Traditional and Advanced Cell Cultures in Hematopoietic Stem Cell Studies

Antonio Carlos Ribeiro-Filho, Débora Levy, Jorge Luis Maria Ruiz, Marluce da Cunha Mantovani, Sérgio Paulo Bydlowski, Antonio Carlos Ribeiro-Filho, Débora Levy, Jorge Luis Maria Ruiz, Marluce da Cunha Mantovani, Sérgio Paulo Bydlowski

Abstract

Hematopoiesis is the main function of bone marrow. Human hematopoietic stem and progenitor cells reside in the bone marrow microenvironment, making it a hotspot for the development of hematopoietic diseases. Numerous alterations that correspond to disease progression have been identified in the bone marrow stem cell niche. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells determine the balance between the proliferation, differentiation and homeostasis of the stem cell compartment. Changes in this tightly regulated network can provoke malignant transformation. However, our understanding of human hematopoiesis and the associated niche biology remains limited due to accessibility to human material and the limits of in vitro culture models. Traditional culture systems for human hematopoietic studies lack microenvironment niches, spatial marrow gradients, and dense cellularity, rendering them incapable of effectively translating marrow physiology ex vivo. This review will discuss the importance of 2D and 3D culture as a physiologically relevant system for understanding normal and abnormal hematopoiesis.

Keywords: 2D culture; 3D culture; hematopoiesis; hematopoietic stem cells; stem cell culture.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Hierarchy of human hematopoiesis. LT-HSC: Long Term-Hematopoietic Stem Cell; ST-HSC: Short Term-Hematopoietic Stem Cell; MPP: Multipotent Progenitor; OPP: Oligopotent Progenitor; LRP: Lineage Restricted Progenitor; MEC: Mature Effector Cell. The markers of the most important lineages are listed: Common Lymphoid Progenitor (CLP); Common Myeloid Progenitor (CMP); Megakaryocyte-Erythrocyte Progenitor (MEP); Granulocyte-Macrophage Progenitor (GMP). Restricted lineage progenitor cells: Megakaryocyte Progenitor (MkP); Erythrocytic Progenitor (EryP); Granulocytic Progenitor (GrP); Monocyte Progenitor (MncP); Dendritic Progenitor Cell (Pro DC); Progenitor Cell-T (Pro-T); Progenitor Cell-B (Pro-B); Progenitor Cell-Nk (Pro-Nk).
Figure 2
Figure 2
Two-dimensional (2D) and three-dimensional (3D) cell culture. (A) Schematic model of 2D cell culture. Standard model of 2D cell culture. Cells are cultured as a single layer in a culture flask. (B) Schematic model of 3D cell culture. 3D model of cell culture giving the notion of height, width and depth; cells are surrounded by the medium. (C) Example of 2D culture. HEK 293 cells in 2D cell culture; the adherence to a flat surface provides mechanical support for growth in monolayers. Scale bar 400 μm. (D) Example of 3D culture. HEK 293 cells 3D cell culture in agarose allowing the cells to grow or interact with their surroundings in all three dimensions. Scale bar 1000 μm.

References

    1. Ng A.P., Alexander W.S. Haematopoietic stem cells: Past, present and future. Cell Death Discov. 2017;3:17002. doi: 10.1038/cddiscovery.2017.2.
    1. Chotinantakul K., Leeanansaksiri W. Hematopoietic stem cell development, niches, and signaling pathways. Bone Marrow Res. 2012;2012:270425. doi: 10.1155/2012/270425.
    1. Wasnik S., Tiwari A., Kirkland M.A., Pande G. Osteohematopoietic stem cell niches in bone marrow. Int. Rev. Cell Mol. Biol. 2012;298:95–133.
    1. Bianco P., Robey P.G. Stem cells in tissue engineering. Nature. 2001;414:118–121. doi: 10.1038/35102181.
    1. Calvi L.M., Link D.C. Cellular complexity of the bone marrow hematopoietic stem cell niche. Calcif. Tissue Int. 2014;94:112–124. doi: 10.1007/s00223-013-9805-8.
