Myokines as mediators of exercise-induced cognitive changes in older adults: protocol for a comprehensive living systematic review and meta-analysis

Wouter A J Vints, Evrim Gökçe, Antoine Langeard, Iuliia Pavlova, Özge Selin Çevik, Mohammad Mosaferi Ziaaldini, Jasemin Todri, Orges Lena, Giorgos K Sakkas, Suzanne Jak, Ioanna Zorba Zormpa, Christina Karatzaferi, Oron Levin, Nerijus Masiulis, Yael Netz, Wouter A J Vints, Evrim Gökçe, Antoine Langeard, Iuliia Pavlova, Özge Selin Çevik, Mohammad Mosaferi Ziaaldini, Jasemin Todri, Orges Lena, Giorgos K Sakkas, Suzanne Jak, Ioanna Zorba Zormpa, Christina Karatzaferi, Oron Levin, Nerijus Masiulis, Yael Netz

Abstract

Background: The world's population is aging, but life expectancy has risen more than healthy life expectancy (HALE). With respect to brain and cognition, the prevalence of neurodegenerative disorders increases with age, affecting health and quality of life, and imposing significant healthcare costs. Although the effects of physical exercise on cognition in advanced age have been widely explored, in-depth fundamental knowledge of the underlying mechanisms of the exercise-induced cognitive improvements is lacking. Recent research suggests that myokines, factors released into the blood circulation by contracting skeletal muscle, may play a role in mediating the beneficial effect of exercise on cognition. Our goal in this ongoing (living) review is to continuously map the rapidly accumulating knowledge on pathways between acute or chronic exercise-induced myokines and cognitive domains enhanced by exercise.

Method: Randomized controlled studies will be systematically collected at baseline and every 6 months for at least 5 years. Literature search will be performed online in PubMed, EMBASE, PsycINFO, Web of Science, SportDiscus, LILACS, IBECS, CINAHL, SCOPUS, ICTRP, and ClinicalTrials.gov. Risk of bias will be assessed using the Revised Cochrane Risk of Bias tool (ROB 2). A random effects meta-analysis with mediation analysis using meta-analytic structural equation modeling (MASEM) will be performed. The primary research question is to what extent exercise-induced myokines serve as mediators of cognitive function. Secondarily, the pooled effect size of specific exercise characteristics (e.g., mode of exercise) or specific older adults' populations (e.g., cognitively impaired) on the relationship between exercise, myokines, and cognition will be assessed. The review protocol was registered in PROSPERO (CRD42023416996).

Discussion: Understanding the triad relationship between exercise, myokines and cognition will expand the knowledge on multiple integrated network systems communicating between skeletal muscles and other organs such as the brain, thus mediating the beneficial effects of exercise on health and performance. It may also have practical implications, e.g., if a certain myokine is found to be a mediator between exercise and cognition, the optimal exercise characteristics for inducing this myokine can be prescribed. The living review is expected to improve our state of knowledge and refine exercise regimes for enhancing cognitive functioning in diverse older adults' populations.

Registration: Systematic review and meta-analysis protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on the 24th of April 2023 (registration number CRD42023416996).

Keywords: aged; biomarker; brain; cognition; exercise; muscle; myokine; physical activity.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 Vints, Gökçe, Langeard, Pavlova, Çevik, Ziaaldini, Todri, Lena, Sakkas, Jak, Zorba (Zormpa), Karatzaferi, Levin, Masiulis and Netz.

Figures

FIGURE 1
FIGURE 1
Meta-analytic structural equation modeling (MASEM) model.

References

    1. Akl E., Mustafa R., Wiercioch N. S. W. (2013). Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach. Available online at: (accessed April 16, 2023).
