Prediction of prognosis and renal outcome in lupus nephritis

Ioannis Parodis, Farah Tamirou, Frédéric A Houssiau, Ioannis Parodis, Farah Tamirou, Frédéric A Houssiau

Abstract

Lupus nephritis (LN) is a severe manifestation of SLE, characterised by subendothelial and/or subepithelial immune complex depositions in the afflicted kidney, resulting in extensive injury and nephron loss during the acute phase and eventually chronic irreversible damage and renal function impairment if not treated effectively. The therapeutic management of LN has improved during the last decades, but the imperative need for consensual outcome measures remains. In order to design trials with success potentiality, it is important to define clinically important short-term and long-term targets of therapeutic and non-therapeutic intervention. While it is known that early response to treatment is coupled with favourable renal outcomes, early predictors of renal function impairment are lacking. The information gleaned from kidney biopsies may provide important insights in this direction. Alas, baseline clinical and histopathological information has not been shown to be informative. By contrast, accumulating evidence of pronounced discrepancies between clinical and histopathological outcomes after the initial phase of immunosuppression has prompted investigations of the potential usefulness of per-protocol repeat kidney biopsies as an integral part of treatment evaluation, including patients showing adequate clinical response. This approach appears to have merit. Hopefully, clinical, molecular or genetic markers that reliably reflect kidney histopathology and portend the long-term prognosis will be identified. Novel non-invasive imaging methods and employment of the evolving artificial intelligence in pattern recognition may also be helpful towards these goals. The molecular and cellular characterisation of SLE and LN will hopefully result in novel therapeutic modalities, maybe new taxonomy perspectives, and ultimately personalised management.

Keywords: lupus nephritis; outcomes research; systemic lupus erythematosus.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

