The Potential Use of Near- and Mid-Infrared Spectroscopy in Kidney Diseases

Charlotte Delrue, Sander De Bruyne, Marijn M Speeckaert, Charlotte Delrue, Sander De Bruyne, Marijn M Speeckaert

Abstract

Traditional renal biomarkers such as serum creatinine and albuminuria/proteinuria are rather insensitive since they change later in the course of the disease. In order to determine the extent and type of kidney injury, as well as to administer the proper therapy and enhance patient management, new techniques for the detection of deterioration of the kidney function are urgently needed. Infrared spectroscopy is a label-free and non-destructive technique having the potential to be a vital tool for quick and inexpensive routine clinical diagnosis of kidney disorders. The aim of this review is to provide an overview of near- and mid-infrared spectroscopy applications in patients with acute kidney injury and chronic kidney disease (e.g., diabetic nephropathy and glomerulonephritis).

Keywords: attenuated total reflectance-Fourier-transform infrared spectroscopy; infrared spectroscopy; kidney diseases; mid-infrared; near-infrared.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Typical MIR spectrum measured using attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy of a biological sample showing peak assignments from 4000 to 800 cm−1. V: stretching vibrations, δ: bending vibrations, s: symmetric vibrations, as: asymmetric vibrations.

References

    1. Krstic D., Tomic N., Radosavljevic B., Avramovic N., Dragutinovic V., Skodric S.R., Colovic M. Biochemical Markers of Renal Function. Curr. Med. Chem. 2016;23:2018–2040. doi: 10.2174/0929867323666160115130241.
    1. Zhang W.R., Parikh C.R. Biomarkers of Acute and Chronic Kidney Disease. Annu. Rev. Physiol. 2019;81:309–333. doi: 10.1146/annurev-physiol-020518-114605.
    1. Levey A.S. Defining AKD: The Spectrum of AKI, AKD, and CKD. Nephron. 2022;146:302–305. doi: 10.1159/000516647.
    1. Aitekenov S., Gaipov A., Bukasov R. Review: Detection and Quantification of Proteins in Human Urine. Talanta. 2021;223:121718. doi: 10.1016/j.talanta.2020.121718.
    1. Yu M.-C., Rich P., Foreman L., Smith J., Yu M.-S., Tanna A., Dibbur V., Unwin R., Tam F.W.K. Label Free Detection of Sensitive Mid-Infrared Biomarkers of Glomerulonephritis in Urine Using Fourier Transform Infrared Spectroscopy. Sci. Rep. 2017;7:4601. doi: 10.1038/s41598-017-04774-7.
    1. Lin T.-L., Evans R.D.R., Unwin R.J., Norman J.T., Rich P.R. Assessment of Measurement of Salivary Urea by ATR-FTIR Spectroscopy to Screen for CKD. Kidney360. 2022;3:357–363. doi: 10.34067/KID.0004362021.
    1. Baiz C.R., Błasiak B., Bredenbeck J., Cho M., Choi J.-H., Corcelli S.A., Dijkstra A.G., Feng C.-J., Garrett-Roe S., Ge N.-H., et al. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem. Rev. 2020;120:7152–7218. doi: 10.1021/acs.chemrev.9b00813.
    1. Hackshaw K.V., Miller J.S., Aykas D.P., Rodriguez-Saona L. Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples. Molecules. 2020;25:4725. doi: 10.3390/molecules25204725.
    1. Boskey A., Pleshko Camacho N. FT-IR Imaging of Native and Tissue-Engineered Bone and Cartilage. Biomaterials. 2007;28:2465–2478. doi: 10.1016/j.biomaterials.2006.11.043.
    1. Li-Chan E.C.Y. Handbook of Vibrational Spectroscopy. John Wiley & Sons, Ltd.; New York, NY, USA: 2010. Introduction to Vibrational Spectroscopy in Food Science.
    1. Mantsch H.H. The Road to Medical Vibrational Spectroscopy—A History. Analyst. 2013;138:3863–3870. doi: 10.1039/c3an90035e.
    1. Rieppo L., Töyräs J., Saarakkala S. Vibrational Spectroscopy of Articular Cartilage. Appl. Spectrosc. Rev. 2017;52:249–266. doi: 10.1080/05704928.2016.1226182.
    1. Taylor E.A., Donnelly E. Raman and Fourier Transform Infrared Imaging for Characterization of Bone Material Properties. Bone. 2020;139:115490. doi: 10.1016/j.bone.2020.115490.
    1. Mandair G.S., Morris M.D. Contributions of Raman Spectroscopy to the Understanding of Bone Strength. Bonekey Rep. 2015;4:620. doi: 10.1038/bonekey.2014.115.
    1. Diem M., Romeo M., Boydston-White S., Miljkovic M., Matthaus C. A Decade of Vibrational Micro-Spectroscopy of Human Cells and Tissue (1994–2004) Analyst. 2004;129:880–885. doi: 10.1039/B408952A.
    1. Chan K.L.A., Kazarian S.G. Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) Imaging of Tissues and Live Cells. Chem. Soc. Rev. 2016;45:1850–1864. doi: 10.1039/C5CS00515A.