    1. Nilsson S.K., Johnston H.M., Coverdale J.A. Spatial localization of transplanted hemopoietic stem cells: Inferences for the localization of stem cell niches. Blood. 2001;97:2293–2299. doi: 10.1182/blood.V97.8.2293.
    1. Kiel M.J., Morrison S.J. Maintaining hematopoietic stem cells in the vascular niche. Immunity. 2006;25:862–864. doi: 10.1016/j.immuni.2006.11.005.
    1. Orkin S.H., Zon L.I. Hematopoiesis: An evolving paradigm for stem cell biology. Cell. 2008;132:631–644. doi: 10.1016/j.cell.2008.01.025.
    1. Calvi L.M., Adams G.B., Weibrecht K.W., Weber J.M., Olson D.P., Knight M.C., Martin R.P., Schipani E., Divieti P., Bringhurst F.R., et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–846. doi: 10.1038/nature02040.
    1. Oh I.H., Kwon K.R. Concise review: Multiple niches for hematopoietic stem cell regulations. Stem Cells. 2010;28:1243–1249.
    1. Crane G.M., Jeffery E., Morrison S.J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 2017;17:573–590. doi: 10.1038/nri.2017.53.
    1. Nies C., Gottwald E. Advances in Tissue Engineering and Regenerative Medicine Artificial Hematopoietic Stem Cell Niches-Dimensionality Matters. Adv. Tissue Eng. Regen. Med. 2017;2:42.
    1. Gomariz A., Isringhausen S., Helbling P.M., Nombela-Arrieta C. Imaging and spatial analysis of hematopoietic stem cell niches. Ann. N. Y. Acad. Sci. 2019 doi: 10.1111/nyas.14184.
    1. Blank U., Karlsson G., Karlsson S. Signaling pathways governing stem-cell fate. Blood. 2008;111:492–503. doi: 10.1182/blood-2007-07-075168.
    1. Majka M., Janowska-Wieczorek A., Ratajczak J., Ehrenman K., Pietrzkowski Z., Kowalska M.A., Gewirtz A.M., Emerson S.G., Ratajczak M.Z. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001;97:3075–3085. doi: 10.1182/blood.V97.10.3075.
    1. Jafari M., Ghadami E., Dadkhah T., Akhavan-Niaki H. PI3k/AKT signaling pathway: Erythropoiesis and beyond. J. Cell. Physiol. 2019;234:2373–2385. doi: 10.1002/jcp.27262.
    1. Cerdan C., Bhatia M. Novel roles for Notch, Wnt and Hedgehog in hematopoesis derived from human pluripotent stem cells. Int. J. Dev. Biol. 2010;54:955–963. doi: 10.1387/ijdb.103067cc.
    1. Aster J.C., Pear W.S., Blacklow S.C. Notch signaling in leukemia. Annu. Rev. Pathol. 2008;3:587–613. doi: 10.1146/annurev.pathmechdis.3.121806.154300.
    1. Tekmal R.R., Keshava N. Role of MMTV integration locus cellular genes in breast cancer. Front. Biosci. 1997;2:519–526.
    1. Duncan A.W., Rattis F.M., DiMascio L.N., Congdon K.L., Pazianos G., Zhao C., Pazianos G., Zhao C., Yoon K., Cook J.M., et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol. 2005;6:314–322. doi: 10.1038/ni1164.
    1. Gordon M.D., Nusse R. Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 2006;281:22429–22433. doi: 10.1074/jbc.R600015200.
    1. Dyer M.A., Farrington S.M., Mohn D., Munday J.R., Baron M.H. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development. 2001;128:1717–1730.
    1. Shi X., Wei S., Simms K.J., Cumpston D.N., Ewing T.J., Zhang P. Sonic Hedgehog Signaling Regulates Hematopoietic Stem/Progenitor Cell Activation during the Granulopoietic Response to Systemic Bacterial Infection. Front. Immunol. 2018;9:349. doi: 10.3389/fimmu.2018.00349.