    1. Alghadir A. H., Gabr S. A., Al-Momani M., Al-Momani F. (2021). Moderate aerobic training modulates cytokines and cortisol profiles in older adults with cognitive abilities. Cytokine 138:155373. 10.1016/J.CYTO.2020.155373
    1. Bangsbo J., Blackwell J., Boraxbekk C. J., Caserotti P., Dela F., Evans A. B., et al. (2019). Copenhagen consensus statement 2019: Physical activity and ageing. Br. J. Sports Med. 53 856–858. 10.1136/BJSPORTS-2018-100451
    1. Banks W. A., Kastin A. J., Gutierrez E. G. (1994). Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci. Lett. 179 53–56. 10.1016/0304-3940(94)90933-4
    1. Bárrios H., Narciso S., Guerreiro M., Maroco J., Logsdon R., De Mendonça A. (2013). Quality of life in patients with mild cognitive impairment. Aging Ment. Health 17 287–292. 10.1080/13607863.2012.747083
    1. Berg U., Bang P. (2004). Exercise and circulating insulin-like growth factor I. Horm. Res. Paediatr. 62 50–58. 10.1159/000080759
    1. Borde R., Hortobágyi T., Granacher U. (2015). Dose-response relationships of resistance training in healthy old adults: A systematic review and meta-analysis. Sports Med. 45 1693–1720. 10.1007/S40279-015-0385-9
    1. Bortoluzzi S., Scannapieco P., Cestaro A., Danieli G. A., Schiaffino S. (2006). Computational reconstruction of the human skeletal muscle secretome. Proteins 62 776–792. 10.1002/PROT.20803
    1. Boström P., Wu J., Jedrychowski M. P., Korde A., Ye L., Lo J. C., et al. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481 463–468. 10.1038/nature10777
    1. Boucard G. K., Albinet C. T., Bouquet C. A., Clarys D., Audiffren M., Bugaiska A. (2012). Impact of physical activity on executive functions in aging: A selective effect on inhibition among old adults. J. Sport Exerc. Psychol. 34 808–827.
    1. Brooks G. A., Osmond A. D., Arevalo J. A., Duong J. J., Curl C. C., Moreno-Santillan D. D., et al. (2023). Lactate as a myokine and exerkine: Drivers and signals of physiology and metabolism. J. Appl. Physiol. 134 529–548. 10.1152/JAPPLPHYSIOL.00497.2022
    1. Callow D. D., Won J., Alfini A. J., Purcell J. J., Weiss L. R., Zhan W., et al. (2021). Microstructural plasticity in the hippocampus of healthy older adults after acute exercise. Med. Sci. Sports Exerc. 53 1928–1936. 10.1249/MSS.0000000000002666
    1. Canivet A., Albinet C. T., André N., Pylouster J., Rodríguez-Ballesteros M., Kitzis A., et al. (2015). Effects of BDNF polymorphism and physical activity on episodic memory in the elderly: A cross sectional study. Eur. Rev. Aging Phys. Act. 12:15. 10.1186/S11556-015-0159-2
    1. Carro E., Nuñez A., Busiguina S., Torres-Aleman I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20 2926–2933. 10.1523/jneurosci.20-08-02926.2000
    1. Catoire M., Kersten S. (2015). The search for exercise factors in humans. FASEB J. 29 1615–1628. 10.1096/FJ.14-263699
    1. Catoire M., Mensink M., Kalkhoven E., Schrauwen P., Kersten S. (2014). Identification of human exercise-induced myokines using secretome analysis. Physiol. Genomics 46 256–267. 10.1152/physiolgenomics.00174.2013
    1. Chastin S., Gardiner P. A., Harvey J. A., Leask C. F., Jerez-Roig J., Rosenberg D., et al. (2021). Interventions for reducing sedentary behaviour in community-dwelling older adults. Cochrane Database Syst. Rev. 6:CD012784. 10.1002/14651858.CD012784.PUB2
    1. Chen F. T., Chen Y. P., Schneider S., Kao S. C., Huang C. M., Chang Y. K. (2019). Effects of exercise modes on neural processing of working memory in late middle-aged adults: An fMRI study. Front. Aging Neurosci. 11:224. 10.3389/FNAGI.2019.00224
    1. Chen F. T., Etnier J. L., Chan K. H., Chiu P. K., Hung T. M., Chang Y. K. (2020). Effects of exercise training interventions on executive function in older adults: A systematic review and meta-analysis. Sport. Med. 50 1451–1467. 10.1007/S40279-020-01292-X
    1. Chen W., Wang L., You W., Shan T. (2021). Myokines mediate the cross talk between skeletal muscle and other organs. J. Cell. Physiol. 236 2393–2412. 10.1002/JCP.30033
    1. Cheng C. M., Mervis R. F., Niu S. L., Salem N., Witters L. A., Tseng V., et al. (2003). Insulin-like growth factor 1 is essential for normal dendritic growth. J. Neurosci. Res. 73 1–9. 10.1002/JNR.10634
    1. Cheung M. W. L. (2015). metaSEM: An R package for meta-analysis using structural equation modeling. Front. Psychol. 5:1521. 10.3389/FPSYG.2014.01521
    1. Cheung M. W. L. (2022). Synthesizing indirect effects in mediation models with meta-analytic methods. Alcohol Alcohol. 57 5–15. 10.1093/ALCALC/AGAB044
    1. Cipolli G. C., Sanches M. Y., Aprahamian I. (2019). Sarcopenia is associated with cognitive impairment in older adults: A systematic review and meta-analysis. J. Nutr. Health Aging 23 525–531.
