Effect of Supplementation with Black Chokeberry ( Aronia melanocarpa) Extract on Inflammatory Status and Selected Markers of Iron Metabolism in Young Football Players: A Randomized Double-Blind Trial

Błażej Stankiewicz, Mirosława Cieślicka, Jan Mieszkowski, Andrzej Kochanowicz, Bartłomiej Niespodziński, Andrzej Szwarc, Tomasz Waldziński, Joanna Reczkowicz, Elżbieta Piskorska, Miroslav Petr, Anna Skarpańska-Stejnborn, Jędrzej Antosiewicz, Błażej Stankiewicz, Mirosława Cieślicka, Jan Mieszkowski, Andrzej Kochanowicz, Bartłomiej Niespodziński, Andrzej Szwarc, Tomasz Waldziński, Joanna Reczkowicz, Elżbieta Piskorska, Miroslav Petr, Anna Skarpańska-Stejnborn, Jędrzej Antosiewicz

Abstract

The use of herbal medicinal products and supplements in amateur and professional sports has increased in the last decades. This is because most of these products and supplements contain bioactive compounds with a variety of biological properties that exert a physiological effect on the human body. The aim of this study was to analyze the effect of dietary supplementation with lyophilized black chokeberry extract on the levels of pro-inflammatory cytokines, hepcidin, and selected markers of iron metabolism in a group of young football players. This double-blind study included 22 male football players (mean = 19.96 ± 0.56), divided into two groups: supplemented and placebo. Before and after a 90-day period of training combined with supplementation (6 g of lyophilized black chokeberry extract), participants performed maximal multistage 20-m shuttle run tests at the beginning and at the end of the supplementation period, with blood sampled for analysis at different times before and after exercise. The levels of IL-6, IL-10, ferritin, myoglobin, hepcidin, 8-OHdG, albumin, and TAC were analyzed. The analysis of variance revealed a significant effect of 90-day supplementation with the lyophilized extract on changes in the IL-6 and IL-10 levels, and TAC induced by maximal aerobic effort. In conclusion, supplementation with lyophilized black chokeberry extract improves the performance and antioxidant status of serum in humans and induces protective changes in inflammatory markers.

Keywords: black chokeberry extract; inflammation; iron; reactive oxygen species; supplementation.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
The mean ± SD resting levels of specific inflammatory markers before and after 90 days of supplementation with a lyophilizate of black chokeberry extract: (A) 8-OHdG, (B) ferritin, (C) hepcidin, (D) iron, (E) IL-6, (F) IL-10, (G) myoglobin, and (H) TAC. Black circles, supplemented group (n = 12); gray squares, placebo group (n = 10). Abbreviations: 8-OHdG, 8-hydroxydeoxyguanosine; IL-6, interleukin 6; IL-10, interleukin 10; TAC, total antioxidant capacity; * significant difference vs. supplemented group after 90 days of supplementation with a lyophilizate of black chokeberry extract.
Figure 2
Figure 2
The mean ± SD values of serum levels of specific inflammatory markers induced by maximal aerobic effort (MAE) after 90 days of supplementation with a lyophilizate of black chokeberry extract: (A) 8-OHdG, (B) ferritin, (C) hepcidin, (D) iron, (E) IL-6, (F) IL-10, (G) myoglobin, and (H) TAC. Black circles, supplemented group (n = 12); gray squares, placebo group (n = 10). Abbreviations: I, baseline; II, immediately after MAE; III, 6 h post MAE; IV, 24 h post MAE; 8-OHdG, 8-hydroxydeoxyguanosine; IL-6, interleukin 6; IL-10, interleukin 10; TAC, total antioxidant capacity; * significant difference vs. placebo at the particular time point.