    1. Baker M.J., Trevisan J., Bassan P., Bhargava R., Butler H.J., Dorling K.M., Fielden P.R., Fogarty S.W., Fullwood N.J., Heys K.A., et al. Using Fourier Transform IR Spectroscopy to Analyze Biological Materials. Nat. Protoc. 2014;9:1771–1791. doi: 10.1038/nprot.2014.110.
    1. Türker-Kaya S., Huck C.W. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis. Molecules. 2017;22:168. doi: 10.3390/molecules22010168.
    1. Claßen J., Aupert F., Reardon K.F., Solle D., Scheper T. Spectroscopic Sensors for In-Line Bioprocess Monitoring in Research and Pharmaceutical Industrial Application. Anal. Bioanal. Chem. 2017;409:651–666. doi: 10.1007/s00216-016-0068-x.
    1. De Bruyne S., Speeckaert M.M., Delanghe J.R. Applications of Mid-Infrared Spectroscopy in the Clinical Laboratory Setting. Crit. Rev. Clin. Lab. Sci. 2018;55:1–20. doi: 10.1080/10408363.2017.1414142.
    1. Barth A. Infrared Spectroscopy of Proteins. Biochim. Biophys. Acta BBA—Bioenerg. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004.
    1. Theodoridou K., Vail S., Yu P. Explore Protein Molecular Structure in Endosperm Tissues in Newly Developed Black and Yellow Type Canola Seeds by Using Synchrotron-Based Fourier Transform Infrared Microspectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014;120:421–427. doi: 10.1016/j.saa.2013.10.034.
    1. Smith-Moritz A.M., Chern M., Lao J., Sze-To W.H., Heazlewood J.L., Ronald P.C., Vega-Sánchez M.E. Combining Multivariate Analysis and Monosaccharide Composition Modeling to Identify Plant Cell Wall Variations by Fourier Transform Near Infrared Spectroscopy. Plant. Methods. 2011;7:26. doi: 10.1186/1746-4811-7-26.
    1. Huck C.W. Advances of Infrared Spectroscopy in Natural Product Research. Phytochem. Lett. 2015;11:384–393. doi: 10.1016/j.phytol.2014.10.026.
    1. Manley M. Near-Infrared Spectroscopy and Hyperspectral Imaging: Non-Destructive Analysis of Biological Materials. Chem. Soc. Rev. 2014;43:8200–8214. doi: 10.1039/C4CS00062E.
    1. Padalkar M.V., Pleshko N. Wavelength-Dependent Penetration Depth of near Infrared Radiation into Cartilage. Analyst. 2015;140:2093–2100. doi: 10.1039/C4AN01987C.
    1. Marin T., Moore J. Understanding Near-Infrared Spectroscopy. Adv. Neonatal Care. 2011;11:382–388. doi: 10.1097/ANC.0b013e3182337ebb.
    1. Wang Y., Bellomo R. Cardiac Surgery-Associated Acute Kidney Injury: Risk Factors, Pathophysiology and Treatment. Nat. Rev. Nephrol. 2017;13:697–711. doi: 10.1038/nrneph.2017.119.
    1. Beć K.B., Grabska J., Huck C.W. Near-Infrared Spectroscopy in Bio-Applications. Molecules. 2020;25:2948. doi: 10.3390/molecules25122948.
    1. Siesler H.W., Kawata S., Heise H.M., Ozaki Y. Near-Infrared Spectroscopy: Principles, Instruments, Applications. John Wiley & Sons; New York, NY, USA: 2008.
    1. Ferrari M., Mottola L., Quaresima V. Principles, Techniques, and Limitations of Near Infrared Spectroscopy. Can. J. Appl. Physiol. 2004;29:463–487. doi: 10.1139/h04-031.
    1. Atwood J.L., Gokel G.W., Barbour L.J., editors. Comprehensive Supramolecular Chemistry II. Elsevier; Amsterdam, The Netherlands: 2017.
    1. Palencia M., Lerma T.A., Garcés V., Mora M.A., Martínez J.M., Palencia S.L. Eco-Friendly Functional Polymers: An Approach from Application-Targeted Green Chemistry. 1st ed. Elsevier; Cambridge, UK: 2021. Advances in Green and Sustainable Chemistry.
    1. Beć K.B., Grabska J., Huck C.W. Biomolecular and Bioanalytical Applications of Infrared Spectroscopy—A Review. Anal. Chim. Acta. 2020;1133:150–177. doi: 10.1016/j.aca.2020.04.015.
    1. Smith G.D., Palmer R.A. Fast Time-Resolved Mid-Infrared Spectroscopy Using an Interferometer. In: Chalmers J.M., Griffiths P.R., editors. Handbook of Vibrational Spectroscopy. Wiley; New York, NY, USA: 2001.
    1. Sheppard N. The Historical Development of Experimental Techniques in Vibrational Spectroscopy. In: Chalmers J.M., Griffiths P.R., editors. Handbook of Vibrational Spectroscopy. Wiley; New York, NY, USA: 2001.
