Alterations in glutathione, nitric oxide and 3-nitrotyrosine levels following exercise and/or hyperbaric oxygen treatment in mice with diet-induced diabetes

Luis Rogelio Gutiérrez-Camacho, Alexandre Kormanovski, María Del Carmen Castillo-Hernández, Gustavo Guevara-Balcázar, Eleazar Lara-Padilla, Luis Rogelio Gutiérrez-Camacho, Alexandre Kormanovski, María Del Carmen Castillo-Hernández, Gustavo Guevara-Balcázar, Eleazar Lara-Padilla

Abstract

Oxidative stress is involved in the development of diabetes. Nitric oxide (NO) contributes to oxidative stress, affects the synthesis of glutathione (GSH) in tissues and also regulates important physiological processes. The levels of nitrosative stress, assessed by measuring the levels of 3-nitrotirosina (3NT) as well as the bioavailability of NO are modulated by exercise and hyperbaric oxygenation (HBO). The aim of the present study was to evaluate the effects of exercise and HBO on the levels of NO, 3NT and GSH in tissues of various organs obtained from diabetic mice. Female mice were fed a high-fat/high-fructose diet to induce diabetes. Mice with diabetes were subjected to exercise and/or HBO. Initial and final concentrations of NO, 3NT and GSH were assessed in the muscle, liver, kidney, heart, spleen, lung, brain, visceral adipose, thoracic aorta and small intestine. Diabetes did not affect initial values of NO, although it significantly increased the levels of 3NT. The basal level of GSH in the diabetic group was lower than or comparable to that of the control group in the majority of the organs assessed. A negative correlation was observed between 3NT and GSH levels in the initial values of all tissues of the control group only, whereas all pathological tissues showed a positive correlation between NO and GSH. There was an increase or a stabilization of GSH levels in the majority of the organs in all treated mice despite the increase in nitrosative stress.

Keywords: diabetes; exercise; glutathione; hyperbaric oxygenation; mice; nitric oxide.

Copyright: © Gutiérrez-Camacho et al.

Figures

Figure 1
Figure 1
Weight and body composition of the animals in the control and experimental groups. (A) Initial body weight and (B) body composition. (C) Final body weight and (D) body composition. Data are presented as the mean ± standard deviation. *P<0.05, **P<0.01 vs. C or DF. C, initial values in the control group; D, initial values in the diabetic group; CF, final values in the control group; DF, final values in the diabetic group; DE, values in the diabetic mice treated with exercise; DH, values in diabetic mice treated with hyperbaric oxygenation; DEH diabetic mice treated with both exercise and hyperbaric oxygenation.
Figure 2
Figure 2
Glucose tolerance curves of mice in the C and D groups at the end of phase 1. **P<0.01. C, control; D, diabetic.