    1. Mendez-Ferrer S., Michurina T.V., Ferraro F., Mazloom A.R., Macarthur B.D., Lira S.A., Scadden D.T., Ma’ayan A., Enikolopov G.N., Frenette P.S. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–834. doi: 10.1038/nature09262.
    1. McNiece I.K., Briddell R.A. Stem cell factor. J. Leukoc. Biol. 1995;58:14–22. doi: 10.1002/jlb.58.1.14.
    1. Edling C.E., Hallberg B. c-Kit--a hematopoietic cell essential receptor tyrosine kinase. Int. J. Biochem. Cell Biol. 2007;39:1995–1998. doi: 10.1016/j.biocel.2006.12.005.
    1. Nakamura-Ishizu A., Takizawa H., Suda T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development. 2014;141:4656–4666. doi: 10.1242/dev.106575.
    1. Solar G.P., Kerr W.G., Zeigler F.C., Hess D., Donahue C., de Sauvage F.J., Eaton D.L. Role of c-mpl in early hematopoiesis. Blood. 1998;92:4–10. doi: 10.1182/blood.V92.1.4.413k38_4_10.
    1. Mao A.S., Mooney D.J. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA. 2015;112:14452–14459. doi: 10.1073/pnas.1508520112.
    1. Duval K., Grover H., Han L.H., Mou Y., Pegoraro A.F., Fredberg J., Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda) 2017;32:266–277.
    1. Lerescu L., Tucureanu C., Caras I., Neagu S., Melinceanu L., Salageanu A. Primary cell culture of human adenocarcinomas--practical considerations. Roum. Arch. Microbiol. Immunol. 2008;67:55–66.
    1. Lopes A.A., Peranovich T.M., Maeda N.Y., Bydlowski S.P. Differential effects of enzymatic treatments on the storage and secretion of von Willebrand factor by human endothelial cells. Thromb. Res. 2001;101:291–297. doi: 10.1016/S0049-3848(00)00401-1.
    1. Janz Fde L., Debes Ade A., Cavaglieri Rde C., Duarte S.A., Romao C.M., Moron A.F., Zugaib M., Bydlowski S.P. Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. J. Biomed. Biotechnol. 2012;2012:649353.
    1. Ruiz J.L., Fernandes L.R., Levy D., Bydlowski S.P. Interrelationship between ATP-binding cassette transporters and oxysterols. Biochem. Pharmacol. 2013;86:80–88. doi: 10.1016/j.bcp.2013.02.033.
    1. Kirchhoff C., Araki Y., Huhtaniemi I., Matusik R.J., Osterhoff C., Poutanen M., Samalecos A., Sipilä P., Suzuki K., Orgebin-Criste M.C. Immortalization by large T-antigen of the adult epididymal duct epithelium. Mol. Cell. Endocrinol. 2004;216:83–94. doi: 10.1016/j.mce.2003.10.073.
    1. Kaur G., Dufour J.M. Cell lines: Valuable tools or useless artifacts. Spermatogenesis. 2012;2:1–5. doi: 10.4161/spmg.19885.
    1. Rosa Fernandes L., Stern A.C., Cavaglieri R.C., Nogueira F.C., Domont G., Palmisano G., Bydlowskia S.P. 7-Ketocholesterol overcomes drug resistance in chronic myeloid leukemia cell lines beyond MDR1 mechanism. J. Proteomics. 2017;151:12–23. doi: 10.1016/j.jprot.2016.06.011.
    1. Romano P., Manniello A., Aresu O., Armento M., Cesaro M., Parodi B. Cell Line Data Base: Structure and recent improvements towards molecular authentication of human cell lines. Nucleic Acids Res. 2009;37:D925–D932. doi: 10.1093/nar/gkn730.
    1. Miki Y., Ono K., Hata S., Suzuki T., Kumamoto H., Sasano H. The advantages of co-culture over mono cell culture in simulating in vivo environment. J. Steroid Biochem. Mol. Biol. 2012;131:68–75. doi: 10.1016/j.jsbmb.2011.12.004.
