The utilization of small non-mammals in traumatic brain injury research: A systematic review

Nurul Atiqah Zulazmi, Alina Arulsamy, Idrish Ali, Syafiq Asnawi Zainal Abidin, Iekhsan Othman, Mohd Farooq Shaikh, Nurul Atiqah Zulazmi, Alina Arulsamy, Idrish Ali, Syafiq Asnawi Zainal Abidin, Iekhsan Othman, Mohd Farooq Shaikh

Abstract

Traumatic brain injury (TBI) is the leading cause of death and disability worldwide and has complicated underlying pathophysiology. Numerous TBI animal models have been developed over the past decade to effectively mimic the human TBI pathophysiology. These models are of mostly mammalian origin including rodents and non-human primates. However, the mammalian models demanded higher costs and have lower throughput often limiting the progress in TBI research. Thus, this systematic review aims to discuss the potential benefits of non-mammalian TBI models in terms of their face validity in resembling human TBI. Three databases were searched as follows: PubMed, Scopus, and Embase, for original articles relating to non-mammalian TBI models, published between January 2010 and December 2019. A total of 29 articles were selected based on PRISMA model for critical appraisal. Zebrafish, both larvae and adult, was found to be the most utilized non-mammalian TBI model in the current literature, followed by the fruit fly and roundworm. In conclusion, non-mammalian TBI models have advantages over mammalian models especially for rapid, cost-effective, and reproducible screening of effective treatment strategies and provide an opportunity to expedite the advancement of TBI research.

Keywords: animal model; differential method; non-mammals; traumatic brain injury.

Conflict of interest statement

All authors declare that they have no conflict of interest.

© 2021 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Flow chart of study selection based on the PRISMA guidelines
FIGURE 2
FIGURE 2
Injury models utilized by the roundworm TBI model. (A) Therapeutic shock wave applied through handpiece Swiss Dolor Clast device directly into wells containing roundworms, and (B) High‐frequency acoustic wave delivered through SAW device vertically into a liquid medium filled chamber containing roundworms
FIGURE 3
FIGURE 3
Injury models utilized by fruit fly TBI model. (A) High‐impact trauma (HIT) achieved by releasing spring attached with a vial of flies to rapidly contact the polyurethane pad, (B) Fruit flies in the mesh fixture were exposed to free‐field blast released from the compression chamber, (C) Restrained fruit flies with only the head portion exposed were impacted with solenoid recoiled brass block to achieve closed head injury, and (D) Omni Bead Ruptor‐24 Homogenizer Device with pre‐programmed shaking conditions used to deliver TBI in fruit flies contained in vials
FIGURE 4
FIGURE 4
Injury models utilized by the zebrafish TBI model. (A) Acoustic shock wave generated and bombarded onto zebrafish head, directed by B‐focal imaging system, (B) Mechanical lesion applied by surgically making a hole in the skull and using the fine tweezers to cut the specified brain region, (C) Injection of quinolinic acid into desired brain region under a dissecting stereomicroscope, (D) Telencephalon injury induced by inserting needle into the telencephalon region via nose, E) Pulsed high‐intensity focused ultrasound (pHIFU) generated and focally targeted toward zebrafish head through an ultrasonic membrane, (F) A steel ball‐bearing (weight) is dropped from a specified height through a plastic tube and unto the cranium of the zebrafish, (G) Larvae was incubated in a petri dish filled with atorvastatin (ATV) and embryo medium mixture, (H) Glutamate acid was titrated into wells of a 96‐well plate containing zebrafish larvae (each in one well), and (I) Stab lesion was inflicted in zebrafish larvae placed on agarose medium, via a needle angled at 45o toward the desired brain region

References

    1. Sharp DJ, Ham TE. Investigating white matter injury after mild traumatic brain injury. Curr Opin Neurol. 2011;24(6):558‐563. 10.1097/WCO.0b013e32834cd523
    1. James SL, Theadom A, Ellenbogen RG, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):56‐87. 10.1016/S1474-4422(18)30415-0
    1. Ahmed S, Venigalla H, Mekala HM, Dar S, Hassan M, Ayub S. Traumatic brain injury and neuropsychiatric complications. Indian J Psychol Med. 2017;39(2):114‐121. 10.4103/0253-7176.203129
    1. Gaetz M.The neurophysiology of brain injury. 2004. . Accessed April 24, 2020.
    1. Blennow K, Hardy J, Zetterberg H. The neuropathology and neurobiology of traumatic brain injury. Neuron. 2012;76(5):886‐899.