References

    1. Lo Faro ML, Fox B, Whatmore JL, Winyard PG, Whiteman M. Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide. 2014;41:38–47. doi: 10.1016/j.niox.2014.05.014.
    1. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: Structure, function and inhibition. Bichem J. 2001;357:593–615. doi: 10.1042/0264-6021:3570593.
    1. Zhang Z, Naughton D, Winyard PG, Benjamin N, Blake DR, Symons MC. Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: A potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochem Biophys Res Commun. 1998;249:767–772. doi: 10.1006/bbrc.1998.9226.
    1. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am J Physiol. 1996;271:1424–1437. doi: 10.1152/ajpcell.1996.271.5.C1424.
    1. Chen JY, Ye ZX, Wang XF, Chang J, Yang MW, Zhong HH, Hong FF, Yang SI. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed Pharmacother. 2018;97:423–428. doi: 10.1016/j.biopha.2017.10.122.
    1. Delamea BS, Leitão CB, Freadman R, Canani LH. Nitric oxide system and diabetic nephropatju. Diabetol Metab Syndr. 2014;6:17–21. doi: 10.1186/1758-5996-6-17.
    1. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–260. doi: 10.1016/j.redox.2018.09.025.
    1. Low Wang CC, Hess CN, Hiatt WR, Goldfin AB. Clinical update: Cardiovascular disease in diabetes mellitus: Atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus mechanisms, management, and clinical considerations. Circ. 2016;133:2459–2502. doi: 10.1161/CIRCULATIONAHA.116.022194.
    1. Wang W, Shang C, Zhang W, Jin Z, Yao F, He Y, Wang B, Li Y, Zhang J, Lin R. Hydroxityrosol regulates oxidative stress and NO production through SIRT1 in diabetic mice and vascular endothelial cells. Phytomed. 2019;52:206–215. doi: 10.1016/j.phymed.2018.09.208.
    1. Assman TS, Brondani LA, Bouças AP, Rheinheimer J, de Souzza BM, Canani LH, Bauer AC, Crispim D. Nitric oxide levels in patients with diabetes mellitus: A systematic review and meta-analysis. Nitric Oxide. 2016;61:1–9. doi: 10.1016/j.niox.2016.09.009.
    1. Millerbon FJ, Gutterman DD, Rios CD, Heistad DD, Davidson BI. Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ Res. 1998;82:1298–1303. doi: 10.1161/01.res.82.12.1298.
    1. Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: Molecular mechanisms and clinical implications. Rev Endocr Metab Disord. 2010;11:61–74. doi: 10.1007/s11154-010-9134-4.
    1. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–1505. doi: 10.1038/nm954.
    1. Totzeck M, Hengen-Cotta UB, Luedike P, Berenbrink M, Klare JP, Steinhoff HJ, Semmler D, Shiva S, Williams D, Kipar A, et al. Nitrite regulates hypoxic vasodilatation via myoglobin-dependent nitric oxide generation. Circ. 2012;126:325–334. doi: 10.1161/CIRCULATIONAHA.111.087155.
    1. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134:489–492. doi: 10.1093/jn/134.3.489.
    1. Sundaram RK, Bhaskar A, Vijayalingam S, Viswanathan M, Mohan R, Shanmugasundaram KR. Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin Sci (Lond) 1996;90:255–260. doi: 10.1042/cs0900255.
    1. Nguyen D, Hsu JW, Jahoor F, Sekhar RV. Effect of increasing glutathione with cysteine and glycine supplementation on mitochondrial fuel oxidation, insulin sensitivity, and body composition in older HIVinfected patients. J Clin Endocrinol Metab. 2014;99:169–177. doi: 10.1210/jc.2013-2376.
    1. Sekhar RV, McKay SV, Patel SG, Guthikonda AP, Reddy VT, Balasubramanyam A, Jahoor F. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011;34:162–167. doi: 10.2337/dc10-1006.
    1. Lagman M, Ly J, Saing T, Kaur Singh M, Vera Tudela E, Morris D, Chi P-T, Ochoa C, Sathananthan A, Venketaran V. Investigating the causes for decreased levels of glutathione in individuals with type II diabetes. PLoS One. 2015;10(e0118436) doi: 10.1371/journal.pone.0118436.