References

    1. Anders H-J, Saxena R, Zhao M-H, et al. . Lupus nephritis. Nat Rev Dis Primers 2020;6:7 10.1038/s41572-019-0141-9
    1. Singh S, Saxena R. Lupus nephritis. Am J Med Sci 2009;337:451–60. 10.1097/MAJ.0b013e3181907b3d
    1. Pons-Estel GJ, Serrano R, Plasín MA, et al. . Epidemiology and management of refractory lupus nephritis. Autoimmun Rev 2011;10:655–63. 10.1016/j.autrev.2011.04.032
    1. Cervera R, Khamashta MA, Font J, et al. . Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1,000 patients. Medicine 2003;82:299–308. 10.1097/01.md.0000091181.93122.55
    1. Appel GB, Contreras G, Dooley MA, et al. . Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol 2009;20:1103–12. 10.1681/ASN.2008101028
    1. Ginzler EM, Dooley MA, Aranow C, et al. . Mycophenolate mofetil or intravenous cyclophosphamide for lupus nephritis. N Engl J Med 2005;353:2219–28. 10.1056/NEJMoa043731
    1. Houssiau FA, Vasconcelos C, D'Cruz D, et al. . Early response to immunosuppressive therapy predicts good renal outcome in lupus nephritis: lessons from long-term followup of patients in the Euro-Lupus nephritis trial. Arthritis Rheum 2004;50:3934–40. 10.1002/art.20666
    1. Tektonidou MG, Dasgupta A, Ward MM. Risk of end-stage renal disease in patients with lupus nephritis, 1971-2015: a systematic review and Bayesian meta-analysis. Arthritis Rheumatol 2016;68:1432–41. 10.1002/art.39594
    1. Houssiau FA, Vasconcelos C, D'Cruz D, et al. . The 10-year follow-up data of the Euro-Lupus nephritis trial comparing low-dose and high-dose intravenous cyclophosphamide. Ann Rheum Dis 2010;69:61–4. 10.1136/ard.2008.102533
    1. Vandepapelière J, Aydin S, Cosyns J-P, et al. . Prognosis of proliferative lupus nephritis subsets in the Louvain lupus nephritis inception cohort. Lupus 2014;23:159–65. 10.1177/0961203313514623
    1. Zhang L, Lee G, Liu X, et al. . Long-Term outcomes of end-stage kidney disease for patients with lupus nephritis. Kidney Int 2016;89:1337–45. 10.1016/j.kint.2016.02.014
    1. Houssiau FA, D'Cruz D, Sangle S, et al. . Azathioprine versus mycophenolate mofetil for long-term immunosuppression in lupus nephritis: results from the maintain nephritis trial. Ann Rheum Dis 2010;69:2083–9. 10.1136/ard.2010.131995
    1. Houssiau FA, Vasconcelos C, D'Cruz D, et al. . Immunosuppressive therapy in lupus nephritis: the Euro-Lupus nephritis trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum 2002;46:2121–31. 10.1002/art.10461
    1. Tamirou F, Lauwerys BR, Dall'Era M, et al. . A proteinuria cut-off level of 0.7 g/day after 12 months of treatment best predicts long-term renal outcome in lupus nephritis: data from the MAINTAIN Nephritis Trial. Lupus Sci Med 2015;2:e000123 10.1136/lupus-2015-000123
    1. Dall'Era M, Cisternas MG, Smilek DE, et al. . Predictors of long-term renal outcome in lupus nephritis trials: lessons learned from the Euro-Lupus nephritis cohort. Arthritis Rheumatol 2015;67:1305–13. 10.1002/art.39026
    1. Korbet SM, Lewis EJ, Collaborative Study Group . Severe lupus nephritis: the predictive value of a ≥ 50% reduction in proteinuria at 6 months. Nephrol Dial Transplant 2013;28:2313–8. 10.1093/ndt/gft201
    1. Ugolini-Lopes MR, Seguro LPC, Castro MXF, et al. . Early proteinuria response: a valid real-life situation predictor of long-term lupus renal outcome in an ethnically diverse group with severe biopsy-proven nephritis? Lupus Sci Med 2017;4:e000213 10.1136/lupus-2017-000213
    1. Petri M, Orbai A-M, Alarcón GS, et al. . Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 2012;64:2677–86. 10.1002/art.34473
    1. Tan EM, Cohen AS, Fries JF, et al. . The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982;25:1271–7. 10.1002/art.1780251101
    1. Fogazzi GB, Saglimbeni L, Banfi G, et al. . Urinary sediment features in proliferative and non-proliferative glomerular diseases. J Nephrol 2005;18:703–10.
    1. Yuste C, Gutierrez E, Sevillano AM, et al. . Pathogenesis of glomerular haematuria. World J Nephrol 2015;4:185–95. 10.5527/wjn.v4.i2.185
    1. Aringer M, Costenbader K, Daikh D, et al. . European League against Rheumatism/American College of rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis 2019;2019:1151–9.
    1. Hill GS, Delahousse M, Nochy D, et al. . A new morphologic index for the evaluation of renal biopsies in lupus nephritis. Kidney Int 2000;58:1160–73. 10.1046/j.1523-1755.2000.00272.x
    1. Mackay M, Dall'Era M, Fishbein J, et al. . Establishing surrogate kidney end points for lupus nephritis clinical trials: development and validation of a novel approach to predict future kidney outcomes. Arthritis Rheumatol 2019;71:411–9. 10.1002/art.40724