    1. Tkachenko N.V. Optical Spectroscopy: Methods and Instrumentations. Elsevier; Burlington, NJ, USA: 2006.
    1. Lasch P. Spectral Pre-Processing for Biomedical Vibrational Spectroscopy and Microspectroscopic Imaging. Chemom. Intell. Lab. Syst. 2012;117:100–114. doi: 10.1016/j.chemolab.2012.03.011.
    1. Bhargava R., Wang S.-Q., Koenig J.L. Route to Higher Fidelity FT-IR Imaging. Appl. Spectrosc. 2000;54:486–495. doi: 10.1366/0003702001949898.
    1. Trevisan J., Angelov P.P., Carmichael P.L., Scott A.D., Martin F.L. Extracting Biological Information with Computational Analysis of Fourier-Transform Infrared (FTIR) Biospectroscopy Datasets: Current Practices to Future Perspectives. Analyst. 2012;137:3202–3215. doi: 10.1039/c2an16300d.
    1. Swain Marcsisin E.J., Uttero C.M., Miljković M., Diem M. Infrared Microspectroscopy of Live Cells in Aqueous Media. Analyst. 2010;135:3227. doi: 10.1039/c0an00548g.
    1. Reddy R.K., Bhargava R. Accurate Histopathology from Low Signal-to-Noise Ratio Spectroscopic Imaging Data. Analyst. 2010;135:2818. doi: 10.1039/c0an00350f.
    1. Chan K.L.A., Kazarian S.G. Aberration-Free FTIR Spectroscopic Imaging of Live Cells in Microfluidic Devices. Analyst. 2013;138:4040–4047. doi: 10.1039/c3an00327b.
    1. Yuan S.-M. Acute Kidney Injury after Pediatric Cardiac Surgery. Pediatr. Neonatol. 2019;60:3–11. doi: 10.1016/j.pedneo.2018.03.007.
    1. Hazle M.A., Gajarski R.J., Aiyagari R., Yu S., Abraham A., Donohue J., Blatt N.B. Urinary Biomarkers and Renal Near-Infrared Spectroscopy Predict Intensive Care Unit Outcomes after Cardiac Surgery in Infants Younger than 6 Months of Age. J. Thorac. Cardiovasc. Surg. 2013;146:861–867.e1. doi: 10.1016/j.jtcvs.2012.12.012.
    1. Owens G.E., King K., Gurney J.G., Charpie J.R. Low Renal Oximetry Correlates With Acute Kidney Injury After Infant Cardiac Surgery. Pediatr. Cardiol. 2011;32:183–188. doi: 10.1007/s00246-010-9839-x.
    1. Joffe R., Al Aklabi M., Bhattacharya S., Cave D., Calleja T., Garros D., Majesic N., Ryerson L., Morgan C. Cardiac Surgery–Associated Kidney Injury in Children and Renal Oximetry. Pediatr. Crit. Care Med. 2018;19:839–845. doi: 10.1097/PCC.0000000000001656.
    1. Hobson C.E., Yavas S., Segal M.S., Schold J.D., Tribble C.G., Layon A.J., Bihorac A. Acute Kidney Injury Is Associated with Increased Long-Term Mortality after Cardiothoracic Surgery. Circulation. 2009;119:2444–2453. doi: 10.1161/CIRCULATIONAHA.108.800011.
    1. Fuhrman D.Y., Kellum J.A. Epidemiology and Pathophysiology of Cardiac Surgery-Associated Acute Kidney Injury. Curr. Opin. Anaesthesiol. 2017;30:60–65. doi: 10.1097/ACO.0000000000000412.
    1. Adams P.S., Vargas D., Baust T., Saenz L., Koh W., Blasiole B., Callahan P.M., Phadke A.S., Nguyen K.N., Domnina Y., et al. Associations of Perioperative Renal Oximetry Via Near-Infrared Spectroscopy, Urinary Biomarkers, and Postoperative Acute Kidney Injury in Infants After Congenital Heart Surgery: Should Creatinine Continue to Be the Gold Standard? Pediatr. Crit. Care Med. 2019;20:27–37. doi: 10.1097/PCC.0000000000001767.
    1. Lopes J.A., Jorge S. The RIFLE and AKIN Classifications for Acute Kidney Injury: A Critical and Comprehensive Review. Clin. Kidney J. 2013;6:8–14. doi: 10.1093/ckj/sfs160.
    1. Zappitelli M., Bernier P.-L., Saczkowski R.S., Tchervenkov C.I., Gottesman R., Dancea A., Hyder A., Alkandari O. A Small Post-Operative Rise in Serum Creatinine Predicts Acute Kidney Injury in Children Undergoing Cardiac Surgery. Kidney Int. 2009;76:885–892. doi: 10.1038/ki.2009.270.
    1. Pedersen K.R., Povlsen J.V., Christensen S., Pedersen J., Hjortholm K., Larsen S.H., Hjortdal V.E. Risk Factors for Acute Renal Failure Requiring Dialysis after Surgery for Congenital Heart Disease in Children. Acta Anaesthesiol. Scand. 2007;51:1344–1349. doi: 10.1111/j.1399-6576.2007.01379.x.