    1. Cruz-Jentoft A. J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., et al. (2019). Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 48 16–31. 10.1093/AGEING/AFY169
    1. D’Ercole J. A., Ye P., O’Kusky J. R. (2002). Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides 36 209–220. 10.1054/NPEP.2002.0893
    1. Davis M. A., Chang C.-H., Simonton S., Bynum J. P. W. (2022). Trends in US medicare decedents’ diagnosis of dementia from 2004 to 2017. JAMA Health Forum 3:e220346. 10.1001/JAMAHEALTHFORUM.2022.0346
    1. Eggenberger P., Wolf M., Schumann M., de Bruin E. D. (2016). Exergame and balance training modulate prefrontal brain activity during walking and enhance executive function in older adults. Front. Aging Neurosci. 8:66. 10.3389/fnagi.2016.00066
    1. El Hayek L., Khalifeh M., Zibara V., Abi Assaad R., Emmanuel N., Karnib N., et al. (2019). Lactate mediates the effects of exercise on learning and memory through sirt1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J. Neurosci. 39 2369–2382. 10.1523/JNEUROSCI.1661-18.2019
    1. Elliott J. H., Synnot A., Turner T., Simmonds M., Akl E. A., McDonald S., et al. (2017). Living systematic review: 1. Introduction—the why, what, when, and how. J. Clin. Epidemiol. 91 23–30. 10.1016/j.jclinepi.2017.08.010
    1. Engler D. (2007). Hypothesis: Musculin is a hormone secreted by skeletal muscle, the body’s largest endocrine organ. Evidence for actions on the endocrine pancreas to restrain the beta-cell mass and to inhibit insulin secretion and on the hypothalamus to co-ordinate the neuroendocrine and appetite responses to exercise. Acta Biomed. 78 156–206.
    1. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U.S.A. 108 3017–3022. 10.1073/pnas.1015950108
    1. Falck R. S., Davis J. C., Best J. R., Crockett R. A., Liu-Ambrose T. (2019). Impact of exercise training on physical and cognitive function among older adults: A systematic review and meta-analysis. Neurobiol. Aging 79 119–130. 10.1016/J.NEUROBIOLAGING.2019.03.007
    1. Falck R. S., Percival A. G., Tai D., Davis J. C. (2022). International depiction of the cost of functional independence limitations among older adults living in the community: A systematic review and cost-of-impairment study. BMC Geriatr. 22:815. 10.1186/S12877-022-03466-W
    1. Frontera W. R., Ochala J. (2015). Skeletal muscle: A brief review of structure and function. Calcif. Tissue Int. 96 183–195. 10.1007/S00223-014-9915-Y
    1. Gaitán J. M., Moon H. Y., Stremlau M., Dubal D. B., Cook D. B., Okonkwo O. C., et al. (2021). Effects of aerobic exercise training on systemic biomarkers and cognition in late middle-aged adults at risk for Alzheimer’s disease. Front. Endocrinol. 12:660181. 10.3389/FENDO.2021.660181
    1. Gallardo-Gómez D., del Pozo-Cruz J., Noetel M., Álvarez-Barbosa F., Alfonso-Rosa R. M., del Pozo Cruz B. (2022). Optimal dose and type of exercise to improve cognitive function in older adults: A systematic review and bayesian model-based network meta-analysis of RCTs. Ageing Res. Rev. 76:101591. 10.1016/J.ARR.2022.101591
    1. Garber C. E., Blissmer B., Deschenes M. R., Franklin B. A., Lamonte M. J., Lee I.-M., et al. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43 1334–1359. 10.1249/MSS.0b013e318213fefb
    1. Görgens S. W., Eckardt K., Jensen J., Drevon C. A., Eckel J. (2015). Exercise and regulation of adipokine and myokine production. Prog. Mol. Biol. Transl. Sci. 135 313–336. 10.1016/bs.pmbts.2015.07.002
    1. Grassi-Oliveira R., Stein L. M., Lopes R. P., Teixeira A. L., Bauer M. E. (2008). Low plasma brain-derived neurotrophic factor and childhood physical neglect are associated with verbal memory impairment in major depression–a preliminary report. Biol. Psychiatry 64 281–285. 10.1016/J.BIOPSYCH.2008.02.023
