 0.0001) during surgery. The extent of hemolysis and NO-consumption correlated significantly (r (2) = 0.75, p < 0.0001). Also, NAG and IFABP increased in both groups (p < 0.0001, and p < 0.001, respectively), and both were significantly associated with hemolysis (R s = 0.70, p < 0.0001, and R s = 0.26, p = 0.04, respectively) and NO-consumption (Rs = 0.55, p = 0.002, and R s = 0.41, p = 0.03, respectively), also after multivariable logistic regression analysis. OPCAB patients did not show increased fHb, NO-consumption, NAG, or IFABP levels. Patients suffering from AKI (N = 9, 13.4%) displayed significantly higher fHb and NAG levels already during surgery compared to non-AKI patients.

Conclusions: Hemolysis appears to be an important contributor to postoperative kidney injury and intestinal mucosal damage, potentially by limiting NO-bioavailability. This observation offers a novel diagnostic and therapeutic target to improve patient outcome after cardiothoracic surgery.

Keywords: acute kidney injury; cardiopulmonary bypass; hemolysis; intestinal fatty acid binding protein; nitric oxide.

Figures

Figure 1
Figure 1
Change of plasma free hemoglobin (fHb, A), NO-consumption (B), and haptoglobin (D) in patients undergoing CABG+Valve (■ red line), CABG (• blue line), and OPCAB surgery (▲ green line), and correlation between hemolysis and NO-consumption (C). The total release of fHb and change in NO-consumption (C) during surgery, estimated using the area under the curve (AUC) were significantly correlated (r2 = 0.75, p < 0.0001). (D) Depicts the change in perioperative Hp levels in all groups. All values were corrected for hematocrit because of significant intraoperative hemodilution. Values are mean ± s.e.m. (A,B,D) or a scatter plot with mean (black line) ± 95% confidence interval (dotted line, C). Stars indicate significant changes compared to baseline within groups: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Numbers 1–8 on the y-axis (A,B,D) refer to collection time-points of blood specimens: 1, preoperatively, after induction but prior to sternotomy; 2, before start of CPB; 3, end CPB; 4, 15 min after cessation of CPB; 5, 2 h after cessation of CPB; 6, 4 h after cessation of CPB; 7, day 1 postoperatively; 8, day 2 postoperatively. CPB was not used in OPCAB patients.
Figure 2
Figure 2
Change of urinary NAG (A) and plasma IFABP (B) in patients undergoing CABG+Valve (■ red line), CABG (• blue line), and OPCAB surgery (▲ green line), and correlation between hemolysis and NAG (C) or IFABP release (D). The total release of fHb and NAG (C), and fHb and IFABP (D), estimated using the area under the curve (AUC), were significantly correlated (Rs = 0.70, p < 0.0001, and Rs = 0.26, p = 0.04, respectively). Plasma IFABP values were corrected for hematocrit because of significant intraoperative hemodilution, urinary NAG levels were corrected for urine creatinine values. Values are mean ± s.e.m. (A,B) or a scatter plot with mean (black line) ± 95% confidence interval (dotted line, C,D). Stars indicate significant changes compared to baseline within groups: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Numbers 1–8 on the y-axis (A,B) refer to collection time-points of blood specimens: 1, preoperatively, after induction but prior to sternotomy; 2, before start of CPB; 3, end CPB; 4, 15 min after cessation of CPB; 5, 2 h after cessation of CPB; 6, 4 h after cessation of CPB; 7, day 1 postoperatively; 8, day 2 postoperatively. CPB was not used in OPCAB patients.
Figure 3
Figure 3
Patients with postoperative AKI (gray bars) display significantly higher fHb (A) and urinary NAG levels (B), compared to non-AKI patients (white bars). Values are mean + s.e.m. Stars indicate significant changes compared to baseline within groups: *p < 0.05,**p < 0.01, ***p < 0.001, ****p < 0.0001. Hash symbols indicate significant differences between groups: #p < 0.05, ##p < 0.01, ###p < 0.001. Numbers 1–8 on the y-axis refer to collection time-points of blood specimens: 1, preoperatively, after induction but prior to sternotomy; 2, before start of CPB; 3, end CPB; 4, 15 min after cessation of CPB; 5, 2 h after cessation of CPB; 6, 4 h after cessation of CPB; 7, day 1 postoperatively; 8, day 2 postoperatively.