    1. Campos‐Pires R, Yonis A, Macdonald W, et al. A novel in vitro model of blast traumatic brain injury. J Vis Exp. 2018;2018(142):1‐9. 10.3791/58400
    1. Kinder HA, Baker EW, West FD. The pig as a preclinical traumatic brain injury model: current models, functional outcome measures, and translational detection strategies. Neural Regen Res. 2019;14(3):413‐424. 10.4103/1673-5374.245334
    1. Krukowski K, Chou A, Feng X, et al. Traumatic brain injury in aged mice induces chronic microglia activation, synapse loss, and complement‐dependent memory deficits. Int J Mol Sci. 2018;19(12):1‐17. 10.3390/ijms19123753
    1. McCutcheon V, Park E, Liu E, et al. A novel model of traumatic brain injury in adult zebrafish demonstrates response to injury and treatment comparable with mammalian models. J Neurotrauma. 2017;34(7):1382‐1393. 10.1089/neu.2016.4497
    1. Barekat A, Gonzalez A, Mauntz RE, et al. Using Drosophila as an integrated model to study mild repetitive traumatic brain injury. Sci Rep. 2016;6:1‐14. 10.1038/srep25252
    1. Santoriello C, Zon LI. Hooked! modeling human disease in zebrafish. J Clin Invest. 2012;122(7):2337‐2343. 10.1172/JCI60434
    1. Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011;63(2):411‐436. 10.1124/pr.110.003293
    1. Markaki M, Tavernarakis N. Modeling human diseases in Caenorhabditis elegans . Biotechnol J. 2010;5(12):1261‐1276. 10.1002/biot.201000183
    1. Culetto E. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet. 2000;9(6):869‐877. 10.1093/hmg/9.6.869
    1. Fortini ME, Skupski MP, Boguski MS, Hariharan IK. A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol. 2000;150(2):F23‐F30. 10.1083/jcb.150.2.f23
    1. Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498‐503. 10.1038/nature12111
    1. Cooper C, Booth A, Varley‐Campbell J, Britten N, Garside R. Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol. 2018;18(1):85. 10.1186/s12874-018-0545-3
    1. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta‐analysis protocols (prisma‐p) 2015: elaboration and explanation. BMJ. 2015;349:1‐25. 10.1136/bmj.g7647
    1. Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes‐Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14(1):43. 10.1186/1471-2288-14-43
    1. Jorgensen EM, Mango SE. The art and design of genetic screens: Caenorhabditis elegans . Nat Rev Genet. 2002;3(5):356‐369. 10.1038/nrg794
    1. White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans . Philos Trans R Soc Lond B Biol Sci. 1986;314(1165):1‐340. 10.1098/rstb.1986.0056
    1. Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 2006;5(5):387‐399. 10.1038/nrd2031
    1. Lund J, Tedesco P, Duke K, Wang J, Kim SK, Johnson TE. Transcriptional profile of aging in C. elegans . Curr Biol. 2002;12(18):1566‐1573. 10.1016/S0960-9822(02)01146-6
    1. Leung MCK, Williams PL, Alexandre Benedetto CA, Kirsten MA, Helmcke J, Meyer JN. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology — Albert Einstein College of Medicine. Toxicol Sci. 2008;106(1):5‐28. . Accessed April 28, 2020.
    1. Schelling G, Delius M, Gschwender M, Grafe P, Gambihler S. Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation‐mediated mechanism. Biophys J. 1994;66(1):133‐140. 10.1016/S0006-3495(94)80758-1
    1. Goeller J, Wardlaw A, Treichler D, O’Bruba J, Weiss G. Investigation of cavitation as a possible damage mechanism in blast‐induced traumatic brain injury. J Neurotrauma. 2012;29(10):1970‐1981. 10.1089/neu.2011.2224
    1. Angstman NB, Kiessling MC, Frank HG, Schmitz C. High interindividual variability in dose‐dependent reduction in speed of movement after exposing C. elegans to shock waves. Front Behav Neurosci. 2015;9:1‐11. 10.3389/fnbeh.2015.00012
    1. Cernak I, Noble‐Haeusslein LJ. Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab. 2010;30(2):255‐266. 10.1038/jcbfm.2009.203
    1. Goldstein LE, Fisher AM, Tagge CA, et al. Chronic traumatic encephalopathy in blast‐exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. 2012;4(134):1‐16. 10.1126/scitranslmed.3003716
    1. Ibsen S, Tong A, Schutt C, Esener S, Chalasani SH. Sonogenetics is a non‐invasive approach to activating neurons in Caenorhabditis elegans . Nat Commun. 2015;6(1):1‐12. 10.1038/ncomms9264
    1. Zhou W, Wang J, Wang K, et al. Ultrasound neuro‐modulation chip: activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves. Lab Chip. 2017;17(10):1725‐1731. 10.1039/c7lc00163k
    1. Yuan J, Zhou J, Raizen DM, Bau HH. High‐throughput, motility‐based sorter for microswimmers such as C. elegans . Lab Chip. 2015;15(13):2790‐2798. 10.1039/c5lc00305a
    1. San‐Miguel A, Lu H. Microfluidics as a Tool for C. elegans Research. Pasadena, CA: WormBook. The online review of C. elegans biology. Various; 2013:1‐19.