    1. Kist-van Holthe tot Echten J.E., Goedvolk C.A., Doornaar M.B.M.E., van der Vorst M.M.J., Bosman-Vermeeren J.M., Brand R., van der Heijden A.J., Schoof P.H., Hazekamp M.G. Acute Renal Insufficiency and Renal Replacement Therapy After Pediatric Cardiopulmonary Bypass Surgery. Pediatr. Cardiol. 2001;22:321–326. doi: 10.1007/s002460010238.
    1. Liu L., Zhang M., Chen X., Wang L., Xu Z. Prediction Value of Regional Oxygen Saturation in Intestine and Kidney for Acute Kidney Injury in Children with Congenital Heart Disease after Surgery. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2022;51:334–340. doi: 10.3724/zdxbyxb-2022-0069.
    1. Greenberg J.H., Parikh C.R. Biomarkers for Diagnosis and Prognosis of AKI in Children: One Size Does Not Fit All. Clin. J. Am. Soc. Nephrol. 2017;12:1551–1557. doi: 10.2215/CJN.12851216.
    1. Toda Y., Sugimoto K. AKI after Pediatric Cardiac Surgery for Congenital Heart Diseases-Recent Developments in Diagnostic Criteria and Early Diagnosis by Biomarkers. J. Intensive Care. 2017;5:49. doi: 10.1186/s40560-017-0242-z.
    1. Choi D.-K., Kim W.-J., Chin J.-H., Lee E.-H., Don Hahm K., Yeon Sim J., Cheol Choi I. Intraoperative Renal Regional Oxygen Desaturation Can Be a Predictor for Acute Kidney Injury after Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2014;28:564–571. doi: 10.1053/j.jvca.2013.12.005.
    1. Murkin J.M., Arango M. Near-Infrared Spectroscopy as an Index of Brain and Tissue Oxygenation. Br. J. Anaesth. 2009;103:i3–i13. doi: 10.1093/bja/aep299.
    1. Selnes O.A., Gottesman R.F., Grega M.A., Baumgartner W.A., Zeger S.L., McKhann G.M. Cognitive and Neurologic Outcomes after Coronary-Artery Bypass Surgery. N. Engl. J. Med. 2012;366:250–257. doi: 10.1056/NEJMra1100109.
    1. Ruf B., Bonelli V., Balling G., Hörer J., Nagdyman N., Braun S.L., Ewert P., Reiter K. Intraoperative Renal Near-Infrared Spectroscopy Indicates Developing Acute Kidney Injury in Infants Undergoing Cardiac Surgery with Cardiopulmonary Bypass: A Case-Control Study. Crit. Care. 2015;19:27. doi: 10.1186/s13054-015-0760-9.
    1. Ortega-Loubon C., Fernández-Molina M., Fierro I., Jorge-Monjas P., Carrascal Y., Gómez-Herreras J.I., Tamayo E. Postoperative Kidney Oxygen Saturation as a Novel Marker for Acute Kidney Injury after Adult Cardiac Surgery. J. Thorac. Cardiovasc. Surg. 2019;157:2340–2351.e3. doi: 10.1016/j.jtcvs.2018.09.115.
    1. Neunhoeffer F., Wiest M., Sandner K., Renk H., Heimberg E., Haller C., Kumpf M., Schlensak C., Hofbeck M. Non-Invasive Measurement of Renal Perfusion and Oxygen Metabolism to Predict Postoperative Acute Kidney Injury in Neonates and Infants after Cardiopulmonary Bypass Surgery. Br. J. Anaesth. 2016;117:623–634. doi: 10.1093/bja/aew307.
    1. Zhang D., Ouyang C., Zhao X., Cui B., Dai F., Meng L., Ma J. Renal Tissue Desaturation and Acute Kidney Injury in Infant Cardiac Surgery: A Prospective Propensity Score-Matched Cohort Study. Br. J. Anaesth. 2021;127:620–628. doi: 10.1016/j.bja.2021.06.045.
    1. De Keijzer I.N., Poterman M., Absalom A.R., Vos J.J., Mariani M.A., Scheeren T.W.L. Comparison of Renal Region, Cerebral and Peripheral Oxygenation for Predicting Postoperative Renal Impairment after CABG. J. Clin. Monit. Comput. 2022;36:735–743. doi: 10.1007/s10877-021-00701-4.
    1. Gist K.M., Kaufman J., da Cruz E.M., Friesen R.H., Crumback S.L., Linders M., Edelstein C., Altmann C., Palmer C., Jalal D., et al. A Decline in Intraoperative Renal Near-Infrared Spectroscopy Is Associated With Adverse Outcomes in Children Following Cardiac Surgery. Pediatr. Crit. Care Med. 2016;17:342–349. doi: 10.1097/PCC.0000000000000674.
    1. Sakaki K., Kitamura T., Kohira S., Torii S., Mishima T., Hanayama N., Kobayashi K., Ohkubo H., Miyaji K. Regional Thigh Tissue Oxygen Saturation during Cardiopulmonary Bypass Predicts Acute Kidney Injury after Cardiac Surgery. J. Artif. Organs. 2020;23:315–320. doi: 10.1007/s10047-020-01175-y.
