Patient-Derived Organoid Models of Human Neuroendocrine Carcinoma

Krijn K Dijkstra, José G van den Berg, Fleur Weeber, Joris van de Haar, Arno Velds, Sovann Kaing, Dennis D G C Peters, Ferry A L M Eskens, Derk-Jan A de Groot, Margot E T Tesselaar, Emile E Voest, Krijn K Dijkstra, José G van den Berg, Fleur Weeber, Joris van de Haar, Arno Velds, Sovann Kaing, Dennis D G C Peters, Ferry A L M Eskens, Derk-Jan A de Groot, Margot E T Tesselaar, Emile E Voest

Abstract

Gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) is a poorly understood disease with limited treatment options. A better understanding of this disease would greatly benefit from the availability of representative preclinical models. Here, we present the potential of tumor organoids, three-dimensional cultures of tumor cells, to model GEP-NEC. We established three GEP-NEC organoid lines, originating from the stomach and colon, and characterized them using DNA sequencing and immunohistochemistry. Organoids largely resembled the original tumor in expression of synaptophysin, chromogranin and Ki-67. Models derived from tumors containing both neuroendocrine and non-neuroendocrine components were at risk of overgrowth by non-neuroendocrine tumor cells. Organoids were derived from patients treated with cisplatin and everolimus and for the three patients studied, organoid chemosensitivity paralleled clinical response. We demonstrate the feasibility of establishing NEC organoid lines and their potential applications. Organoid culture has the potential to greatly extend the repertoire of preclinical models for GEP-NEC, supporting drug development for this difficult-to-treat tumor type.

Keywords: disease modeling; extrapulmonary neuroendocrine carcinoma; gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC); organoids; pre-clinical models.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Dijkstra, van den Berg, Weeber, van de Haar, Velds, Kaing, Peters, Eskens, de Groot, Tesselaar and Voest.

Figures

Figure 1
Figure 1
Histomorphology of GEP-NEC organoid lines and matching original tumor. (A) Phase-contrast photomicrographs of GEP-NEC organoid lines. Scale bar = 100 µm. (B) Immunostainings of synaptophysin, chromogranin and Ki-67 for organoids and original tumor. P7 indicates passage 7. (C) Hematoxylin and eosin (H&E) stained slides of GEP-NEC organoid lines and original tumors. NEC-01013: passage (P) 12; NEC-02002: P20; NEC-02007: P3.
Figure 2
Figure 2
Mismatch repair status of GEP-NEC organoid lines. Staining of slides from NEC-01010 (P7 and P11), NEC-01013 (P13), and NEC-02002 organoids (P15), as well as the original tumor of NEC-02002, for mismatch repair proteins MLH1, PMS2, MSH2, and MSH6. Note 100% nuclear expression of MHS2 and MSH6 but absence of nuclear staining of MLH1 and PMS2 in both organoids and original tumor of NEC-02002. The brown halo on the cell border is a specific staining caused by residual Geltrex in organoid slides. Scale bar = 100 µm.
Figure 3
Figure 3
Copy number profiles of GEP-NEC organoids. (A) Copy number profiles of GEP-NEC organoids are generated based on low-coverage whole genome sequencing and represented on a log2 scale. NEC-01013: passage (P) 11; NEC-02002: P5. (B) Copy number profiles were based on SNPs identified by whole exome sequencing and analyzed by Sequenza. Allele frequencies are given as ratios and used to infer copy number. NEC-01013: P11; NEC-02002: P15.
Figure 4
Figure 4
Drug response of GEP-NEC organoids. (A, B) Viability (A) or growth-rate corrected viability (B) of cisplatin-treated GEP-NEC organoids. n = 3–4. NEC-01010: passage (P) 6-14; NEC-01013: P10-19; NEC-02002: P6-16. (C, D) Viability (C) or growth-rate corrected viability (D) of everolimus-treated GEP-NEC organoids. n = 3–5. NEC-01010: P6-16; NEC-01013: P10-20; NEC-02002: P6-17. (E) GR at 25 nM everolimus (corresponding to Cmax). n = 3–5. Error bars represent s.e.m. Student’s t test. *P < 0.05; **P < 0.01.