    1. Miansari M, Mehta MD, Schilling JM, Kurashina Y, Patel HH, Friend J. Inducing mild traumatic brain injury in C. elegans via cavitation‐free surface acoustic wave‐driven ultrasonic irradiation. Sci Rep. 2019;9(1):1‐11. 10.1038/s41598-019-47295-1
    1. Baasch T, Reichert P, Lakämper S, et al. Acoustic compressibility of Caenorhabditis elegans . Biophys J. 2018;115(9):1817‐1825. 10.1016/j.bpj.2018.08.048
    1. Fang Y, Bonini NM. Axon degeneration and regeneration: insights from Drosophila models of nerve injury. Annu Rev Cell Dev Biol. 2012;28(1):575‐597. 10.1146/annurev-cellbio-101011-155836
    1. Leyssen M, Ayaz D, Hébert SS, Reeve S, De Strooper B, Hassan BA. Amyloid precursor protein promotes post‐developmental neurite arborization in the Drosophila brain. EMBO J. 2005;24(16):2944‐2955. 10.1038/sj.emboj.7600757
    1. Hockey KS, Hubbard WB, Sajja VS, et al. A new model for mild blast injury utilizing Drosophila melanogaster . Biomed Sci Instrum. 2013;49:134‐140.
    1. Katzenberger RJ, Loewen CA, Wassarman DR, Petersen AJ, Ganetzky B, Wassarman DA. A Drosophila model of closed head traumatic brain injury. Proc Natl Acad Sci USA. 2013;110(44):E4152‐E4159. 10.1073/pnas.1316895110
    1. Katzenberger RJ, Loewen CA, Tayler Bockstruck R, Woods MA, Ganetzky B, Wassarman DA. A method to inflict closed head traumatic brain injury in drosophila. J Vis Exp. 2015;100:2015. 10.3791/52905
    1. Ganetzky B, Wassarman DA. Non‐mammalian animal models offer new perspectives on the treatment of TBI. Curr Phys Med Rehabil Rep. 2016;4(1):1‐4. 10.1007/s40141-016-0107-8
    1. Reichert H. A tripartite organization of the urbilaterian brain: developmental genetic evidence from Drosophila. Brain Res Bull. 2005;66(4–6):491‐494. 10.1016/j.brainresbull.2004.11.028
    1. Anderson EN, Gochenaur L, Singh A, et al. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models. Hum Mol Genet. 2018;27:1366‐1381.
    1. Katzenberger RJ, Ganetzky B, Wassarman DA. Age and diet affect genetically separable secondary injuries that cause acute mortality following traumatic brain injury in Drosophila . G3: Genes ‐ Genomes ‐ Genetics. 2016;6(12):4151‐4166. 10.1534/g3.116.036194
    1. Katzenberger RJ, Chtarbanova S, Rimkus SA, et al. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. eLife. 2015;2015(4):e04790. 10.7554/eLife.04790
    1. Sun M, Chen LL. A novel method to model chronic traumatic encephalopathy in Drosophila. J Vis Exp. 2017;2017(125):1‐6. 10.3791/55602
    1. Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27(8):1529‐1540. 10.1089/neu.2010.1358
    1. Dardiotis E, Fountas KN, Dardioti M, et al. Genetic association studies in patients with traumatic brain injury. Neurosurg Focus. 2010;28(1):1‐12. 10.3171/2009.10.FOCUS09215
    1. Al Nimer F, Lindblom R, Ström M, et al. Strain influences on inflammatory pathway activation, cell infiltration and complement cascade after traumatic brain injury in the rat. Brain Behav Immun. 2013;27(1):109‐122. 10.1016/j.bbi.2012.10.002
    1. Allen GV, Gerami D, Esser MJ. Conditioning effects of repetitive mild neurotrauma on motor function in an animal model of focal brain injury. Neuroscience. 2000;99(1):93‐105. 10.1016/S0306-4522(00)00185-8
    1. Kirov II, Tal A, Babb JS, Lui YW, Grossman RI, Gonen O. Diffuse axonal injury in mild traumatic brain injury: a 3D multivoxel proton MR spectroscopy study. J Neurol. 2013;260(1):242‐252. 10.1007/s00415-012-6626-z
    1. Kamnaksh A, Kwon SK, Kovesdi E, et al. Neurobehavioral, cellular, and molecular consequences of single and multiple mild blast exposure. Electrophoresis. 2012;33(24):3680‐3692. 10.1002/elps.201200319
    1. Vandevord PJ, Bolander R, Sajja VSSS, Hay K, Bir CA. Mild neurotrauma indicates a range‐specific pressure response to low level shock wave exposure. Ann Biomed Eng. 2012;40(1):227‐236. 10.1007/s10439-011-0420-4
    1. Huang Y, Ainsley JA, Reijmers LG, Jackson FR. Translational profiling of clock cells reveals circadianly synchronized protein synthesis. PLoS Biol. 2013;11(11):e1001703. 10.1371/journal.pbio.1001703
    1. van Alphen B, Stewart S, Iwanaszko M, et al. Glial immune‐related pathways as mediators of closed head TBI effects on behavior in Drosophila. bioRxiv. 2018:422535. 10.1101/422535
    1. Statler KD, Alexander H, Vagni V, et al. Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res. 2006;1076(1):216‐224. 10.1016/j.brainres.2005.12.106
    1. Statler KD, Kochanek PM, Dixon CE, et al. Isoflurane improves long‐term neurologic outcome versus fentanyl after traumatic brain injury in rats. J Neurotrauma. 2000;17(12):1179‐1189. 10.1089/neu.2000.17.1179
    1. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10(12):2208‐2222. 10.4161/15548627.2014.981787
    1. Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development (Cambridge, England). 1996;123:1‐36.