References

    1. Baskurt O. K., Uyuklu M., Meiselman H. J. (2004). Protection of erythrocytes from sub-hemolytic mechanical damage by nitric oxide mediated inhibition of potassium leakage. Biorheology 41, 79–89
    1. Baumgart D. C., Dignass A. U. (2002). Intestinal barrier function. Curr. Opin. Clin. Nutr. Metab. Care 5, 685–694 10.1097/00075197-200211000-00012
    1. Bloch K. D., Ichinose F., Roberts J. D., Jr., Zapol W. M. (2007). Inhaled NO as a therapeutic agent. Cardiovasc. Res. 75, 339–348 10.1016/j.cardiores.2007.04.014
    1. Cheung A. T., Cruz-Shiavone G. E., Meng Q. C., Pochettino A., Augoustides J. A., Bavaria J. E., et al. (2007). Cardiopulmonary bypass, hemolysis, and nitroprusside-induced cyanide production. Anesth. Analg. 105, 29–33 10.1213/01.ane.0000264078.34514.32
    1. Conlon P. J., Stafford-Smith M., White W. D., Newman M. F., King S., Winn M. P., et al. (1999). Acute renal failure following cardiac surgery. Nephrol. Dial. Transplant 14, 1158–1162 10.1093/ndt/14.5.1158
    1. Cruz-Landeira A., Bal M. J., Quintela, Lopez-Rivadulla M. (2002). Determination of methemoglobin and total hemoglobin in toxicological studies by derivative spectrophotometry. J. Anal. Toxicol. 26, 67–72 10.1093/jat/26.2.67
    1. Davis C. L., Kausz A. T., Zager R. A., Kharasch E. D., Cochran R. P. (1999). Acute renal failure after cardiopulmonary bypass in related to decreased serum ferritin levels. J. Am. Soc. Nephrol. 10, 2396–2402
    1. Dejam A., Hunter C. J., Tremonti C., Pluta R. M., Hon Y. Y., Grimes G., et al. (2007). Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation 116, 1821–1831 10.1161/CIRCULATIONAHA.107.712133
    1. Dittrich S., Kurschat K., Dahnert I., Vogel M., Muller C., Alexi-Meskishvili V., et al. (2000). Renal function after cardiopulmonary bypass surgery in cyanotic congenital heart disease. Int. J. Cardiol. 73, 173–179 10.1016/S0167-5273(00)00217-5
    1. Gladwin M. T., Sachdev V., Jison M. L., Shizukuda Y., Plehn J. F., Minter K., et al. (2004). Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N. Engl. J. Med. 350, 886–895 10.1056/NEJMoa035477
    1. Gregoretti S. (1996). Suction-induced hemolysis at various vacuum pressures: implications for intraoperative blood salvage. Transfusion 36, 57–60 10.1046/j.1537-2995.1996.36196190516.x
    1. Grootjans J., Lenaerts K., Derikx J. P., Matthijsen R. A., de Bruine A. P., van Bijnen A. A., et al. (2010). Human intestinal ischemia-reperfusion-induced inflammation characterized: experiences from a new translational model. Am. J. Pathol. 176, 2283–2291 10.2353/ajpath.2010.091069
    1. Grotz M. R., Deitch E. A., Ding J., Xu D., Huang Q., Regel G. (1999). Intestinal cytokine response after gut ischemia: role of gut barrier failure. Ann. Surg. 229, 478–486 10.1097/00000658-199904000-00005
    1. Haase M., Haase-Fielitz A., Bagshaw S. M., Ronco C., Bellomo R. (2007). Cardiopulmonary bypass-associated acute kidney injury: a pigment nephropathy? Contrib. Nephrol. 156, 340–353 10.1159/000102125
    1. Hanssen S. J., Derikx J. P., Vermeulen Windsant I. C., Heijmans J. H., Koeppel T. A., Schurink G. W., et al. (2008). Visceral injury and systemic inflammation in patients undergoing extracorporeal circulation during aortic surgery. Ann. Surg. 248, 117–125 10.1097/SLA.0b013e3181784cc5
    1. Heijmans J. H., Liem K. S., Damoiseaux G. M., Maessen J. G., Roekaerts P. M. (2007). Pulmonary function and inflammatory markers in patients undergoing coronary revascularisation with or without cardiopulmonary bypass. Anaesthesia 62, 1233–1240 10.1111/j.1365-2044.2007.05254.x
    1. Huybregts R. A., Morariu A. M., Rakhorst G., Spiegelenberg S. R., Romijn H. W., de Vroege R., et al. (2007). Attenuated renal and intestinal injury after use of a mini-cardiopulmonary bypass system. Ann. Thorac. Surg. 83, 1760–1766 10.1016/j.athoracsur.2007.02.016
    1. Kameneva M. V., Undar A., Antaki J. F., Watach M. J., Calhoon J. H., Borovetz H. S. (1999). Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: factors related to cardiopulmonary bypass. ASAIO J. 45, 307–310 10.1097/00002480-199907000-00010
    1. Kim-Shapiro D. B., Lee J., Gladwin M. T. (2011). Storage lesion: role of red blood cell breakdown. Transfusion 51, 844–851 10.1111/j.1537-2995.2011.03100.x