    1. Inoue T., Kohira S., Ebine T., Shikata F., Fujii K., Miyaji K. Monitoring of Intraoperative Femoral Oxygenation Predicts Acute Kidney Injury after Pediatric Cardiac Surgery. Int. J. Artif. Organs. 2022;45:981–987. doi: 10.1177/03913988221119527.
    1. Colasacco C., Worthen M., Peterson B., Lamberti J., Spear R. Near-Infrared Spectroscopy Monitoring to Predict Postoperative Renal Insufficiency Following Repair of Congenital Heart Disease. World J. Pediatr. Congenit. Heart Surg. 2011;2:536–540. doi: 10.1177/2150135111411932.
    1. Dorum B.A., Ozkan H., Cetinkaya M., Koksal N. Regional Oxygen Saturation and Acute Kidney Injury in Premature Infants. Pediatr. Int. 2021;63:290–294. doi: 10.1111/ped.14377.
    1. Harer M.W., Adegboro C.O., Richard L.J., McAdams R.M. Non-Invasive Continuous Renal Tissue Oxygenation Monitoring to Identify Preterm Neonates at Risk for Acute Kidney Injury. Pediatr. Nephrol. 2021;36:1617–1625. doi: 10.1007/s00467-020-04855-2.
    1. Bonsante F., Ramful D., Binquet C., Samperiz S., Daniel S., Gouyon J.-B., Iacobelli S. Low Renal Oxygen Saturation at Near-Infrared Spectroscopy on the First Day of Life Is Associated with Developing Acute Kidney Injury in Very Preterm Infants. Neonatology. 2019;115:198–204. doi: 10.1159/000494462.
    1. Rodrigues R.P., Aguiar E.M., Cardoso-Sousa L., Caixeta D.C., Guedes C.C., Siqueira W.L., Maia Y.C.P., Cardoso S.V., Sabino-Silva R. Differential Molecular Signature of Human Saliva Using ATR-FTIR Spectroscopy for Chronic Kidney Disease Diagnosis. Braz. Dent. J. 2019;30:437–445. doi: 10.1590/0103-6440201902228.
    1. De Bruyne S., Van Dorpe J., Himpe J., van Biesen W., Delanghe S., Speeckaert M.M., Delanghe J.R. Detection and Characterization of a Biochemical Signature Associated with Diabetic Nephropathy Using Near-Infrared Spectroscopy on Tissue Sections. J. Clin. Med. 2019;8:1022. doi: 10.3390/jcm8071022.
    1. Varma V.K., Kajdacsy-Balla A., Akkina S.K., Setty S., Walsh M.J. A Label-Free Approach by Infrared Spectroscopic Imaging for Interrogating the Biochemistry of Diabetic Nephropathy Progression. Kidney Int. 2016;89:1153–1159. doi: 10.1016/j.kint.2015.11.027.
    1. Nada A., Bonachea E.M., Askenazi D.J. Acute Kidney Injury in the Fetus and Neonate. Semin. Fetal Neonatal Med. 2017;22:90–97. doi: 10.1016/j.siny.2016.12.001.
    1. Hentschel R., Lödige B., Bulla M. Renal Insufficiency in the Neonatal Period. Clin. Nephrol. 1996;46:54–58.
    1. Cataldi L., Leone R., Moretti U., Mitri B.D., Fanos V., Ruggeri L., Sabatino G., Torcasio F., Zanardo V., Attardo G., et al. Potential Risk Factors for the Development of Acute Renal Failure in Preterm Newborn Infants: A Case-Control Study. Arch. Dis. Child.-Fetal Neonatal Ed. 2005;90:F514–F519. doi: 10.1136/adc.2004.060434.
    1. Rodríguez-Soriano J., Aguirre M., Oliveros R., Vallo A. Long-Term Renal Follow-up of Extremely Low Birth Weight Infants. Pediatr. Nephrol. 2005;20:579–584. doi: 10.1007/s00467-005-1828-6.
    1. Guignard J.P., Matos V., Toth P. The immature kidney. Rev. Med. Suisse Romande. 1995;115:565–574.
    1. Guignard J.P., Gouyon J.B., John E.G. Vasoactive Factors in the Immature Kidney. Pediatr. Nephrol. 1991;5:443–446. doi: 10.1007/BF01453678.
    1. Waters A. Functional Development of the Nephron. In: Geary D.F., Schaefer F., editors. Pediatric Kidney Disease. Springer; Berlin/Heidelberg, Germany: 2016. pp. 249–276.
    1. Stritzke A., Thomas S., Amin H., Fusch C., Lodha A. Renal Consequences of Preterm Birth. Mol. Cell. Pediatr. 2017;4:2. doi: 10.1186/s40348-016-0068-0.
    1. Bullen A., Liu Z.Z., Hepokoski M., Li Y., Singh P. Renal Oxygenation and Hemodynamics in Kidney Injury. Nephron. 2017;137:260–263. doi: 10.1159/000477830.
    1. Singh P., Ricksten S.-E., Bragadottir G., Redfors B., Nordquist L. Renal Oxygenation and Haemodynamics in Acute Kidney Injury and Chronic Kidney Disease. Clin. Exp. Pharmacol. Physiol. 2013;40:138–147. doi: 10.1111/1440-1681.12036.