    1. Eridani S., Sgaramella V., Cova L. Stem cells: From embryology to cellular therapy? An appraisal of the present state of art. Cytotechnology. 2004;44:125–141. doi: 10.1007/s10616-004-2067-6.
    1. Csaszar E., Kirouac D.C., Yu M., Wang W., Qiao W., Cooke M.P., Boitano A.E., Ito C., Zandstra P. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell. 2012;10:218–229. doi: 10.1016/j.stem.2012.01.003.
    1. Le Blanc K., Frassoni F., Ball L., Locatelli F., Roelofs H., Lewis I., Lanino E., Sundberg B., Bernardo B.M., Remberger M., et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet. 2008;371:1579–1586. doi: 10.1016/S0140-6736(08)60690-X.
    1. Zon L.I. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature. 2008;453:306–313. doi: 10.1038/nature07038.
    1. Heike T., Nakahata T. Ex vivo expansion of hematopoietic stem cells by cytokines. Biochim. Biophys. Acta. 2002;1592:313–321. doi: 10.1016/S0167-4889(02)00324-5.
    1. Ando K., Yahata T., Sato T., Miyatake H., Matsuzawa H., Oki M., Miyoshi H., Tsuji T., Kato S., Hotta T. Direct evidence for ex vivo expansion of human hematopoietic stem cells. Blood. 2006;107:3371–3377. doi: 10.1182/blood-2005-08-3108.
    1. McNiece I.K., Stoney G.B., Kern B.P., Briddell R.A. CD34+ cell selection from frozen cord blood products using the Isolex 300i and CliniMACS CD34 selection devices. J. Hematother. 1998;7:457–461. doi: 10.1089/scd.1.1998.7.457.
    1. Xie J., Zhang C. Ex vivo expansion of hematopoietic stem cells. Sci. China Life Sci. 2015;58:839–853. doi: 10.1007/s11427-015-4895-3.
    1. Vaidya A., Kale V. Hematopoietic Stem Cells, Their Niche, and the Concept of Co-Culture Systems: A Critical Review. J. Stem Cells. 2015;10:13–31.
    1. Breems D.A., Blokland E.A., Siebel K.E., Mayen A.E., Engels L.J., Ploemacher R.E. Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells. Blood. 1998;91:111–117. doi: 10.1182/blood.V91.1.111.
    1. Walenda T., Bork S., Horn P., Wein F., Saffrich R., Diehlmann A., Eckstein V., Ho A.D., Wagner W. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J. Cell Mol. Med. 2010;14:337–350.
    1. Crisan M., Dzierzak E. The many faces of hematopoietic stem cell heterogeneity. Development. 2016;143:4571–4581. doi: 10.1242/dev.114231.
    1. Boulais P.E., Frenette P.S. Making sense of hematopoietic stem cell niches. Blood. 2015;125:2621–2629. doi: 10.1182/blood-2014-09-570192.
    1. Takano T., Li Y.J., Kukita A., Yamaza T., Ayukawa Y., Moriyama K., Uehara N., Nomiyama H., Koyano K., Kukita T. Mesenchymal stem cells markedly suppress inflammatory bone destruction in rats with adjuvant-induced arthritis. Lab. Invest. 2014;94:286–296. doi: 10.1038/labinvest.2013.152.
    1. Haynesworth S.E., Baber M.A., Caplan A.I. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-1 alpha. J. Cell Physiol. 1996;166:585–592. doi: 10.1002/(SICI)1097-4652(199603)166:3<585::AID-JCP13>;2-6.
    1. Devine S.M., Hoffman R. Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr. Opin. Hematol. 2000;7:358–363. doi: 10.1097/00062752-200011000-00007.
    1. Li Z., Qian P., Shao W., Shi H., He X.C., Gogol M., Yu Z., Wang Y., Qi M., Zhu Y., et al. Suppression of m(6)A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res. 2018;28:904–917. doi: 10.1038/s41422-018-0072-0.
    1. Ravi M., Paramesh V., Kaviya S.R., Anuradha E., Solomon F.D. 3D cell culture systems: Advantages and applications. J. Cell Physiol. 2015;230:16–26. doi: 10.1002/jcp.24683.