    1. Lutchmansingh FK, Hsu JW, Bennett FI, Badaloo AV, McFarlane-Anderson N, Gordon-Strachan GM, Wright-Pascoe RA, Jahoor F, Michael S, Boyne MS. Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycaemia. PLoS One. 2018;13(e0198626) doi: 10.1371/journal.pone.0198626.
    1. Parsanathan R, Jain SK. Glutathione deficiency alters the vitamin D-metabolizing enzymes CYP27B1 and CYP24A1 in human renal proximal tubule epithelial cells and kidney of HFD-fed mic. Free Radic Biol Med. 2019;131:376–381. doi: 10.1016/j.freeradbiomed.2018.12.017.
    1. Ilyer AKV, Rojanasakul Y, Azad N. Nitrosothiols signaling and protein nitrosation in cell death. Nitric Oxide. 2014;42:9–18. doi: 10.1016/j.niox.2014.07.002.
    1. Ganzarolli de Oliveira M. S-nitrosothiols as platforms for topical nitric oxide delivery. Basic Clin Pharmacol Toxicol. 2016;119:49–56. doi: 10.1111/bcpt.12588.
    1. Payabvash S, Ghahremani MH, Goliaei A, Mandegary A, Shafaroodi H, Amanlou M, Dehpour AR. Nitric oxide modulates glutathione synthesis during endotoxemia. Free Rad Biol Med. 2006;41:1817–1828. doi: 10.1016/j.freeradbiomed.2006.09.010.
    1. Surh F, Gehlert S, Grau M, Bloch W. Skeletal muscle function during exercisefine-tuning of diverse subsystems by nitric oxide. Int J Mol Sci. 2013;14:7109–7139. doi: 10.3390/ijms14047109.
    1. Yaribeygi HY, Butler AE, Sahebkar A. Aerobic exercise can modulate the underlying mechanisms involved in the development of diabetic complications. J Cell Physiol. 2019;234:12508–12515. doi: 10.1002/jcp.28110.
    1. Kahraman S, Düz B, Kayali H, Korkmaz A, Öter S, Aydin A, Sayal A. Effects of methylprednisolone and hyperbaric oxygen on oxidative status after experimental spinal cord injury: Comparative study in rats. Neurochem Res. 2007;32:1547–1551. doi: 10.1007/s11064-007-9354-5.
    1. Cheng O, Ostrowski RP, Wu B, Liu W, Chen C, Zhang JH. Cyclooxygenase2 mediated hyperbaric oxygen preconditioning in the rat model of transient global cerebral ischemia. Stroke. 2011;422:484–490. doi: 10.1161/STROKEAHA.110.604421.
    1. Fuller AM, Giardina C, Hightower LE, Perdrizet GA, Tierney CA. Hyperbaric oxygen preconditioning protects skin from UV-A damage. Cell Stress Chaperones. 2013;8:97–107. doi: 10.1007/s12192-012-0362-2.
    1. Feng Y, Zhang Z, Li Q, Li W, Xu J, Cao H. Hyperbaric oxygen preconditioning protects lung against hyperoxic acute lung injury via heme oxygenase-1 induction. Biochem Biophys Res Comm. 2015;459:549–554. doi: 10.1016/j.bbrc.2014.09.074.
    1. Guevara-Balcazar G, Lara-Padilla E, Kormanovski A, Ramirez-Sanchez I, Castillo-Henkel EF, Castillo-Hernandez MC. Changes in oxidative stress and vascular reactivity of thoracic and abdominal rat aorta with different periods of exposure to hyperbaric oxygenation. Int J Pharmac. 2015;11:611–617.
    1. Thom SR. Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol (1985) 2009;106:988–995. doi: 10.1152/japplphysiol.91004.2008.
    1. Castillo-Hernandez MC, Lara-Padilla E, Kormanovski A, Perez-Tuñon JG, Lopez-Calderon EM, Guevara-Balcazar G. Normalization of QRS segment, blood pressure and heartbeat in an experimental model of amintriptyline intoxication in rats following hyperbaric oxygenation therapy. Int J Pharmac. 2015;11:508–512.
    1. Buras JA, Sthal GL, Svoboda KK, Reenstra WR. Hyperbaric oxygen down-regulates ICAM-1 expression induced by hypoxia and hypoglycemia: The role of NOS. Am J Physiol Cell Physiol. 2000;278:292–302. doi: 10.1152/ajpcell.2000.278.2.C292.
    1. Cabigas BP, Su J, Hutchins W, Shi Y, Schaefer RB, Recinos RF, Nilakantan V, Kindwall E, Niezgoda JA, Baker JE. Hyperoxic and hyperbaric-induced cardioprotection: Role of nitric oxide synthase 3. Cardiovasc Res. 2006;72:143–151. doi: 10.1016/j.cardiores.2006.06.031.
    1. Buerk DG. Nitric oxide regulation of microvascular oxygen. Antiox Red Signal. 2007;9:829–843. doi: 10.1089/ars.2007.1551.