    1. Harer M.W., Chock V.Y. Renal Tissue Oxygenation Monitoring-An Opportunity to Improve Kidney Outcomes in the Vulnerable Neonatal Population. Front. Pediatr. 2020;8:241. doi: 10.3389/fped.2020.00241.
    1. Chen T.K., Knicely D.H., Grams M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA. 2019;322:1294–1304. doi: 10.1001/jama.2019.14745.
    1. Coresh J., Selvin E., Stevens L.A., Manzi J., Kusek J.W., Eggers P., Van Lente F., Levey A.S. Prevalence of Chronic Kidney Disease in the United States. JAMA. 2007;298:2038–2047. doi: 10.1001/jama.298.17.2038.
    1. Hsu C., Vittinghoff E., Lin F., Shlipak M.G. The Incidence of End-Stage Renal Disease Is Increasing Faster than the Prevalence of Chronic Renal Insufficiency. Ann. Intern. Med. 2004;141:95–101. doi: 10.7326/0003-4819-141-2-200407200-00007.
    1. Jha V., Garcia-Garcia G., Iseki K., Li Z., Naicker S., Plattner B., Saran R., Wang A.Y.-M., Yang C.-W. Chronic Kidney Disease: Global Dimension and Perspectives. Lancet. 2013;382:260–272. doi: 10.1016/S0140-6736(13)60687-X.
    1. Plantinga L.C., Boulware L.E., Coresh J., Stevens L.A., Miller E.R., Saran R., Messer K.L., Levey A.S., Powe N.R. Patient Awareness of Chronic Kidney Disease: Trends and Predictors. Arch. Intern. Med. 2008;168:2268–2275. doi: 10.1001/archinte.168.20.2268.
    1. Levin A., Stevens P.E., Bilous R.W., Coresh J., Francisco A.L.M.D., Jong P.E.D., Griffith K.E., Hemmelgarn B.R., Iseki K., Lamb E.J., et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013;3:1–150. doi: 10.1038/kisup.2012.73.
    1. Oliver K.V., Maréchal A., Rich P.R. Effects of the Hydration State on the Mid-Infrared Spectra of Urea and Creatinine in Relation to Urine Analyses. Appl. Spectrosc. 2016;70:983–994. doi: 10.1177/0003702816641263.
    1. Genovese G., Friedman D.J., Ross M.D., Lecordier L., Uzureau P., Freedman B.I., Bowden D.W., Langefeld C.D., Oleksyk T.K., Uscinski Knob A.L., et al. Association of Trypanolytic ApoL1 Variants with Kidney Disease in African Americans. Science. 2010;329:841–845. doi: 10.1126/science.1193032.
    1. Naik R.P., Derebail V.K., Grams M.E., Franceschini N., Auer P.L., Peloso G.M., Young B.A., Lettre G., Peralta C.A., Katz R., et al. Association of Sickle Cell Trait with Chronic Kidney Disease and Albuminuria in African Americans. JAMA. 2014;312:2115–2125. doi: 10.1001/jama.2014.15063.
    1. Tzur S., Rosset S., Shemer R., Yudkovsky G., Selig S., Tarekegn A., Bekele E., Bradman N., Wasser W.G., Behar D.M., et al. Missense Mutations in the APOL1 Gene Are Highly Associated with End Stage Kidney Disease Risk Previously Attributed to the MYH9 Gene. Hum. Genet. 2010;128:345–350. doi: 10.1007/s00439-010-0861-0.
    1. O’Seaghdha C.M., Parekh R.S., Hwang S.-J., Li M., Köttgen A., Coresh J., Yang Q., Fox C.S., Kao W.H.L. The MYH9/APOL1 Region and Chronic Kidney Disease in European-Americans. Hum. Mol. Genet. 2011;20:2450–2456. doi: 10.1093/hmg/ddr118.
    1. Bader Clinical Significance of Saliva Urea and Creatinine Levels in Patients with Chronic Kidney Disease. [(accessed on 21 December 2022)]. Available online: .
    1. Arregger A.L., Cardoso E.M.L., Tumilasci O., Contreras L.N. Diagnostic Value of Salivary Cortisol in End Stage Renal Disease. Steroids. 2008;73:77–82. doi: 10.1016/j.steroids.2007.09.001.
    1. Blicharz T.M., Rissin D.M., Bowden M., Hayman R.B., DiCesare C., Bhatia J.S., Grand-Pierre N., Siqueira W.L., Helmerhorst E.J., Loscalzo J., et al. Use of Colorimetric Test Strips for Monitoring the Effect of Hemodialysis on Salivary Nitrite and Uric Acid in Patients with End-Stage Renal Disease: A Proof of Principle. Clin. Chem. 2008;54:1473–1480. doi: 10.1373/clinchem.2008.105320.
    1. Savica V., Calò L., Santoro D., Monardo P., Granata A., Bellinghieri G. Salivary Phosphate Secretion in Chronic Kidney Disease. J. Ren. Nutr. 2008;18:87–90. doi: 10.1053/j.jrn.2007.10.018.