    1. Vilella AJ, Severin J, Ureta‐Vidal A, Heng L, Durbin R, Birney E. EnsemblCompara GeneTrees: complete, duplication‐aware phylogenetic trees in vertebrates. Genome Res. 2009;19(2):327‐335. 10.1101/gr.073585.107
    1. Crilly S, Njegic A, Laurie SE, et al. Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage [version 2; referees: 2 approved]. F1000Research. 2018;7:1‐23. 10.12688/f1000research.16473.2
    1. Fleming A, Diekmann H, Goldsmith P. Functional characterisation of the maturation of the blood‐brain barrier in larval zebrafish. PLoS One. 2013;8(10):e77548. 10.1371/journal.pone.0077548
    1. Butt F, Abhari A, Tavakkoli J. An application of high performance computing to improve linear acoustic simulation. InSpringSim. CNS '11: Proceedings of the 14th Communications and Networking Symposium April 2011. 2011:71‐78.
    1. Bundschu K, Knobeloch KP, Ullrich M, et al. Gene disruption of Spred‐2 causes dwarfism. J Biol Chem. 2005;280(31):28572‐28580. 10.1074/jbc.M503640200
    1. Miyoshi K, Wakioka T, Nishinakamura H, et al. The Sprouty‐related protein, Spred, inhibits cell motility, metastasis, and Rho‐mediated actin reorganization. Oncogene. 2004;23(33):5567‐5576. 10.1038/sj.onc.1207759
    1. Darlington LG, Mackay GM, Forrest CM, Stoy N, George C, Stone TW. Altered kynurenine metabolism correlates with infarct volume in stroke. Eur J Neurosci. 2007;26(8):2211‐2221. 10.1111/j.1460-9568.2007.05838.x
    1. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465‐477. 10.1038/nrn3257
    1. Stone TW, Forrest CM, Stoy N, Darlington LG. Involvement of kynurenines in Huntington’s disease and stroke‐induced brain damage. J Neural Transm. 2012;119(2):261‐274. 10.1007/s00702-011-0676-8
    1. Zwilling D, Huang SY, Sathyasaikumar KV, et al. Kynurenine 3‐monooxygenase inhibition in blood ameliorates neurodegeneration. Cell. 2011;145(6):863‐874. 10.1016/j.cell.2011.05.020
    1. Collin T, Arvidsson A, Kokaia Z, Lindvall O. Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury. Exp Neurol. 2005;195(1):71‐80. 10.1016/j.expneurol.2005.03.017
    1. Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RLM, Connor B. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington’s disease. Neuroscience. 2004;127(2):319‐332. 10.1016/j.neuroscience.2004.04.061
    1. Skaggs K, Goldman D, Parent JM. Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long‐distance neuronal integration. Glia. 2014;62(12):2061‐2079. 10.1002/glia.22726
    1. Diotel N, Vaillant C, Gabbero C, et al. Effects of estradiol in adult neurogenesis and brain repair in zebrafish. Horm Behav. 2013;63(2):193‐207. 10.1016/j.yhbeh.2012.04.003
    1. Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M. Regeneration of the adult zebrafish brain from neurogenic radial glia‐type progenitors. Development. 2011;138(22):4831‐4841. 10.1242/dev.072587
    1. Wu CC, Tsai TH, Chang C, et al. On the crucial cerebellar wound healing‐related pathways and their cross‐talks after traumatic brain injury in Danio rerio . PLoS One. 2014;9(6):e97902. 10.1371/journal.pone.0097902
    1. März M, Schmidt R, Rastegar S, Strahle U. Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn. 2011;240(9):2221‐2231. 10.1002/dvdy.22710
    1. Baumgart EV, Barbosa JS, Bally‐cuif L, Götz M, Ninkovic J. Stab wound injury of the zebrafish telencephalon: a model for comparative analysis of reactive gliosis. Glia. 2012;60(3):343‐357. 10.1002/glia.22269
    1. Martins‐Macedo J, Lepore AC, Domingues HS, Salgado AJ, Gomes ED, Pinto L. Glial restricted precursor cells in central nervous system disorders: current applications and future perspectives. Glia. 2020:1‐19. 10.1002/glia.23922
    1. Winter PM, Lanza GM, Wickline SA, et al. Pulsed high‐intensity focused ultrasound. In Bhushan B (Ed.), Encyclopedia of Nanotechnology. Dordrecht: Springer Netherlands; 2012: 2181‐2186.