References

    1. Sorbye H, Welin S, Langer SW, Vestermark LW, Holt N, Osterlund P, et al. . Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): The NORDIC NEC study. Ann Oncol (2013) 24:152–60. 10.1093/annonc/mds276
    1. Surveillance Epidemiology, and End Results (SEER) Program . SEER*Stat Database: Incidence – SEER 9 Regs Research Data. (2013), November 2011 submission (1973-2010). Available at: .
    1. Korse CM, Taal BG, van Velthuysen M-LF, Visser O. Incidence and survival of neuroendocrine tumours in the Netherlands according to histological grade: experience of two decades of cancer registry. Eur J Cancer (2013) 49:1975–83. 10.1016/j.ejca.2012.12.022
    1. Van Der Zwan JM, Siesling S, Van Velthuysen L, Links T, Walenkamp A, Tesselaar M. Extra-Pulmonary Neuroendocrine Carcinomas: A Population-Based Study in the Netherlands. Neuroendocrinology (2018) 107:50–9. 10.1159/000488987
    1. Sorbye H, Strosberg J, Baudin E, Klimstra DS, Yao JC. Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer (2014) 120:2814–23. 10.1002/cncr.28721
    1. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, et al. . Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol (2012) 36:173–84. 10.1097/PAS.0b013e3182417d36
    1. Jesinghaus M, Konukiewitz B, Keller G, Kloor M, Steiger K, Reiche M, et al. . Colorectal mixed adenoneuroendocrine carcinomas and neuroendocrine carcinomas are genetically closely related to colorectal adenocarcinomas. Mod Pathol (2017) 30:610–9. 10.1038/modpathol.2016.220
    1. Takizawa N, Ohishi Y, Hirahashi M, Takahashi S, Nakamura K, Tanaka M, et al. . Molecular characteristics of colorectal neuroendocrine carcinoma; Similarities with adenocarcinoma rather than neuroendocrine tumor. Hum Pathol (2015) 46:1890–900. 10.1016/j.humpath.2015.08.006
    1. Kawasaki K, Fujii M, Sato T. Gastroenteropancreatic neuroendocrine neoplasms: genes, therapies and models. Dis Model Mech (2018) 11:1–12. 10.1242/dmm.029595
    1. Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor Organoids as a Pre-clinical Cancer Model for Drug Discovery. Cell Chem Biol (2017) 24:1092–100. 10.1016/j.chembiol.2017.06.012
    1. Puca L, Bareja R, Prandi D, Shaw R, Benelli M, Karthaus WR, et al. . Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun (2018) 9:1–10. 10.1038/s41467-018-04495-z
    1. Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, et al. . A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell (2016) 18:827–38. 10.1016/j.stem.2016.04.003
    1. Saito Y, Muramatsu T, Kanai Y, Ojima H, Sukeda A, Hiraoka N, et al. . Establishment of Patient-Derived Organoids and Drug Screening for Biliary Tract Carcinoma. Cell Rep (2019) 27:1265–76.e4. 10.1016/j.celrep.2019.03.088
    1. Kawasaki K, Toshimitsu K, Matano M, Fujita M, Fujii M, Togasaki K, et al. . An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. Cell (2020) 183(5):1420–35.e2. 10.1016/j.cell.2020.10.023
    1. Van De Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. . Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell (2015) 161:933–45. 10.1016/j.cell.2015.03.053
    1. Boj SF, Il HC, LA B, Chio IIC, Engle DD, Corbo V, et al. . Organoid models of human and mouse ductal pancreatic cancer. Cell (2015) 160:324–38. 10.1016/j.cell.2014.12.021
    1. Kopper O, de Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N, Kester L, et al. . An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med (2019) 25:838–49. 10.1038/s41591-019-0422-6
    1. Bartfeld S, Bayram T, Van De Wetering M, Huch M, Begthel H, Kujala P, et al. . In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology (2015) 148:126–36. 10.1053/j.gastro.2014.09.042
    1. Hafner M, Niepel M, Chung M, Sorger PK. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat Methods (2016) 13:521–7. 10.1038/nmeth.3853
    1. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv (2013) 1303.3997.
    1. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. . From fastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr Protoc Bioinforma (2013) 43(1110):11.10.1–11.10.33. 10.1002/0471250953.bi1110s43
    1. Favero F, Joshi T, Marquard AM, Birkbak NJ, Krzystanek M, Li Q, et al. . Sequenza: Allele-specific copy number and mutation profiles from tumor sequencing data. Ann Oncol (2015) 26:64–70. 10.1093/annonc/mdu479