    1. Yajamanam N., Vinapamula K.S., Sivakumar V., Bitla A.R., Rao P.V.L.N.S. Utility of Saliva as a Sample to Assess Renal Function and Estimated Glomerular Filtration Rate. Saudi J. Kidney Dis. Transplant. 2016;27:312. doi: 10.4103/1319-2442.178549.
    1. Raimann J.G., Kirisits W., Gebetsroither E., Carter M., Callegari J., Rosales L., Levin N.W., Kotanko P. Saliva Urea Dipstick Test: Application in Chronic Kidney Disease. Clin. Nephrol. 2011;76:23–28. doi: 10.5414/CN106826.
    1. Evans R.D.R., Cooke W., Hemmila U., Calice-Silva V., Raimann J., Craik A., Mandula C., Mvula P., Msusa A., Dreyer G., et al. A Salivary Urea Nitrogen Dipstick to Detect Obstetric-Related Acute Kidney Disease in Malawi. Kidney Int. Rep. 2018;3:178–184. doi: 10.1016/j.ekir.2017.10.002.
    1. Stumpe M.C., Grubmüller H. Aqueous Urea Solutions: Structure, Energetics, and Urea Aggregation. J. Phys. Chem. B. 2007;111:6220–6228. doi: 10.1021/jp066474n.
    1. Henn R., Kirchler C.G., Schirmeister Z.L., Roth A., Mäntele W., Huck C.W. Hemodialysis Monitoring Using Mid- and near-Infrared Spectroscopy with Partial Least Squares Regression. J. Biophotonics. 2018;11:e201700365. doi: 10.1002/jbio.201700365.
    1. Eddy C.V., Arnold M.A. Near-Infrared Spectroscopy for Measuring Urea in Hemodialysis Fluids. Clin. Chem. 2001;47:1279–1286. doi: 10.1093/clinchem/47.7.1279.
    1. Eddy C.V., Flanigan M., Arnold M.A. Near-Infrared Spectroscopic Measurement of Urea in Dialysate Samples Collected during Hemodialysis Treatments. Appl. Spectrosc. 2003;57:1230–1235. doi: 10.1366/000370203769699081.
    1. Jensen P.S., Bak J., Ladefoged S., Andersson-Engels S. Determination of Urea, Glucose, and Phosphate in Dialysate with Fourier Transform Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004;60:899–905. doi: 10.1016/S1386-1425(03)00317-2.
    1. Snoer Jensen P., Bak J., Ladefoged S., Andersson-Engels S., Friis-Hansen L. Online Monitoring of Urea Concentration in Dialysate with Dual-Beam Fourier-Transform near-Infrared Spectroscopy. J. Biomed. Opt. 2004;9:553–557. doi: 10.1117/1.1689337.
    1. Cho D.S., Olesberg J.T., Flanigan M.J., Arnold M.A. On-Line near-Infrared Spectrometer to Monitor Urea Removal in Real Time during Hemodialysis. Appl. Spectrosc. 2008;62:866–872. doi: 10.1366/000370208785284411.
    1. Yano T., Matsushige H., Suehara K., Nakano Y. Measurement of the Concentrations of Glucose and Lactic Acid in Peritoneal Dialysis Solutions Using Near-Infrared Spectroscopy. J. Biosci. Bioeng. 2000;90:540–544. doi: 10.1016/S1389-1723(01)80037-2.
    1. Roth A., Dornuf F., Klein O., Schneditz D., Hafner-Gießauf H., Mäntele W. Infrared Spectroscopy in Hemodialysis: Reagent-Free Monitoring of Patient Detoxification by Infrared Spectroscopy. Anal. Bioanal. Chem. 2012;403:391–399. doi: 10.1007/s00216-012-5880-3.
    1. Bel’skaya L.V., Sarf E.A., Solomatin D.V. Application of FTIR Spectroscopy for Quantitative Analysis of Blood Serum: A Preliminary Study. Diagnostics. 2021;11:2391. doi: 10.3390/diagnostics11122391.
    1. Ito K., Ookawara S., Uchida T., Hayasaka H., Kofuji M., Miyazawa H., Aomatsu A., Ueda Y., Hirai K., Morishita Y. Measurement of Tissue Oxygenation Using Near-Infrared Spectroscopy in Patients Undergoing Hemodialysis. J. Vis. Exp. 2020;164:e61721. doi: 10.3791/61721.
    1. Wong A., Robinson L., Soroush S., Suresh A., Yang D., Madu K., Harhay M.N., Pourrezaei K. Assessment of Cerebral Oxygenation Response to Hemodialysis Using Near-Infrared Spectroscopy (NIRS): Challenges and Solutions. J. Innov. Opt. Health Sci. 2021;14:2150016. doi: 10.1142/S1793545821500164.
    1. Matsukawa S., Kai S., Mizota T. Near-Infrared Spectroscopy Underestimates Cerebral Oxygenation in Hemodialysis Patients. J. Anesth. 2019;33:478–481. doi: 10.1007/s00540-019-02650-4.
    1. Wolfgram D.F. Intradialytic Cerebral Hypoperfusion as Mechanism for Cognitive Impairment in Patients on Hemodialysis. J. Am. Soc. Nephrol. 2019;30:2052–2058. doi: 10.1681/ASN.2019050461.