References

    1. Bahri-Sahloul R., Ben Fredj R., Boughalleb N., Shriaa J., Saguem S., Hilbert J.-L., Trotin F., Ammar S., Bouzid S., Harzallah-Skhiri F. Phenolic Composition and Antioxidant and Antimicrobial Activities of Extracts Obtained from Crataegus azarolus L. var. aronia (Willd.) Batt. Ovaries Calli. J. Bot. 2014;2014:623651. doi: 10.1155/2014/623651.
    1. Denev P., Kratchanova M., Ciz M., Lojek A., Vasicek O., Nedelcheva P., Blazheva D., Toshkova R., Gardeva E., Yossifova L., et al. Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health. Food Chem. 2014;157:37–44. doi: 10.1016/j.foodchem.2014.02.022.
    1. Reeder B.J., Wilson M.T. The effects of pH on the mechanism of hydrogen peroxide and lipid hydroperoxide consumption by myoglobin: A role for the protonated ferryl species. Free Radic. Biol. Med. 2001;30:1311–1318. doi: 10.1016/S0891-5849(01)00534-2.
    1. Halon-Golabek M., Borkowska A., Herman-Antosiewicz A., Antosiewicz J. Iron Metabolism of the Skeletal Muscle and Neurodegeneration. Front. Neurosci. 2019;13:165. doi: 10.3389/fnins.2019.00165.
    1. Peeling P., Dawson B., Goodman C., Landers G., Wiegerinck E.T., Swinkels D.W., Trinder D. Training surface and intensity: Inflammation, hemolysis, and hepcidin expression. Med. Sci. Sport Exerc. 2009;41:1138–1145. doi: 10.1249/MSS.0b013e318192ce58.
    1. Skarpańska-Stejnborn A., Basta P., Sadowska J., Pilaczyńska-Szcześniak L. Effect of supplementation with chokeberry juice on the inflammatory status and markers of iron metabolism in rowers. J. Int. Soc. Sport Nutr. 2014;11:014–0048. doi: 10.1186/s12970-014-0048-5.
    1. Skarpanska-Stejnborn A., Basta P., Trzeciak J., Michalska A., Kafkas M.E., Woitas-Slubowska D. Effects of cranberry (Vaccinum macrocarpon) supplementation on iron status and inflammatory markers in rowers. J. Int. Soc. Sport Nutr. 2017;14:7. doi: 10.1186/s12970-017-0165-z.
    1. Kortas J., Kuchta A., Prusik K., Prusik K., Ziemann E., Labudda S., Cwiklinska A., Wieczorek E., Jankowski M., Antosiewicz J. Nordic walking training attenuation of oxidative stress in association with a drop in body iron stores in elderly women. Biogerontology. 2017;18:517–524. doi: 10.1007/s10522-017-9681-0.
    1. Nemeth E., Rivera S., Gabayan V., Keller C., Taudorf S., Pedersen B.K., Ganz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Investig. 2004;113:1271–1276. doi: 10.1172/JCI200420945.
    1. Gozzelino R., Arosio P. Iron Homeostasis in Health and Disease. Int. J. Mol. Sci. 2016;17:130. doi: 10.3390/ijms17010130.
    1. Mieszkowski J., Kochanowicz M., Zychowska M., Kochanowicz A., Grzybkowska A., Anczykowska K., Sawicki P., Borkowska A., Niespodzinski B., Antosiewicz J. Ferritin Genes Overexpression in PBMC and a Rise in Exercise Performance as an Adaptive Response to Ischaemic Preconditioning in Young Men. Biomed. Res. Int. 2019;2019:9576876. doi: 10.1155/2019/9576876.
    1. Youdim M.B., Grünblatt E., Mandel S. The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson’s disease with iron chelators. Ann. N. Y. Acad. Sci. 1999;890:7–25. doi: 10.1111/j.1749-6632.1999.tb07977.x.
    1. Kähkönen M.P., Hopia A.I., Heinonen M. Berry Phenolics and Their Antioxidant Activity. J. Agric. Food Chem. 2001;49:4076–4082. doi: 10.1021/jf010152t.
    1. Seeram N.P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008;56:627–629. doi: 10.1021/jf071988k.
    1. Wu X., Gu L., Prior R.L., McKay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 2004;52:7846–7856. doi: 10.1021/jf0486850.
    1. Pownall T.L., Udenigwe C.C., Aluko R.E. Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. J. Agric. Food Chem. 2010;58:4712–4718. doi: 10.1021/jf904456r.
    1. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3.
    1. Léger L.A., Mercier D., Gadoury C., Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sport. Sci. 1988;6:93–101. doi: 10.1080/02640418808729800.
    1. Pilaczynska-Szczesniak L., Skarpanska-Steinborn A., Deskur E., Basta P., Horoszkiewicz-Hassan M. The influence of chokeberry juice supplementation on the reduction of oxidative stress resulting from an incremental rowing ergometer exercise. Int. J. Sport Nutr. Exerc. Metab. 2005;15:48–58. doi: 10.1123/ijsnem.15.1.48.
    1. Groussard C., Rannou-Bekono F., Machefer G., Chevanne M., Vincent S., Sergent O., Cillard J., Gratas-Delamarche A. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur. J. Appl. Physiol. 2003;89:14–20. doi: 10.1007/s00421-002-0767-1.
    1. Vollaard N.B., Shearman J.P., Cooper C.E. Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports Med. 2005;35:1045–1062. doi: 10.2165/00007256-200535120-00004.
    1. Valavanidis A., Vlachogianni T., Fiotakis C. 8-hydroxy-2’-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2009;27:120–139. doi: 10.1080/10590500902885684.
    1. Stankiewicz B., Cieslicka M., Kujawski S., Piskorska E., Kowalik T., Korycka J., Skarpanska-Stejnborn A. Effects of antioxidant supplementation on oxidative stress balance in young footballers- a randomized double-blind trial. J. Int. Soc. Sport Nutr. 2021;18:44. doi: 10.1186/s12970-021-00447-z.
    1. Rietjens I.M., Boersma M.G., Haan L., Spenkelink B., Awad H.M., Cnubben N.H., van Zanden J.J., Woude H., Alink G.M., Koeman J.H. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol. 2002;11:321–333. doi: 10.1016/S1382-6689(02)00003-0.
    1. Iwashima T., Kudome Y., Kishimoto Y., Saita E., Tanaka M., Taguchi C., Hirakawa S., Mitani N., Kondo K., Iida K. Aronia berry extract inhibits TNF-α-induced vascular endothelial inflammation through the regulation of STAT3. Food Nutr. Res. 2019;63:3361. doi: 10.29219/fnr.v63.3361.
    1. Nemeth E., Valore E.V., Territo M., Schiller G., Lichtenstein A., Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003;101:2461–2463. doi: 10.1182/blood-2002-10-3235.
    1. Barak V., Birkenfeld S., Halperin T., Kalickman I. The effect of herbal remedies on the production of human inflammatory and anti-inflammatory cytokines. Isr. Med. Assoc. J. IMAJ. 2002;4:919–922.
    1. Aaseth J., Stoa Birketvedt G. Hemolysis and rhabdomyolysis after marathon and long distance running. Immunol. Endocr. Metab. Agents Med. Chem. 2012;12:8–13. doi: 10.2174/187152212799857655.
    1. Antosiewicz J., Kaczor J.J., Kasprowicz K., Laskowski R., Kujach S., Luszczyk M., Radziminski L., Ziemann E. Repeated “all out” interval exercise causes an increase in serum hepcidin concentration in both trained and untrained men. Cell. Immunol. 2013;283:12–17. doi: 10.1016/j.cellimm.2013.06.006.
    1. Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009;53:75–100. doi: 10.1007/s12013-009-9043-x.

Source: PubMed

3
Subscribe