    1. Murray-Dunning C., McArthur S.L., Sun T., McKean R., Ryan A.J., Haycock J.W. Three-dimensional alignment of schwann cells using hydrolysable microfiber scaffolds: Strategies for peripheral nerve repair. Methods Mol. Biol. 2011;695:155–166.
    1. Tee D.E.H. Culture of Animal Cells: A Manual of Basic Technique. J. R. Soc. Med. 1984;77:902–903.
    1. Melissinaki V., Gill A.A., Ortega I., Vamvakaki M., Ranella A., Haycock J.W., Fotakis C., Farsari M., Claeyssens F. Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication. 2011;3:045005. doi: 10.1088/1758-5082/3/4/045005.
    1. Whitesides G.M. The origins and the future of microfluidics. Nature. 2006;442:368–373. doi: 10.1038/nature05058.
    1. Mehling M., Tay S. Microfluidic cell culture. Curr. Opin. Biotechnol. 2014;25:95–102. doi: 10.1016/j.copbio.2013.10.005.
    1. El-Ali J., Sorger P.K., Jensen K.F. Cells on chips. Nature. 2006;442:403–411. doi: 10.1038/nature05063.
    1. Dittrich P.S., Manz A. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov. 2006;5:210–218. doi: 10.1038/nrd1985.
    1. Pampaloni F., Reynaud E.G., Stelzer E.H. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 2007;8:839–845. doi: 10.1038/nrm2236.
    1. Haycock J.W. 3D cell culture: A review of current approaches and techniques. Methods Mol. Biol. 2011;695:1–15.
    1. Toda S., Watanabe K., Yokoi F., Matsumura S., Suzuki K., Ootani A., Aoki S., Koike N., Sugihara H. A new organotypic culture of thyroid tissue maintains three-dimensional follicles with C cells for a long term. Biochem. Biophys. Res. Commun. 2002;294:906–911. doi: 10.1016/S0006-291X(02)00561-2.
    1. Lancaster M.A., Huch M. Disease modelling in human organoids. Dis. Model Mech. 2019;12 doi: 10.1242/dmm.039347.
    1. Lancaster M.A., Knoblich J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 2014;345:1247125. doi: 10.1126/science.1247125.
    1. Seet C.S., He C., Bethune M.T., Li S., Chick B., Gschweng E.H., Zhu Y., Kim K., Kohn D.B., Baltimore D., et al. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat. Methods. 2017;14:521–530. doi: 10.1038/nmeth.4237.
    1. Yuhas J.M., Li A.P., Martinez A.O., Ladman A.J. A simplified method for production and growth of multicellular tumor spheroids. Cancer Res. 1977;37:3639–3643.
    1. Fennema E., Rivron N., Rouwkema J., van Blitterswijk C., de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013;31:108–115. doi: 10.1016/j.tibtech.2012.12.003.
    1. Tanner K., Gottesman M.M. Beyond 3D culture models of cancer. Sci. Transl. Med. 2015;7:283ps9. doi: 10.1126/scitranslmed.3009367.
    1. Gillet J.P., Calcagno A.M., Varma S., Marino M., Green L.J., Vora M.I., Patel C., Orina J.N., Eliseeva T.A., Singal V., et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl. Acad. Sci. USA. 2011;108:18708–18713. doi: 10.1073/pnas.1111840108.
    1. Li Y., Huang G., Li M., Wang L., Elson E.L., Jian Lu T., Genin G.M., Xu F. An approach to quantifying 3D responses of cells to extreme strain. Sci. Rep. 2016;6:19550. doi: 10.1038/srep19550.
    1. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polymer Sci. 2011;2011 doi: 10.1155/2011/290602.
    1. Kleinman H.K., Philp D., Hoffman M.P. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotechnol. 2003;14:526–532. doi: 10.1016/j.copbio.2003.08.002.
    1. Raic A., Naolou T., Mohra A., Chatterjee C., Lee-Thedieck C. 3D models of the bone marrow in health and disease: Yesterday, today and tomorrow. MRS Commun. 2019;9:37–52. doi: 10.1557/mrc.2018.203.