    1. MacEwen C., Sutherland S., Daly J., Pugh C., Tarassenko L. Relationship between Hypotension and Cerebral Ischemia during Hemodialysis. J. Am. Soc. Nephrol. 2017;28:2511–2520. doi: 10.1681/ASN.2016060704.
    1. Ookawara S., Ito K., Sasabuchi Y., Ueda Y., Hayasaka H., Kofuji M., Uchida T., Horigome K., Aikawa T., Imada S., et al. Association between Cerebral Oxygenation, as Evaluated with Near-Infrared Spectroscopy, and Cognitive Function in Patients Undergoing Hemodialysis. Nephron. 2021;145:171–178. doi: 10.1159/000513327.
    1. Polinder-Bos H.A., Elting J.W.J., Aries M.J., García D.V., Willemsen A.T., van Laar P.J., Kuipers J., Krijnen W.P., Slart R.H., Luurtsema G., et al. Changes in Cerebral Oxygenation and Cerebral Blood Flow during Hemodialysis—A Simultaneous near-Infrared Spectroscopy and Positron Emission Tomography Study. J. Cereb. Blood Flow Metab. 2020;40:328–340. doi: 10.1177/0271678X18818652.
    1. Ueda Y., Ookawara S., Ito K., Sasabuchi Y., Hayasaka H., Kofuji M., Uchida T., Imai S., Kiryu S., Minato S., et al. Association between Hepatic Oxygenation on Near-Infrared Spectroscopy and Clinical Factors in Patients Undergoing Hemodialysis. PLoS ONE. 2021;16:e0259064. doi: 10.1371/journal.pone.0259064.
    1. Bruyne S.D., Himpe J., Delanghe S.E., Glorieux G., Biesen W.V., Buyzere M.L.D., Speeckaert M.M., Delanghe J.R. Carbamoylated Nail Proteins as Assessed by Near-Infrared Analysis Are Associated with Load of Uremic Toxins and Mortality in Hemodialysis Patients. Toxins. 2020;12:83. doi: 10.3390/toxins12020083.
    1. Delrue C., Speeckaert R., Delanghe J.R., Speeckaert M.M. The Role of Vitamin D in Diabetic Nephropathy: A Translational Approach. Int. J. Mol. Sci. 2022;23:807. doi: 10.3390/ijms23020807.
    1. Selby N.M., Taal M.W. An Updated Overview of Diabetic Nephropathy: Diagnosis, Prognosis, Treatment Goals and Latest Guidelines. Diabetes Obes. Metab. 2020;22((Suppl. S1)):3–15. doi: 10.1111/dom.14007.
    1. Koye D.N., Shaw J.E., Reid C.M., Atkins R.C., Reutens A.T., Magliano D.J. Incidence of Chronic Kidney Disease among People with Diabetes: A Systematic Review of Observational Studies. Diabet. Med. 2017;34:887–901. doi: 10.1111/dme.13324.
    1. Samsu N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Res. Int. 2021;2021:1497449. doi: 10.1155/2021/1497449.
    1. Lin Y.-C., Chang Y.-H., Yang S.-Y., Wu K.-D., Chu T.-S. Update of Pathophysiology and Management of Diabetic Kidney Disease. J. Formos. Med. Assoc. 2018;117:662–675. doi: 10.1016/j.jfma.2018.02.007.
    1. Prentice B.M., Caprioli R.M., Vuiblet V. Label-Free Molecular Imaging of the Kidney. Kidney Int. 2017;92:580–598. doi: 10.1016/j.kint.2017.03.052.
    1. Sethi S., De Vriese A.S., Fervenza F.C. Acute Glomerulonephritis. Lancet. 2022;399:1646–1663. doi: 10.1016/S0140-6736(22)00461-5.
    1. Sethi S. Etiology-Based Diagnostic Approach to Proliferative Glomerulonephritis. Am. J. Kidney Dis. 2014;63:561–566. doi: 10.1053/j.ajkd.2013.11.019.
    1. Sethi S., Fervenza F.C. Standardized Classification and Reporting of Glomerulonephritis. Nephrol. Dial. Transplant. 2019;34:193–199. doi: 10.1093/ndt/gfy220.
    1. Baker M.J., Hussain S.R., Lovergne L., Untereiner V., Hughes C., Lukaszewski R.A., Thiéfin G., Sockalingum G.D. Developing and Understanding Biofluid Vibrational Spectroscopy: A Critical Review. Chem. Soc. Rev. 2016;45:1803–1818. doi: 10.1039/C5CS00585J.
    1. Mitchell A.L., Gajjar K.B., Theophilou G., Martin F.L., Martin-Hirsch P.L. Vibrational Spectroscopy of Biofluids for Disease Screening or Diagnosis: Translation from the Laboratory to a Clinical Setting. J. Biophotonics. 2014;7:153–165. doi: 10.1002/jbio.201400018.
    1. Kazarian S.G., Chan K.L.A. ATR-FTIR Spectroscopic Imaging: Recent Advances and Applications to Biological Systems. Analyst. 2013;138:1940–1951. doi: 10.1039/c3an36865c.

Source: PubMed

3
Subscribe