    1. Bertsias GK, Tektonidou M, Amoura Z, et al. . Joint European League against rheumatism and European renal Association-European dialysis and transplant association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis 2012;71:1771–82. 10.1136/annrheumdis-2012-201940
    1. Hahn BH, McMahon MA, Wilkinson A, et al. . American College of rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res 2012;64:797–808. 10.1002/acr.21664
    1. Bihl GR, Petri M, Fine DM. Kidney biopsy in lupus nephritis: look before you leap. Nephrol Dial Transplant 2006;21:1749–52. 10.1093/ndt/gfl159
    1. Ward F, Bargman JM. Membranous lupus nephritis: the same, but different. Am J Kidney Dis 2016;68:954–66. 10.1053/j.ajkd.2016.07.026
    1. Bajema IM, Wilhelmus S, Alpers CE, et al. . Revision of the International Society of Nephrology/Renal pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of health activity and chronicity indices. Kidney Int 2018;93:789–96. 10.1016/j.kint.2017.11.023
    1. Austin HA, Muenz LR, Joyce KM, et al. . Prognostic factors in lupus nephritis. contribution of renal histologic data. Am J Med 1983;75:382–91. 10.1016/0002-9343(83)90338-8
    1. Schwartz MM, Bernstein J, Hill GS, et al. . Predictive value of renal pathology in diffuse proliferative lupus glomerulonephritis. lupus nephritis collaborative Study Group. Kidney Int 1989;36:891–6. 10.1038/ki.1989.276
    1. Daniel L, Sichez H, Giorgi R, et al. . Tubular lesions and tubular cell adhesion molecules for the prognosis of lupus nephritis. Kidney Int 2001;60:2215–21. 10.1046/j.1523-1755.2001.00055.x
    1. Ferraccioli G, Romano G. Renal interstitial cells, proteinuria and progression of lupus nephritis: new frontiers for old factors. Lupus 2008;17:533–40. 10.1177/0961203307088002
    1. Yu F, Wu L-H, Tan Y, et al. . Tubulointerstitial lesions of patients with lupus nephritis classified by the 2003 International Society of nephrology and renal pathology Society system. Kidney Int 2010;77:820–9. 10.1038/ki.2010.13
    1. Hsieh C, Chang A, Brandt D, et al. . Predicting outcomes of lupus nephritis with tubulointerstitial inflammation and scarring. Arthritis Care Res 2011;63:865–74. 10.1002/acr.20441
    1. Broder A, Mowrey WB, Khan HN, et al. . Tubulointerstitial damage predicts end stage renal disease in lupus nephritis with preserved to moderately impaired renal function: a retrospective cohort study. Semin Arthritis Rheum 2018;47:545–51. 10.1016/j.semarthrit.2017.07.007
    1. Clark MR, Trotter K, Chang A. The pathogenesis and therapeutic implications of tubulointerstitial inflammation in human lupus nephritis. Semin Nephrol 2015;35:455–64. 10.1016/j.semnephrol.2015.08.007
    1. Eddy AA. Proteinuria and interstitial injury. Nephrol Dial Transplant 2004;19:277–81. 10.1093/ndt/gfg533
    1. Ronda N, Cravedi P, Benozzi L, et al. . Early proinflammatory activation of renal tubular cells by normal and pathologic IgG. Nephron Exp Nephrol 2005;100:e77–84. 10.1159/000084573
    1. Zheng L, Sinniah R, Hsu SI-H. Pathogenic role of NF-kappaB activation in tubulointerstitial inflammatory lesions in human lupus nephritis. J Histochem Cytochem 2008;56:517–29. 10.1369/jhc.7A7368.2008
    1. Theilig F. Spread of glomerular to tubulointerstitial disease with a focus on proteinuria. Ann Anat 2010;192:125–32. 10.1016/j.aanat.2010.03.003
    1. Bonanni A, Vaglio A, Bruschi M, et al. . Multi-antibody composition in lupus nephritis: isotype and antigen specificity make the difference. Autoimmun Rev 2015;14:692–702. 10.1016/j.autrev.2015.04.004
    1. Yap DYH, Yung S, Zhang Q, et al. . Serum level of proximal renal tubular epithelial cell-binding immunoglobulin G in patients with lupus nephritis. Lupus 2016;25:46–53. 10.1177/0961203315598018
    1. Anders H-J. Re-biopsy in lupus nephritis. Ann Transl Med 2018;6:S41 10.21037/atm.2018.09.47
    1. Zickert A, Sundelin B, Svenungsson E, et al. . Role of early repeated renal biopsies in lupus nephritis. Lupus Sci Med 2014;1:e000018 10.1136/lupus-2014-000018
    1. De Rosa M, Azzato F, Toblli JE, et al. . A prospective observational cohort study highlights kidney biopsy findings of lupus nephritis patients in remission who flare following withdrawal of maintenance therapy. Kidney Int 2018;94:788–94. 10.1016/j.kint.2018.05.021
    1. Malvar A, Pirruccio P, Alberton V, et al. . Histologic versus clinical remission in proliferative lupus nephritis. Nephrol Dial Transplant 2017;32:1338–44. 10.1093/ndt/gfv296
    1. Piñeiro GJ, Arrizabalaga P, Solé M, et al. . Repeated Renal Biopsy - A Predictive Tool to Assess the Probability of Renal Flare in Lupus Nephritis. Am J Nephrol 2016;44:439–46. 10.1159/000452229
    1. Arends S, Grootscholten C, Derksen RHWM, et al. . Long-Term follow-up of a randomised controlled trial of azathioprine/methylprednisolone versus cyclophosphamide in patients with proliferative lupus nephritis. Ann Rheum Dis 2012;71:966–73. 10.1136/annrheumdis-2011-200384