    1. Griebler N., Schröder N., Artifon M., Frigotto M., Pietta-Dias C. (2022). The effects of acute exercise on memory of cognitively healthy seniors: A systematic review. Arch. Gerontol. Geriatr. 99:104583. 10.1016/J.ARCHGER.2021.104583
    1. Guan J., Bennet L., Gluckman P. D., Gunn A. J. (2003). Insulin-like growth factor-1 and post-ischemic brain injury. Prog. Neurobiol. 70 443–462. 10.1016/j.pneurobio.2003.08.002
    1. Gubert C., Hannan A. J. (2021). Exercise mimetics: Harnessing the therapeutic effects of physical activity. Nat. Rev. Drug Discov. 20 862–879. 10.1038/S41573-021-00217-1
    1. Gulick C. N., Peddie M., Rehrer N. J. (2020). Does exercise impact insulin-like growth factor 1?: Systematic review & meta-analysis. Open J. Heal. Sci. Med. 1:104. 10.0000/OJHSM.1000104
    1. Hartwig S., Raschke S., Knebel B., Scheler M., Irmler M., Passlack W., et al. (2014). Secretome profiling of primary human skeletal muscle cells. Biochim. Biophys. Acta 1844 1011–1017. 10.1016/J.BBAPAP.2013.08.004
    1. Hawley J. A., Hargreaves M., Joyner M. J., Zierath J. R. (2014). Integrative biology of exercise. Cell 159 738–749. 10.1016/J.CELL.2014.10.029
    1. Hedges L. V., Tipton E., Johnson M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Res. Synth. Methods 1 39–65. 10.1002/JRSM.5
    1. Higgins J. P. T., Altman D. G., Gøtzsche P. C., Jüni P., Moher D., Oxman A. D., et al. (2011). The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. 10.1136/BMJ.D5928
    1. Hittel D. S., Berggren J. R., Shearer J., Boyle K., Houmard J. A. (2009). Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes 58 30–38. 10.2337/DB08-0943
    1. Hou Y., Dan X., Babbar M., Wei Y., Hasselbalch S. G., Croteau D. L., et al. (2019). Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15 565–581. 10.1038/S41582-019-0244-7
    1. Hsieh S.-S., Huang C.-J., Wu C.-T., Chang Y.-K., Hung T.-M. (2018). Acute exercise facilitates the N450 inhibition marker and P3 attention marker during stroop test in young and older adults. J. Clin. Med. 7:391. 10.3390/jcm7110391
    1. Huang E. J., Reichardt L. F. (2001). Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci. 24 677–736. 10.1146/ANNUREV.NEURO.24.1.677
    1. Huang H., Li W., Qin Z., Shen H., Li X., Wang W. (2021). Physical exercise increases peripheral brain-derived neurotrophic factors in patients with cognitive impairment: A meta-analysis. Restor. Neurol. Neurosci. 39 159–171. 10.3233/RNN-201060
    1. Hultman R., Kumari U., Michel N., Casey P. J. (2014). Gαz regulates BDNF-induction of axon growth in cortical neurons. Mol. Cell. Neurosci. 58 53–61. 10.1016/J.MCN.2013.12.004
    1. Ide K., Schmalbruch I. K., Quistorff B., Horn A., Secher N. H. (2000). Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J. Physiol. 522 159–164. 10.1111/j.1469-7793.2000.t01-2-00159.xm
    1. Islam H., Neudorf H., Mui A. L., Little J. P. (2021). Interpreting “anti-inflammatory” cytokine responses to exercise: Focus on interleukin-10. J. Physiol. 599 5163–5177. 10.1113/JP281356
    1. Jackson J. L., Kuriyama A. (2019). How often do systematic reviews exclude articles not published in english? J. Gen. Intern. Med. 34 1388–1389. 10.1007/S11606-019-04976-X
    1. Jak S., Cheung M. W. L. (2020). Meta-analytic structural equation modeling with moderating effects on SEM parameters. Psychol. Methods 25 430–455. 10.1037/MET0000245
    1. Jak S., Li H., Kolbe L., de Jonge H., Cheung M. W. L. (2021). Meta-analytic structural equation modeling made easy: A tutorial and web application for one-stage MASEM. Res. Synth. Methods 12 590–606. 10.1002/JRSM.1498
    1. Jakicic J. M., Clark K., Coleman E., Donnelly J. E., Foreyt J., Melanson E., et al. (2001). American College of Sports Medicine position stand. Appropriate intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 33 2145–2156. 10.1097/00005768-200112000-00026