    1. Alhamami M, Kolios MC, Tavakkoli J. Photoacoustic detection and optical spectroscopy of high‐intensity focused ultrasound‐induced thermal lesions in biologic tissue. Med Phys. 2014;41(5):1‐13. 10.1118/1.4871621
    1. Li D, Ji JX, Xu YT, et al. Inhibition of Lats1/p‐YAP1 pathway mitigates neuronal apoptosis and neurological deficits in a rat model of traumatic brain injury. CNS Neurosci Ther. 2018;24(10):906‐916. 10.1111/cns.12833
    1. Mychasiuk R, Farran A, Angoa‐Perez M, Briggs D, Kuhn D, Esser MJ. A novel model of mild traumatic brain injury for juvenile rats. J Vis Exp. 2014;(94):e51820. 10.3791/51820
    1. Maheras AL, Dix B, Carmo OMS, et al. Genetic pathways of neuroregeneration in a novel mild traumatic brain injury model in adult zebrafish. eNeuro. 2018;5(1):1‐17. 10.1523/ENEURO.0208-17.2017
    1. Lu KT, Huang TC, Wang JY, et al. NKCC1 mediates traumatic brain injury‐induced hippocampal neurogenesis through CREB phosphorylation and HIF‐1α expression. Pflugers Arch. 2015;467(8):1651‐1661. 10.1007/s00424-014-1588-x
    1. Lu D, Mahmood A, Qu C, Goussev A, Schallert T, Chopp M. Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury. J Neurotrauma. 2005;22(9):1011‐1017. 10.1089/neu.2005.22.1011
    1. Lundin A, de Boussard C, Edman G, Borg J. Symptoms and disability until 3 months after mild TBI. Brain Inj. 2006;20(8):799‐806. 10.1080/02699050600744327
    1. Chen CJ, Wu CH, Liao YP, et al. Working memory in patients with mild traumatic brain injury: functional MR imaging analysis. Radiology. 2012;264(3):844‐851. 10.1148/radiol.12112154
    1. Dawish H, Mahmood A, Schallert T, Chopp M, Therrien B. Mild traumatic brain injury (MTBI) leads to spatial learning deficits. Brain Inj. 2012;26(2):151‐165. 10.3109/02699052.2011.635362
    1. Luo Y, Zou H, Wu Y, Cai F, Zhang S, Song W. Mild traumatic brain injury induces memory deficits with alteration of gene expression profile. Sci Rep. 2017;7(1):1‐10. 10.1038/s41598-017-11458-9
    1. An SJ, Kim TJ, Yoon BW. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J Stroke. 2017;19(1):3‐10. 10.5853/jos.2016.00864
    1. Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci. 2014;8:1‐13. 10.3389/fncel.2014.00388
    1. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53‐63. 10.1016/S1474-4422(05)70283-0
    1. Lok J, Leung W, Murphy S, Butler W, Noviski N, Lo EH. Intracranial hemorrhage: mechanisms of secondary brain injury. Acta Neurochirur Suppl. 2011;111:63‐69. 10.1007/978-3-7091-0693-8_11
    1. van Vliet EA, Ndode‐Ekane XE, Lehto LJ, et al. Long‐lasting blood‐brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol Dis. 2020;145:105080. 10.1016/j.nbd.2020.105080
    1. Eisa‐Beygi S, Rezaei M. Etiology of intracerebral hemorrhage (ICH): novel insights from zebrafish embryos. Int J Dev Biol. 2016;60(4–6):119‐126. 10.1387/ijdb.160136se
    1. Liu J, Fraser SD, Faloon PW, et al. A βPix‐Pak2a signaling pathway regulates cerebral vascular stability in zebrafish. Proc Natl Acad Sci USA. 2007;104(35):13990‐13995. 10.1073/pnas.0700825104
    1. Andaluz N, Zuccarello M, Wagner KR. Experimental animal models of intracerebral haemorrhage. Neurosurg Clin N Am. 2002;13(3):385‐393. 10.1016/S1042-3680(02)00006-2
    1. Rosenberg GA, Mun‐Bryce S, Wesley M, Komfeld M. Collagenase‐induced intracerebral hemorrhage in rats. Stroke. 1990;21(5):801‐807. 10.1161/01.STR.21.5.801
    1. Huang B, Zhou ZY, Li S, et al. Tanshinone I prevents atorvastatin‐induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell–cell adhesion by inhibiting VE‐cadherin internalization and actin‐myosin contractility. Pharmacol Res. 2018;128:389‐398. 10.1016/j.phrs.2017.09.025
    1. Li S, Ai N, Shen M, et al. Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE‐cadherin. Cell Death Discov. 2017;3(1):1‐11. 10.1038/cddiscovery.2017.51
    1. Shen M, Yu H, Li Y, et al. Discovery of Rho‐kinase inhibitors by docking‐based virtual screening. Mol Biosyst. 2013;9(6):1511‐1521. 10.1039/c3mb00016h
    1. MacLellan CL, Silasi G, Poon CC, et al. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab. 2008;28(3):516‐525. 10.1038/sj.jcbfm.9600548