    1. Thibault L. Animal models of dietary-induced obesity. In animal models for the study of human disease. pp. 277-303, 2013.
    1. Sah SP, Singh B, Choudhary S, Kumar A. Animal models of insulin resistance: A review. Pharmacol Rep. 2016;68:1165–1177. doi: 10.1016/j.pharep.2016.07.010.
    1. Ravi Kiran T, Subramanyam MV, Asha Devi S. Swim exercise training and adaptations in the antioxidant defense system of myocardium of old rats: Relation to swim intensity and duration. Comp Biochem Physiol B Biochem Mol Biol. 2004;137:187–196. doi: 10.1016/j.cbpc.2003.11.002.
    1. Nacao C, Ookawara S, Kizaki T, Oh-Ishi S, Miyazaki H, Haga S, Sato Y, Ji LL, Ohno H. Effects of swimming training on three superoxide dismutase isoenzymes in mouse tissue. J Appl Physiol (1985) 2000;88:649–654. doi: 10.1152/jappl.2000.88.2.649.
    1. Jung UJ, Choi MS. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15:6184–6223. doi: 10.3390/ijms15046184.
    1. Rogers P, Webb GP. Estimation of body fat in normal and obese mice. Brit J Nutr. 1980;43:83–87. doi: 10.1079/bjn19800066.
    1. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104:787–794. doi: 10.1172/JCI7231.
    1. Defronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diab Care 36. 2013;(Suppl 2):S127–S138. doi: 10.2337/dcS13-2011.
    1. Muthulakshmi S, Saravanan R. Protective effects of azelaic acid against high-fat diet-induced oxidative stress in liver, kidney and heart of C57BL/6J mice. Mol Cell Biochem. 2013;377:23–33. doi: 10.1007/s11010-013-1566-1.
    1. Vickers SP, Jackson HC, Cheetham SC. The utility of animal models to evaluate novel anti-obesity agents. Br J Pharmacol. 2011;164:1248–1262. doi: 10.1111/j.1476-5381.2011.01245.x.
    1. Makarov M, Makarov V. Diet-induced models of metabolic disturbances. Report 2: Experimental obesity. Lab Animals Sci. 2018;2:12–17.
    1. Rosini TC, da Silva ASR, de Moraes C. Diet-induced obesity: Rodent model for the study of obesity related disorders. Rev Assoc Med Bras (1992) 2012;58:383–387. (In English, Portuguese).
    1. Schmidt HH, Walter U. NO at work. Cell. 2004;78:919–925.
    1. Napoli C, Ignarro LJ. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch Pharmacol Res. 2009;32:1103–1108. doi: 10.1007/s12272-009-1801-1.
    1. Davies MJ, Fu S, Wang H, Dean RT. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med. 1999;27:1151–1163. doi: 10.1016/s0891-5849(99)00206-3.
    1. Minamiyama Y, Takemura S, Koyama K, Yu H, Miyamoto M, Inone M. Dynamic aspects of glutathione and nitric oxide metabolism in endotoxemic rats. Am J Physiol. 1996;271:G575–G581. doi: 10.1152/ajpgi.1996.271.4.G575.
    1. Sun Q, Liu Y, Sun X, Tao H. Anti-apoptotic effect of hyperbaric oxygen preconditioning on a rat model of myocardial infarction. J Surg Res. 2011;171:41–46. doi: 10.1016/j.jss.2010.01.036.
    1. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO. Mitochondrial biogenesis in mammal: The role of endogenous nitric oxide. Science. 2003;299:896–899. doi: 10.1126/science.1079368.
    1. Miller MW, Knaub LA, Olivera-Fragoso LF, Keller AC, Balasubramaniam V, Watson PA, Reusch JEB. Nitric oxide regulates vascular adaptive mitochondrial dynamics. Am J Physiol Heart Circ Physiol. 2013;304:H1624–H1633. doi: 10.1152/ajpheart.00987.2012.
    1. Whal MP, Scalzo RL, Regensteiner JG, Reusch JEB. Mechanisms of aerobic exercise impairment in diabetes: A narrative review. Front Endocrinol (Lausanne) 2018;9(181) doi: 10.3389/fendo.2018.00181.
    1. Kormanovski A, Castillo-Hernández MC, Guevara-Balcazar G, Pérez T, Lara-Padilla E. Gender difference in nitric oxide and antioxidant response to physical stress in tissues of trained mice after hyperbaric oxygen preconditioning: Part 2. Physiol Pharmac. 2019;23:309–321.

Source: PubMed

3
Subscribe