    1. Hill GS, Delahousse M, Nochy D, et al. . Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int 2001;59:304–16. 10.1046/j.1523-1755.2001.00492.x
    1. Mok CC. Towards new avenues in the management of lupus glomerulonephritis. Nat Rev Rheumatol 2016;12:221–34. 10.1038/nrrheum.2015.174
    1. Treamtrakanpon W, Tantivitayakul P, Benjachat T, et al. . April, a proliferation-inducing ligand, as a potential marker of lupus nephritis. Arthritis Res Ther 2012;14:R252 10.1186/ar4095
    1. Parodis I, Zickert A, Sundelin B, et al. . Evaluation of B lymphocyte stimulator and a proliferation inducing ligand as candidate biomarkers in lupus nephritis based on clinical and histopathological outcome following induction therapy. Lupus Sci Med 2015;2:e000061 10.1136/lupus-2014-000061
    1. Zickert A, Oke V, Parodis I, et al. . Interferon (IFN)-λ is a potential mediator in lupus nephritis. Lupus Sci Med 2016;3:e000170 10.1136/lupus-2016-000170
    1. Parodis I, Ding H, Zickert A, et al. . Serum soluble tumour necrosis factor receptor-2 (sTNFR2) as a biomarker of kidney tissue damage and long-term renal outcome in lupus nephritis. Scand J Rheumatol 2017;46:263–72. 10.1080/03009742.2016.1231339
    1. Parodis I, Ding H, Zickert A, et al. . Serum Axl predicts histology-based response to induction therapy and long-term renal outcome in lupus nephritis. PLoS One 2019;14:e0212068 10.1371/journal.pone.0212068
    1. Mok CC, Ding HH, Kharboutli M, et al. . Axl, ferritin, insulin-like growth factor binding protein 2, and tumor necrosis factor receptor type II as biomarkers in systemic lupus erythematosus. Arthritis Care Res 2016;68:1303–9. 10.1002/acr.22835
    1. Wu T, Ding H, Han J, et al. . Antibody-Array-Based proteomic screening of serum markers in systemic lupus erythematosus: a discovery study. J Proteome Res 2016;15:2102–14. 10.1021/acs.jproteome.5b00905
    1. Reyes-Thomas J, Blanco I, Putterman C. Urinary biomarkers in lupus nephritis. Clin Rev Allergy Immunol 2011;40:138–50. 10.1007/s12016-010-8197-z
    1. Mok CC, Soliman S, Ho LY, et al. . Urinary angiostatin, CXCL4 and VCAM-1 as biomarkers of lupus nephritis. Arthritis Res Ther 2018;20:6 10.1186/s13075-017-1498-3
    1. Wu T, Xie C, Wang HW, et al. . Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in multiple murine lupus strains and human lupus nephritis. J Immunol 2007;179:7166–75. 10.4049/jimmunol.179.10.7166
    1. Parodis I, Gokaraju S, Zickert A, et al. . Alcam and VCAM-1 as urine biomarkers of activity and long-term renal outcome in systemic lupus erythematosus. Rheumatology 2019. doi:10.1093/rheumatology/kez528. [Epub ahead of print: 13 Nov 2019].
    1. Arazi A, Rao DA, Berthier CC, et al. . The immune cell landscape in kidneys of patients with lupus nephritis. Nat Immunol 2019;20:902–14. 10.1038/s41590-019-0398-x
    1. Pamfil C, Makowska Z, De Groof A, et al. . Intrarenal activation of adaptive immune effectors is associated with tubular damage and impaired renal function in lupus nephritis. Ann Rheum Dis 2018;77:1782–9. 10.1136/annrheumdis-2018-213485
    1. Parikh SV, Malvar A, Song H, et al. . Molecular imaging of the kidney in lupus nephritis to characterize response to treatment. Transl Res 2017;182:1–13. 10.1016/j.trsl.2016.10.010
    1. Panousis NI, Bertsias GK, Ongen H, et al. . Combined genetic and transcriptome analysis of patients with SLE: distinct, targetable signatures for susceptibility and severity. Ann Rheum Dis 2019;78:1079–89. 10.1136/annrheumdis-2018-214379
    1. Crickx E, Tamirou F, Huscenot T, et al. . THU0211 evolution of kidney antibody secreting cells molecular sugnature in lupus patients with active nephritis upon immunosuppressive therapy. Ann Rheum Dis 2019;78:384.
    1. Der E, Suryawanshi H, Morozov P, et al. . Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat Immunol 2019;20:915–27. 10.1038/s41590-019-0386-1
    1. Der E, Suryawanshi H, Buyon J, et al. . Single-Cell RNA sequencing for the study of lupus nephritis. Lupus Sci Med 2019;6:e000329 10.1136/lupus-2019-000329
    1. Rao DA, Arazi A, Wofsy D, et al. . Design and application of single-cell RNA sequencing to study kidney immune cells in lupus nephritis. Nat Rev Nephrol 2019. doi:10.1038/s41581-019-0232-6. [Epub ahead of print: 18 Dec 2019].
    1. Yu F, Haas M, Glassock R, et al. . Redefining lupus nephritis: clinical implications of pathophysiologic subtypes. Nat Rev Nephrol 2017;13:483–95. 10.1038/nrneph.2017.85
    1. Alarcón-Riquelme ME. New attempts to define and clarify lupus. Curr Rheumatol Rep 2019;21:11 10.1007/s11926-019-0810-4

Source: PubMed

3
Subscribe