    1. Kasher PR, Jenkinson EM, Briolat V, et al. Characterization of samhd1 morphant zebrafish recapitulates features of the human type I interferonopathy Aicardi‐Goutières syndrome. J Immunol. 2015;194(6):2819‐2825. 10.4049/jimmunol.1403157
    1. Park E, Bell JD, Baker AJ. Traumatic brain injury: can the consequences be stopped? CMAJ. 2008;178(9):1163‐1170. 10.1503/cmaj.080282
    1. McCutcheon V, Park E, Liu E, Wang Y, Wen XY, Baker AJ. A model of excitotoxic brain injury in larval zebrafish: potential application for high‐throughput drug evaluation to treat traumatic brain injury. Zebrafish. 2016;13(3):161‐169. 10.1089/zeb.2015.1188
    1. Herzog C, Garcia LP, Keatinge M, et al. Rapid clearance of cellular debris by microglia limits secondary neuronal cell death after brain injury in vivo. Development. 2019;146(9):1‐14. 10.1242/dev.174698
    1. Gan D, Wu S, Chen B, Zhang J. Application of the zebrafish traumatic brain injury model in assessing cerebral inflammation. Zebrafish. 2020;17:73‐82. 10.1089/zeb.2019.1793
    1. Rodríguez I, Novoa B, Figueras A. Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila . Fish Shellfish Immunol. 2008;25(3):239‐249. 10.1016/j.fsi.2008.05.002
    1. Fadl AA, Galindo CL, Sha J, et al. Global transcriptional responses of wild‐type Aeromonas hydrophila and its virulence‐deficient mutant in a murine model of infection. Microb Pathog. 2007;42(5–6):193‐203. 10.1016/j.micpath.2007.02.002
    1. Ogryzko NV, Hoggett EE, Solaymani‐Kohal S, et al. Zebrafish tissue injury causes upregulation of interleukin‐1 and caspase‐dependent amplification of the inflammatory response. Dis Model Mech. 2014;7(2):259‐264. 10.1242/dmm.013029
    1. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709‐721. 10.1038/nri3520
    1. Jung JE, Kim GS, Chan PH. Neuroprotection by interleukin‐6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke. Stroke. 2011;42(12):3574‐3579. 10.1161/STROKEAHA.111.626648
    1. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958‐969. 10.1038/nri2448
    1. Wang Z, Jin Y. Genetic dissection of axon regeneration. Curr Opin Neurobiol. 2011;21(1):189‐196. 10.1016/j.conb.2010.08.010
    1. Chen L, Chisholm AD. Axon regeneration mechanisms: insights from C. elegans . Trends Cell Biol. 2011;21(10):577‐584. 10.1016/j.tcb.2011.08.003
    1. El Bejjani R, Hammarlund M. Neural regeneration in Caenorhabditis elegans . Annu Rev Genet. 2012;46(1):499‐513. 10.1146/annurev-genet-110711-155550
    1. Huang Z, Cao F, Wu Y, et al. Apolipoprotein E promotes white matter remodeling via the Dab1‐dependent pathway after traumatic brain injury. CNS Neurosci Ther. 2020;26(7):698‐710. 10.1111/cns.13298
    1. Saijilafu , Zhang BY, Zhou FQ. Signaling pathways that regulate axon regeneration. Neurosci Bull. 2013;29(4):411‐420. 10.1007/s12264-013-1357-4
    1. Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster . Annu Rev Immunol. 2007;25:697‐743. 10.1146/annurev.immunol.25.022106.141615
    1. Sudmeier LJ, Samudrala SS, Howard SP, Ganetzky B. Persistent activation of the innate immune response in adult Drosophila following radiation exposure during larval development. G3: Genes ‐ Genomes ‐ Genetics. 2015;5(11):2299‐2306. 10.1534/g3.115.021782
    1. Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster‐from microbial recognition to whole‐organism physiology. Nat Rev Immunol. 2014;14(12):796‐810. 10.1038/nri3763
    1. Almeida‐Suhett CP, Li Z, Marini AM, Braga MFM, Eiden LE. Temporal course of changes in gene expression suggests a cytokine‐related mechanism for long‐term hippocampal alteration after controlled cortical impact. J Neurotrauma. 2014;31(7):683‐690. 10.1089/neu.2013.3029
    1. Graber DJ, Costine BA, Hickey WF. Early inflammatory mediator gene expression in two models of traumatic brain injury: ex vivo cortical slice in mice and in vivo cortical impact in piglets. J Neuroinflamm. 2015;12(1):1‐8. 10.1186/s12974-015-0298-4
    1. Lipinski MM, Wu J, Faden AI, Sarkar C. Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid Redox Signal. 2015;23(6):565‐570. 10.1089/ars.2015.6306