    1. Llames S., Garcia E., Otero Hernandez J., Meana A. Tissue bioengineering and artificial organs. Adv. Exp. Med. Biol. 2012;741:314–336.
    1. Futrega K., Atkinson K., Lott W.B., Doran M.R. Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion. Tissue Eng. Part C Methods. 2017;23:200–218. doi: 10.1089/ten.tec.2016.0329.
    1. Leisten I., Kramann R., Ventura Ferreira M.S., Bovi M., Neuss S., Ziegler P., Wagner W., Knüchel R., Schneider R.K. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials. 2012;33:1736–1747. doi: 10.1016/j.biomaterials.2011.11.034.
    1. Rodling L., Schwedhelm I., Kraus S., Bieback K., Hansmann J., Lee-Thedieck C. 3D models of the hematopoietic stem cell niche under steady-state and active conditions. Sci. Rep. 2017;7:4625. doi: 10.1038/s41598-017-04808-0.
    1. Reticker-Flynn N.E., Malta D.F., Winslow M.M., Lamar J.M., Xu M.J., Underhill G.H., Hynes R.O., Jacks T.E., Bhatia S.N. A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat. Commun. 2012;3:1122. doi: 10.1038/ncomms2128.
    1. Chen Y., Gao D., Wang Y., Lin S., Jiang Y. A novel 3D breast-cancer-on-chip platform for therapeutic evaluation of drug delivery systems. Anal. Chim. Acta. 2018;1036:97–106. doi: 10.1016/j.aca.2018.06.038.
    1. Song K., Wang Z., Liu R., Chen G., Liu L. Microfabrication-Based Three-Dimensional (3-D) Extracellular Matrix Microenvironments for Cancer and Other Diseases. Int. J. Mol. Sci. 2018;19:935. doi: 10.3390/ijms19040935.
    1. Wu J., Xiao Y., Chen A., He H., He C., Shuai X., Li X., Chen S., Ren B., Zheng J., et al. Sulfated zwitterionic poly(sulfobetaine methacrylate) hydrogels promote complete skin regeneration. Acta Biomater. 2018;71:293–305. doi: 10.1016/j.actbio.2018.02.034.
    1. Yi H.G., Lee H., Cho D.W. 3D Printing of Organs-On-Chips. Bioengineering. 2017;4:10. doi: 10.3390/bioengineering4010010.
    1. Ozbolat I.T. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 2015;33:395–400. doi: 10.1016/j.tibtech.2015.04.005.
    1. Novo P., Volpetti F., Chu V., Conde J.P. Control of sequential fluid delivery in a fully autonomous capillary microfluidic device. Lab. Chip. 2013;13:641–645. doi: 10.1039/C2LC41083D.
    1. Ong S.M., Zhang C., Toh Y.C., Kim S.H., Foo H.L., Tan C.H., van Noort D., Park S., Yu H. A gel-free 3D microfluidic cell culture system. Biomaterials. 2008;29:3237–3244. doi: 10.1016/j.biomaterials.2008.04.022.
    1. Zhang Y.S., Duchamp M., Oklu R., Ellisen l.W., Langer R., Khademhosseini A. Bioprinting the Cancer Microenvironment. ACS Biomater Sci. Eng. 2016;2:1710–1721. doi: 10.1021/acsbiomaterials.6b00246.
    1. Shafiee A., Atala A. Printing Technologies for Medical Applications. Trends Mol. Med. 2016;22:254–265. doi: 10.1016/j.molmed.2016.01.003.
    1. Torisawa Y.S., Spina C.S., Mammoto T., Mammoto A., Weaver J.C., Tat T., Collins J.J., Ingber D.E. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Method. 2014;11:663–669. doi: 10.1038/nmeth.2938.
    1. Di Maggio N., Piccinini E., Jaworski M., Trumpp A., Wendt D.J., Martin I. Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials. 2011;32:321–329. doi: 10.1016/j.biomaterials.2010.09.041.

Source: PubMed

3
Subscribe