    1. Jiang Q., Lou K., Hou L., Lu Y., Sun L., Tan S. C., et al. (2020). The effect of resistance training on serum insulin-like growth factor 1(IGF-1): A systematic review and meta-analysis. Complement. Ther. Med. 50:102360. 10.1016/j.ctim.2020.102360
    1. Jonasson L. S., Nyberg L., Axelsson J., Kramer A. F., Riklund K., Boraxbekk C. J. (2019). Higher striatal D2-receptor availability in aerobically fit older adults but non-selective intervention effects after aerobic versus resistance training. Neuroimage 202:116044. 10.1016/J.NEUROIMAGE.2019.116044
    1. Kasper J. D. (1990). Cognitive impairment among functionally limited elderly people in the community: Future considerations for long-term care policy. Milbank Q. 68 81–109. 10.2307/3350078
    1. Kuhne L. A., Ksiezarczyk A. M., Braumann K. M., Reer R., Jacobs T., Röder B., et al. (2023). Cardiovascular exercise, learning, memory, and cytokines: Results of a ten-week randomized controlled training study in young adults. Biol. Psychol. 176:108466. 10.1016/J.BIOPSYCHO.2022.108466
    1. Kwon J. H., Moon K. M., Min K.-W. (2020). Exercise-induced myokines can explain the importance of physical activity in the elderly: An overview. Healthcare 8:378. 10.3390/healthcare8040378
    1. Le Bihan M. C., Bigot A., Jensen S. S., Dennis J. L., Rogowska-Wrzesinska A., Lainé J., et al. (2012). In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. J. Proteomics 77 344–356. 10.1016/J.JPROT.2012.09.008
    1. Lee J. H., Jun H. S. (2019). Role of myokines in regulating skeletal muscle mass and function. Front. Physiol. 10:42. 10.3389/FPHYS.2019.00042
    1. Lerche S., Gutfreund A., Brockmann K., Hobert M. A., Wurster I., Sünkel U., et al. (2018). Effect of physical activity on cognitive flexibility, depression and RBD in healthy elderly. Clin. Neurol. Neurosurg. 165 88–93. 10.1016/J.CLINEURO.2018.01.008
    1. Levin O., Netz Y., Ziv G. (2017). The beneficial effects of different types of exercise interventions on motor and cognitive functions in older age: A systematic review. Eur. Rev. Aging Phys. Act. 14:20. 10.1186/s11556-017-0189-z
    1. Levin O., Netz Y., Ziv G. (2021). Behavioral and neurophysiological aspects of inhibition—the effects of acute cardiovascular exercise. J. Clin. Med. 10:282. 10.3390/JCM10020282
    1. Lev-Vachnish Y., Cadury S., Rotter-Maskowitz A., Feldman N., Roichman A., Illouz T., et al. (2019). L-lactate promotes adult hippocampal neurogenesis. Front. Neurosci. 13:403. 10.3389/FNINS.2019.00403
    1. Liang Y. Y., Zhang L. D., Luo X., Wu L. L., Chen Z. W., Wei G. H., et al. (2022). All roads lead to Rome - a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer’s disease. Neural Regen. Res. 17 1210–1227. 10.4103/1673-5374.325012
    1. Lin T. Y., Hsieh S. S., Chueh T. Y., Huang C. J., Hung T. M. (2021). The effects of barbell resistance exercise on information processing speed and conflict-related ERP in older adults: A crossover randomized controlled trial. Sci. Rep. 111:9137. 10.1038/s41598-021-88634-5
    1. Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S., et al. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet commission. Lancet Comm. 396 413–446. 10.1016/S0140-6736(20)30367-6/ATTACHMENT/CEE43A30-904B-4A45-A4E5-AFE48804398D/MMC1.PDF
    1. López-Valenciano A., Mayo X., Liguori G., Copeland R. J., Lamb M., Jimenez A. (2020). Changes in sedentary behaviour in European Union adults between 2002 and 2017. BMC Public Health 20:1206. 10.1186/S12889-020-09293-1
    1. Maddock R. J., Casazza G. A., Fernandez D. H., Maddock M. I. (2016). Acute modulation of cortical glutamate and GABA content by physical activity. J. Neurosci. 36 2449–2457. 10.1523/JNEUROSCI.3455-15.2016
    1. Máderová D., Krumpolec P., Slobodová L., Schön M., Tirpáková V., Kovaničová Z., et al. (2019). Acute and regular exercise distinctly modulate serum, plasma and skeletal muscle BDNF in the elderly. Neuropeptides 78:101961. 10.1016/j.npep.2019.101961