    1. Luo CL, Li BX, Li QQ, et al. Autophagy is involved in traumatic brain injury‐induced cell death and contributes to functional outcome deficits in mice. Neuroscience. 2011;184:54‐63. 10.1016/j.neuroscience.2011.03.021
    1. Sadasivan S, Dunn WA, Hayes RL, Wang KKW. Changes in autophagy proteins in a rat model of controlled cortical impact induced brain injury. Biochem Biophys Res Commun. 2008;373(4):478‐481. 10.1016/j.bbrc.2008.05.031
    1. Ishida T, Nakajima T, Kudo A, Kawakami A. Phosphorylation of Junb family proteins by the Jun N‐terminal kinase supports tissue regeneration in zebrafish. Dev Biol. 2010;340(2):468‐479. 10.1016/j.ydbio.2010.01.036
    1. Abrous DN, Rodriguez J, Le Moal M, Moser PC, Barnéoud P. Effects of mild traumatic brain injury on immunoreactivity for the inducible transcription factors c‐Fos, c‐Jun, JunB, and Krox‐24 in cerebral regions associated with conditioned fear responding. Brain Res. 1999;826(2):181‐192. 10.1016/S0006-8993(99)01259-7
    1. Raghupathi R, McIntosh TK. Regionally and temporally distinct patterns of induction of c‐fos, c‐jun and junB mRNAs following experimental brain injury in the rat. Mol Brain Res. 1996;37(1–2):134‐144. 10.1016/0169-328X(95)00289-5
    1. Kishimoto N, Shimizu K, Sawamoto K. Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech. 2012;5(2):200‐209. 10.1242/dmm.007336
    1. Wang X, Mao X, Xie L, Greenberg DA, Jin K. Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J Cereb Blood Flow Metab. 2009;29(10):1644‐1654. 10.1038/jcbfm.2009.83
    1. Voigt T. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol. 1989;289(1):74‐88. 10.1002/cne.902890106
    1. Robel S, Berninger B, Götz M. The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci. 2011;12(2):88‐104. 10.1038/nrn2978
    1. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638‐647. 10.1016/j.tins.2009.08.002
    1. Buffo A, Rolando C, Ceruti S. Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol. 2010;79(2):77‐89. 10.1016/j.bcp.2009.09.014
    1. Campbell K, Götz M. Radial glia: multi‐purpose cells for vertebrate brain development. Trends Neurosci. 2002;25(5):235‐238. 10.1016/S0166-2236(02)02156-2
    1. Costa MR, Götz M, Berninger B. What determines neurogenic competence in glia? Brain Res Rev. 2010;63(1–2):47‐59. 10.1016/j.brainresrev.2010.01.002
    1. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci. 2002;22(8):3161‐3173. 10.1523/jneurosci.22-08-03161.2002
    1. Rowitch DH, Kriegstein AR. Developmental genetics of vertebrate glial‐cell specification. Nature. 2010;468(7321):214‐222. 10.1038/nature09611
    1. Wolswijk G, Noble M. Identification of an adult‐specific glial progenitor cell. Development. 1989;105(2):387‐400. 10.1016/0922-3371(89)90618-7
    1. Gensert JAM, Goldman JE. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron. 1997;19(1):197‐203. 10.1016/S0896-6273(00)80359-1
    1. Polito A, Reynolds R. NG2‐expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. J Anat. 2005;207(6):707‐716. 10.1111/j.1469-7580.2005.00454.x
    1. März M, Schmidt R, Rastegar S, Strähle U. Expression of the transcription factor Olig2 in proliferating cells in the adult zebrafish telencephalon. Dev Dyn. 2010;239(12):3336‐3349. 10.1002/dvdy.22455
    1. Hampton DW, Rhodes KE, Zhao C, Franklin RJM, Fawcett JW. The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience. 2004;127(4):813‐820. 10.1016/j.neuroscience.2004.05.028
    1. Magnus T, Coksaygan T, Korn T, et al. Evidence that nucleocytoplasmic Olig2 translocation mediates brain‐injury‐induced differentiation of glial precursors to astrocytes. J Neurosci Res. 2007;85(10):2126‐2137. 10.1002/jnr.21368
    1. Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M. Progeny of Olig2‐expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci. 2008;28(41):10434‐10442. 10.1523/JNEUROSCI.2831-08.2008
    1. Burns KA, Murphy B, Danzer SC, Kuan CY. Developmental and post‐injury cortical gliogenesis: a genetic fate‐mapping study with nestin‐CreER mice. Glia. 2009;57(10):1115‐1129. 10.1002/glia.20835
    1. Fitch MT, Silver J. CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol. 2008;209(2):294‐301. 10.1016/j.expneurol.2007.05.014