    1. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. . A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) (2012) 6:80–92. 10.4161/fly.19695
    1. Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, et al. . Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front Genet (2012) 3:1–9. 10.3389/fgene.2012.00035
    1. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, et al. . Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): A hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagnostics (2015) 17:251–64. 10.1016/j.jmoldx.2014.12.006
    1. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. . An integrated encyclopedia of DNA elements in the human genome. Nature (2012) 489:57–74. 10.1038/nature11247
    1. Shida T, Kishimoto T, Furuya M, Nikaido T, Koda K, Takano S, et al. . Expression of an activated mammalian target of rapamycin (mTOR) in gastroenteropancreatic neuroendocrine tumors. Cancer Chemother Pharmacol (2010) 65:889–93. 10.1007/s00280-009-1094-6
    1. Rickman DS, Beltran H, Demichelis F, Rubin MA. Biology and evolution of poorly differentiated neuroendocrine tumors. Nat Med (2017) 23:664–73. 10.1038/nm.4341
    1. Cirkel GA, Weeber F, Bins S, Gadellaa-van Hooijdonk CGM, van Werkhoven E, Willems SM, et al. . The time to progression ratio: a new individualized volumetric parameter for the early detection of clinical benefit of targeted therapies. Ann Oncol Off J Eur Soc Med Oncol (2016) 27:1638–43. 10.1093/annonc/mdw223
    1. de Melo AC, Grazziotin-Reisner R, Erlich F, Fontes Dias MS, Moralez G, Carneiro M, et al. . A phase I study of mTOR inhibitor everolimus in association with cisplatin and radiotherapy for the treatment of locally advanced cervix cancer: PHOENIX I. Cancer Chemother Pharmacol (2016) 78:101–9. 10.1007/s00280-016-3064-0
    1. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, et al. . Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Sci (80- ) (2018) 359:920–6. 10.1126/science.aao2774
    1. Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, van Werkhoven E, et al. . Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med (2019) 11:1–9. 10.1126/scitranslmed.aay2574
    1. Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, et al. . Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discovery (2018) 8:1112–29. 10.1158/-18-0349
    1. Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T, et al. . Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci U S A (2015) 112:13308–11. 10.1073/pnas.1516689112
    1. Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L, Klay D, et al. . Long-term expanding human airway organoids for disease modeling. EMBO J (2019) 38:1–20. 10.15252/embj.2018100300
    1. Dijkstra KK, Monkhorst K, Schipper LJ, Hartemink KJ, Smit EF, Kaing S, et al. . Challenges in Establishing Pure Lung Cancer Organoids Limit Their Utility for Personalized Medicine. Cell Rep (2020) 31. 10.1016/j.celrep.2020.107588
    1. Drost J, Karthaus WR, Gao D, Driehuis E, Sawyers CL, Chen Y, et al. . Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc (2016) 11:347–58. 10.1038/nprot.2016.006
    1. Furlan D, Cerutti R, Uccella S, La Rosa S, Rigoli E, Genasetti A, et al. . Different Molecular Profiles Characterize Well-Differentiated Endocrine Tumors and Poorly Differentiated Endocrine Carcinomas of the Gastroenteropancreatic Tract. Clin Cancer Res (2004) 10:947–57. 10.1158/1078-0432.CCR-1068-3
    1. van Jaarsveld RH, Kops GJPL. Difference Makers: Chromosomal Instability versus Aneuploidy in Cancer. Trends Cancer (2016) 2:561–71. 10.1016/j.trecan.2016.09.003
    1. Girardi DM, Silva ACB, Rêgo JFM, Coudry RA, Riechelmann RP. Unraveling molecular pathways of poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: A systematic review. Cancer Treat Rev (2017) 56:28–35. 10.1016/j.ctrv.2017.04.002
    1. Klempner SJ, Gershenhorn B, Tran P, Lee TK, Erlander MG, Gowen K, et al. . BRAFV600E mutations in high-grade colorectal neuroendocrine tumors may predict responsiveness to BRAF-MEK combination therapy. Cancer Discovery (2016) 6:594–600. 10.1158/-15-1192
    1. Burkart J, Owen D, Shah MH, Abdel-Misih SRZ, Roychowdhury S, Wesolowski R, et al. . Targeting BRAF mutations in high-grade neuroendocrine carcinoma of the colon. JNCCN J Natl Compr Cancer Netw (2018) 16:1035–40. 10.6004/jnccn.2018.7043

Source: PubMed

3
Subscribe