    1. Matthews V. B., Åström M. B., Chan M. H. S., Bruce C. R., Krabbe K. S., Prelovsek O., et al. (2009). Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52 1409–1418. 10.1007/s00125-009-1364-1
    1. Mattiuzzi C., Lippi G. (2020). Worldwide disease epidemiology in the older persons. Eur. Geriatr. Med. 11 147–153. 10.1007/S41999-019-00265-2
    1. McArdle J. J., McDonald R. P. (1984). Some algebraic properties of the reticular action model for moment structures. Br. J. Math. Stat. Psychol. 37 234–251. 10.1111/J.2044-8317.1984.TB00802.X
    1. McGrath R. E., Meyer G. J. (2006). When effect sizes disagree: The case of r and d. Psychol. Methods 11 386–401. 10.1037/1082-989X.11.4.386
    1. McGregor C. E., English A. W. (2019). The role of BDNF in peripheral nerve regeneration: Activity-dependent treatments and Val66Met. Front. Cell. Neurosci. 12:522. 10.3389/FNCEL.2018.00522
    1. Micielska K., Kortas J. A., Gmiat A., Jaworska J., Kozlowska M., Lysak-Radomska A., et al. (2021). Habitually inactive physically – a proposed procedure of counteracting cognitive decline in women with diminished insulin sensitivity through a high-intensity circuit training program. Physiol. Behav. 229:113235. 10.1016/j.physbeh.2020.113235
    1. Mizuno M., Yamada K., Olariu A., Nawa H., Nabeshima T. (2000). Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J. Neurosci. 20 7116–7121. 10.1523/JNEUROSCI.20-18-07116.2000
    1. Moon H. Y., Becke A., Berron D., Becker B., Sah N., Benoni G., et al. (2016). Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 24 332–340. 10.1016/j.cmet.2016.05.025
    1. Neale M. C., Miller M. B. (1997). The use of likelihood-based confidence intervals in genetic models. Behav. Genet. 27 113–120. 10.1023/A:1025681223921
    1. Nemoto M., Sasai H., Yabushita N., Tsuchiya K., Hotta K., Fujita Y., et al. (2020). A novel exercise for enhancing visuospatial ability in older adults with frailty: Development, feasibility, and effectiveness. Geriatrics 5:29. 10.3390/GERIATRICS5020029
    1. Netz Y. (2019). Is there a preferred mode of exercise for cognition enhancement in older age?-A narrative review. Front. Med. 6:57. 10.3389/fmed.2019.00057
    1. Nichols E., Steinmetz J. D., Vollset S. E., Fukutaki K., Chalek J., Abd-Allah F., et al. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7 e105–e125. 10.1016/S2468-2667(21)00249-8
    1. Norheim F., Raastad T., Thiede B., Rustan A. C., Drevon C. A., Haugen F. (2011). Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am. J. Physiol. Endocrinol. Metab. 301 E1013–E1021. 10.1152/ajpendo.00326.2011
    1. Onyango I. G., Jauregui G. V., Čarná M., Bennett J. P., Stokin G. B. (2021). Neuroinflammation in Alzheimer’s disease. Biomedicines 9:524. 10.3390/BIOMEDICINES9050524
    1. Oudbier S. J., Goh J., Looijaard S. M. L. M., Reijnierse E. M., Meskers C. G. M., Maier A. B. (2022). Pathophysiological mechanisms explaining the association between low skeletal muscle mass and cognitive function. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 77 1959–1968. 10.1093/GERONA/GLAC121
    1. Ouzzani M., Hammady H., Fedorowicz Z., Elmagarmid A. (2016). Rayyan - a web and mobile app for systematic reviews. Syst. Rev. 6:210. 10.1186/s13643-016-0384-4
    1. Pan W., Banks W. A., Fasold M. B., Bluth J., Kastin A. J. (1998). Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37 1553–1561. 10.1016/S0028-3908(98)00141-5
    1. Parada-Sánchez S. G., Macias-Cervantes M. H., Pérezvázquez V., Vargas-Ortiz K. (2022). The effects of different types of exercise on circulating irisin levels in healthy individuals and in people with overweight, metabolic syndrome and type 2 diabetes. Physiol. Res. 71 457–475. 10.33549/PHYSIOLRES.934896
    1. Pedersen B. K. (2019). Physical activity and muscle–brain crosstalk. Nat. Rev. Endocrinol. 15 383–392. 10.1038/s41574-019-0174-x