    1. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006;7(8):617‐627. 10.1038/nrn1956
    1. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963‐970. 10.1038/nm747
    1. Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA. 2001;98(8):4710‐4715. 10.1073/pnas.081011098
    1. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol. 2002;52(6):802‐813. 10.1002/ana.10393
    1. Itoh T, Imano M, Nishida S, et al. Exercise increases neural stem cell proliferation surrounding the area of damage following rat traumatic brain injury. J Neural Transm. 2011;118(2):193‐202. 10.1007/s00702-010-0495-3
    1. Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26(50):13007‐13016. 10.1523/JNEUROSCI.4323-06.2006
    1. Cheng MY, Leslie FM, Zhou QY. Expression of prokineticins and their receptors in the adult mouse brain. J Comp Neurol. 2006;498(6):796‐809. 10.1002/cne.21087
    1. Ng KL, Da Li J, Cheng MY, Leslie FM, Lee AC, Zhou QY. Neuroscience: dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science. 2005;308(5730):1923‐1927. 10.1126/science.1112103
    1. Ayari B, El Hachimi KH, Yanicostas C, Landoulsi A, Soussi‐Yanicostas N. Prokineticin 2 expression is associated with neural repair of injured adult zebrafish telencephalon. J Neurotrauma. 2010;27(5):959‐972. 10.1089/neu.2009.0972
    1. Kizil C, Kyritsis N, Dudczig S, et al. Regenerative neurogenesis from neural progenitor cells requires injury‐induced expression of Gata3. Dev Cell. 2012;23(6):1230‐1237. 10.1016/j.devcel.2012.10.014
    1. Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC. Excitation‐neurogenesis coupling in adult neural stem/progenitor cells. Neuron. 2004;42(4):535‐552. 10.1016/S0896-6273(04)00266-1
    1. Moritz C, Berardi F, Abate C, Peri F. Live imaging reveals a new role for the sigma‐1 (σ1) receptor in allowing microglia to leave brain injuries. Neurosci Lett. 2015;591:13‐18. 10.1016/j.neulet.2015.02.004
    1. Kyritsis N, Kizil C, Zocher S, et al. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science. 2012;338(6112):1353‐1356. 10.1126/science.1228773
    1. Zhang J, Ge W, Yuan Z. In vivo three‐dimensional characterization of the adult zebrafish brain using a 1325 nm spectral‐domain optical coherence tomography system with the 27 frame/s video rate. Biomed Opt Express. 2015;6(10):3932. 10.1364/boe.6.003932
    1. Bolte AC, Hurt ME, Smirnov I, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. bioRxiv. 2019;817023. 10.1101/817023
    1. Bramblett G, Harris J, Scott L, Holt A. Traumatic optic nerve injury elevates plasma biomarkers of traumatic brain injury in a porcine model. J Neurotrauma. 2020;1‐6. 10.1089/neu.2020.7039
    1. Catlin J, Leclerc JL, Shukla K, Marini SM, Doré S. Role of the PGE2 receptor subtypes EP1, EP2, and EP3 in repetitive traumatic brain injury. CNS Neurosci Ther. 2020;26(6):628‐635. 10.1111/cns.13228
    1. Xie BS, Wang YQ, Lin Y, et al. Inhibition of ferroptosis attenuates tissue damage and improves long‐term outcomes after traumatic brain injury in mice. CNS Neurosci Ther. 2019;25(4):465‐475. 10.1111/cns.13069
    1. Cui DM, Zeng T, Ren J, et al. KLF4 knockdown attenuates TBI‐induced neuronal damage through p53 and JAK‐STAT3 signaling. CNS Neurosci Ther. 2017;23(2):106‐118. 10.1111/cns.12633
    1. Faroqi AH, Lim MJ, Kee EC, et al. In vivo detection of extracellular adenosine triphosphate in a mouse model of traumatic brain injury. J Neurotrauma. 2020;1‐10. 10.1089/neu.2020.7226
    1. Yasuhara T, Kawauchi S, Kin K, et al. Cell therapy for central nervous system disorders: current obstacles to progress. CNS Neurosci Ther. 2020;26(6):595‐602. 10.1111/cns.13247
    1. Mahmood A, Lu D, Lu M, et al. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery. 2003;53(3):697‐703. 10.1227/01.NEU.0000079333.61863.AA
    1. Nieves MD, Furmanski O, Doughty ML. Host sex and transplanted human induced pluripotent stem cell phenotype interact to influence sensorimotor recovery in a mouse model of cortical contusion injury. Brain Res. 2020;1748:147120. 10.1016/j.brainres.2020.147120

Source: PubMed

3
Subscribe