    1. Kristiansen M., Graversen J. H., Jacobsen C., Sonne O., Hoffman H. J., Law S. K., et al. (2001). Identification of the haemoglobin scavenger receptor. Nature 409, 198–201 10.1038/35051594
    1. Lassnigg A., Schmidlin D., Mouhieddine M., Bachmann L. M., Druml W., Bauer P., et al. (2004). Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J. Am. Soc. Nephrol. 15, 1597–1605 10.1097/01.ASN.0000130340.93930.DD
    1. Lieberman J. M., Sacchettini J., Marks C., Marks W. H. (1997). Human intestinal fatty acid binding protein: report of an assay with studies in normal volunteers and intestinal ischemia. Surgery 121, 335–342 10.1016/S0039-6060(97)90363-9
    1. Loef B. G., Epema A. H., Navis G., Ebels T., van Oeveren W., Henning R. H. (2002). Off-pump coronary revascularization attenuates transient renal damage compared with on-pump coronary revascularization. Chest 121, 1190–1194 10.1378/chest.121.4.1190
    1. Lundberg J. O., Weitzberg E., Gladwin M. T. (2008). The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7, 156–167 10.1038/nrd2466
    1. Mehta R. L., Kellum J. A., Shah S. V., Molitoris B. A., Ronco C., Warnock D. G., et al. (2007). Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31 10.1186/cc5713
    1. Meyer C., Heiss C., Drexhage C., Kehmeier E. S., Balzer J., Muhlfeld A., et al. (2010). Hemodialysis-induced release of hemoglobin limits nitric oxide bioavailability and impairs vascular function. J. Am. Coll. Cardiol. 55, 454–459 10.1016/j.jacc.2009.07.068
    1. National Kidney Foundation. (2002). K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39, S1–S266
    1. Nemeto S., Aoki M., Dehua C., Imai Y. (2000). Free hemoglobin impairs cardiac function in neonatal rabbit hearts. Ann. Thorac. Surg. 69, 1484–1489 10.1016/S0003-4975(00)01176-0
    1. Raat N. J., Tabima D. M., Specht P. A., Tejero J., Champion H. C., Kim-Shapiro D. B., et al. (2013). Direct sGC activation bypasses NO scavenging reactions of intravascular free oxy-hemoglobin and limits vasoconstriction. Antioxid. Redox Signal. 19, 2232–2243 10.1089/ars.2013.5181
    1. Reiter C. D., Wang X., Tanus-Santos J. E., Hogg N., Cannon R. O., 3rd, Schechter A. N., et al. (2002). Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 8, 1383–1389 10.1038/nm1202-799
    1. Rosner M. H., Okusa M. D. (2006). Acute kidney injury associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 1, 19–32 10.2215/CJN.00240605
    1. Rother R. P., Bell L., Hillmen P., Gladwin M. T. (2005). The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293, 1653–1662 10.1001/jama.293.13.1653
    1. Schrier R. W., Wang W., Poole B., Mitra A. (2004). Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J. Clin. Invest. 114, 5–14 10.1172/JCI200422353
    1. Tabbara I. A. (1992). Hemolytic anemias. Diagnosis and management. Med. Clin. North Am. 76, 649–668
    1. Tanaka K., Kanamori Y., Sato T., Kondo C., Katayama Y., Yada I., et al. (1991). Administration of haptoglobin during cardiopulmonary bypass surgery. ASAIO Trans. 37, M482–M483
    1. Vercaemst L. (2008). Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J. Extra Corpor. Technol. 40, 257–267
    1. Vermeulen Windsant I. C., de Wit N. C., Sertorio J. T., Beckers E. A., Tanus-Santos J. E., Jacobs M. J., et al. (2012b). Blood transfusions increase circulating plasma free hemoglobin levels and plasma nitric oxide consumption: a prospective observational pilot study. Crit. Care 16:R95 10.1186/cc11359
    1. Vermeulen Windsant I. C., Hellenthal F. A., Derikx J. P., Prins M. H., Buurman W. A., Jacobs M. J., et al. (2012a). Circulating intestinal fatty acid-binding protein as an early marker of intestinal necrosis after aortic surgery: a prospective observational cohort study. Ann. Surg. 255, 796–803 10.1097/SLA.0b013e31824b1e16
    1. Vermeulen Windsant I. C., Snoeijs M. G., Hanssen S. J., Altintas S., Heijmans J. H., Koeppel T. A., et al. (2010). Hemolysis is associated with acute kidney injury during major aortic surgery. Kidney Int. 77, 913–920 10.1038/ki.2010.24
    1. Watanabe N., Arakawa Y., Sou A., Kataoka H., Ohuchi K., Fujimoto T., et al. (2007). Deformability of human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing shear flow generator. Physiol. Meas. 28, 531–545 10.1088/0967-3334/28/5/007
    1. Zager R. A., Gamelin L. M. (1989). Pathogenetic mechanisms in experimental hemoglobinuric acute renal failure. Am. J. Physiol. 256, F446–F455

Source: PubMed

3
Subscribe