    1. Pedersen B. K., Febbraio M. A. (2008). Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 88 1379–1406. 10.1152/physrev.90100.2007
    1. Pedersen B. K., Fischer C. P. (2007). Beneficial health effects of exercise–the role of IL-6 as a myokine. Trends Pharmacol. Sci. 28 152–156. 10.1016/J.TIPS.2007.02.002
    1. Pedersen B. K., Steensberg A., Fischer C., Keller C., Keller P., Plomgaard P., et al. (2003). Searching for the exercise factor: Is IL-6 a candidate? J. Muscle Res. Cell Motil. 24 113–119. 10.1023/A:1026070911202
    1. Piccirillo R. (2019). Exercise-induced myokines with therapeutic potential for muscle wasting. Front. Physiol. 10:287. 10.3389/FPHYS.2019.00287
    1. Pieper D., Puljak L. (2021). Language restrictions in systematic reviews should not be imposed in the search strategy but in the eligibility criteria if necessary. J. Clin. Epidemiol. 132 146–147. 10.1016/j.jclinepi.2020.12.027
    1. Pourteymour S., Eckardt K., Holen T., Langleite T., Lee S., Jensen J., et al. (2017). Global mRNA sequencing of human skeletal muscle: Search for novel exercise-regulated myokines. Mol. Metab. 6 352–365. 10.1016/J.MOLMET.2017.01.007
    1. Qi D., Wong N. M. L., Shao R., Man I. S. C., Wong C. H. Y., Yuen L. P., et al. (2021). Qigong exercise enhances cognitive functions in the elderly via an interleukin-6-hippocampus pathway: A randomized active-controlled trial. Brain Behav. Immun. 95 381–390. 10.1016/J.BBI.2021.04.011
    1. Rai M., Demontis F. (2022). Muscle-to-brain signaling via myokines and myometabolites. Brain Plast. 8 43–63. 10.3233/BPL-210133
    1. Ramoo K., Hairi N. N., Yahya A., Choo W. Y., Hairi F. M., Peramalah D., et al. (2022). Longitudinal association between sarcopenia and cognitive impairment among older adults in rural Malaysia. Int. J. Environ. Res. Public Health 19:4723. 10.3390/IJERPH19084723
    1. Raschke S., Eckardt K., Bjørklund Holven K., Jensen J., Eckel J. (2013). Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells. PLoS One 8:e62008. 10.1371/JOURNAL.PONE.0062008
    1. Sada N., Lee S., Katsu T., Otsuki T., Inoue T. (2015). Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 347 1362–1367. 10.1126/SCIENCE.AAA1299
    1. Sanford J. A., Nogiec C. D., Lindholm M. E., Adkins J. N., Amar D., Dasari S., et al. (2020). Molecular transducers of physical activity consortium (MoTrPAC): Mapping the dynamic responses to exercise. Cell 181 1464–1474. 10.1016/J.CELL.2020.06.004
    1. Schättin A., Arner R., Gennaro F., de Bruin E. D. (2016). Adaptations of prefrontal brain activity, executive functions, and gait in healthy elderly following exergame and balance training: A randomized-controlled study. Front. Aging Neurosci. 8:278. 10.3389/FNAGI.2016.00278
    1. Scheler M., Irmler M., Lehr S., Hartwig S., Staiger H., Al-Hasani H., et al. (2013). Cytokine response of primary human myotubes in an in vitro exercise model. Am. J. Physiol. Cell Physiol. 305 877–886. 10.1152/AJPCELL.00043.2013
    1. Scisciola L., Fontanella R. A., Surina, Cataldo V., Paolisso G., Barbieri M. (2021). Sarcopenia and cognitive function: Role of myokines in muscle brain cross-talk. Life 11:173. 10.3390/life11020173
    1. Seifert T., Brassard P., Wissenberg M., Rasmussen P., Nordby P., Stallknecht B., et al. (2010). Endurance training enhances BDNF release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298 372–377. 10.1152/ajpregu.00525.2009
    1. Shamseer L., Moher D., Clarke M., Ghersi D., Liberati A., Petticrew M., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 349:g7647. 10.1136/bmj.g7647
    1. Sheoran S., Vints W. A. J., Valatkevičienė K., Kušleikienė S., Gleiznienė R., Česnaitienė V. J., et al. (2023). Strength gains after 12 weeks of resistance training correlate with neurochemical markers of brain health in older adults: A randomized control 1H-MRS study. GeroScience 10.1007/S11357-023-00732-6 [Epub ahead of print].
    1. Shojania K. G., Sampson M., Ansari M. T., Ji J., Doucette S., Moher D. (2007). How quickly do systematic reviews go out of date? A survival analysis. Ann. Intern. Med. 147 224–233. 10.7326/0003-4819-147-4-200708210-00179
    1. Solianik R., Brazaitis M., Cekanauskaite-Krušnauskien A. (2022). Tai chi effects on balance in older adults: The role of sustained attention and myokines. J. Sports Med. Phys. Fitness 62 1512–1518. 10.23736/S0022-4707.21.12990-1
    1. Stein A. M., Silva T. M. V., Coelho F. G., de M., Arantes F. J., Costa J. L. R., et al. (2018). Physical exercise, IGF-1 and cognition: A systematic review of experimental studies in the elderly. Dement. Neuropsychol. 12 114–122. 10.1590/1980-57642018dn12-020003
    1. Suzuki A., Stern S. A., Bozdagi O., Huntley G. W., Walker R. H., Magistretti P. J., et al. (2011). Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144 810–823. 10.1016/j.cell.2011.02.018
    1. Szuhany K. L., Bugatti M., Otto M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 60 56–64. 10.1016/J.JPSYCHIRES.2014.10.003
    1. Tam A. C. Y., Chan A. W. Y., Cheung D. S. K., Ho L. Y. W., Tang A. S. K., Christensen M., et al. (2022). The effects of interventions to enhance cognitive and physical functions in older people with cognitive frailty: A systematic review and meta-analysis. Eur. Rev. Aging Phys. Act. 19:19. 10.1186/S11556-022-00299-9
    1. Tremblay M. S., Aubert S., Barnes J. D., Saunders T. J., Carson V., Latimer-Cheung A. E., et al. (2017). Sedentary behavior research network (SBRN) - terminology consensus project process and outcome. Int. J. Behav. Nutr. Phys. Act. 14:75. 10.1186/S12966-017-0525-8
    1. Vaynman S., Ying Z., Gómez-Pinilla F. (2004). Exercise induces BDNF and synapsin I to specific hippocampal subfields. J. Neurosci. Res. 76 356–362. 10.1002/jnr.20077
    1. Vints W. A. J., Levin O., Fujiyama H., Verbunt J., Masiulis N. (2022b). Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front. Neuroendocrinol. 66:100993. 10.1016/J.YFRNE.2022.100993
    1. Vints W. A. J., Kušleikienė S., Sheoran S., Šarkinaitė M., Valatkevičienė K., Gleiznienė R., et al. (2022a). Inflammatory blood biomarker kynurenine is linked with elevated neuroinflammation and neurodegeneration in older adults: Evidence from two 1H-MRS post-processing analysis methods. Front. Psychiatry 13:859772. 10.3389/FPSYT.2022.859772
    1. Webb S. L., Loh V., Lampit A., Bateman J. E., Birney D. P. (2018). Meta-analysis of the effects of computerized cognitive training on executive functions: A cross-disciplinary taxonomy for classifying outcome cognitive factors. Neuropsychol. Rev. 28 232–250. 10.1007/S11065-018-9374-8
    1. Weigert C., Lehmann R., Hartwig S., Lehr S. (2014). The secretome of the working human skeletal muscle—A promising opportunity to combat the metabolic disaster? Proteomics Clin. Appl. 8 5–18. 10.1002/PRCA.201300094
    1. Whitham M., Febbraio M. A. (2016). The ever-expanding myokinome: Discovery challenges and therapeutic implications. Nat. Rev. Drug Discov. 1510 719–729. 10.1038/nrd.2016.153
    1. World Health Organization [WHO] (n.d.). Global health estimates: Life expectancy and healthy life expectancy. Available online at: (accessed April 7, 2023).
    1. Wrann C. D., White J. P., Salogiannnis J., Laznik-Bogoslavski D., Wu J., Ma D., et al. (2013). Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 18 649–659. 10.1016/j.cmet.2013.09.008
    1. Wu J., Wang X., Ye M., Wang L., Zheng G. (2021). Effect of regular resistance training on memory in older adults: A systematic review. Exp. Gerontol. 150:111396. 10.1016/J.EXGER.2021.111396
    1. Zhang Y. R., Xu W., Zhang W., Wang H. F., Ou Y. N., Qu Y., et al. (2022). Modifiable risk factors for incident dementia and cognitive impairment: An umbrella review of evidence. J. Affect. Disord. 314 160–167. 10.1016/J.JAD.2022.07.008
    1. Zhao Y., Li Y., Wang L., Song Z., Di T., Dong X., et al. (2022). Physical activity and cognition in sedentary older adults: A systematic review and meta-analysis. J. Alzheimers Dis. 87 957–968. 10.3233/JAD-220073

Source: PubMed

3
Subscribe