Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary

Alvar Agustí, Bartolome R Celli, Gerard J Criner, David Halpin, Antonio Anzueto, Peter Barnes, Jean Bourbeau, MeiLan K Han, Fernando J Martinez, Maria Montes de Oca, Kevin Mortimer, Alberto Papi, Ian Pavord, Nicolas Roche, Sundeep Salvi, Don D Sin, Dave Singh, Robert Stockley, M Victorina López Varela, Jadwiga A Wedzicha, Claus F Vogelmeier, Alvar Agustí, Bartolome R Celli, Gerard J Criner, David Halpin, Antonio Anzueto, Peter Barnes, Jean Bourbeau, MeiLan K Han, Fernando J Martinez, Maria Montes de Oca, Kevin Mortimer, Alberto Papi, Ian Pavord, Nicolas Roche, Sundeep Salvi, Don D Sin, Dave Singh, Robert Stockley, M Victorina López Varela, Jadwiga A Wedzicha, Claus F Vogelmeier

Abstract

Executive summary of the Global Strategy for Prevention, Diagnosis and Management of COPD 2023: the latest evidence-based strategy document from the Global Initiative for Chronic Obstructive Lung Disease (GOLD) https://bit.ly/3KCaTGe

Conflict of interest statement

Conflict of interest: A. Agustí is Chair of the Board of Directors of GOLD (no payment received), and reports grants or contracts from AZ, GSK, Chiesi and Menarini, consultancy fees from AZ, GSK, Chiesi, Menarini, Zambon, MSD and Sanofi, and payment or honoraria for lectures, presentations, manuscript writing or educational events from AZ, GSK, Chiesi, Menarini and Zambon, outside the submitted work. B.R. Celli reports support for the present work from Chiesi Farmaceutici; grants or contracts from GlaxoSmithKline, AstraZeneca, Menarini, Sanofi Aventis and Axios, consultancy fees from GlaxoSmithKline, AstraZeneca and Sanofi Aventis, payment or honoraria for lectures, presentations, manuscript writing or educational events from GlaxoSmithKline, AstraZeneca, Menarini, Chiesi and Regeneron, support for attending meetings and/or travel from GlaxoSmithKline and Sanofi Aventis, and participation on a data safety monitoring board or advisory board for AZ Therapeutics, Sanofi Aventis and Vertex, outside the submitted work. G.J. Criner reports support for the present work from GlaxoSmithKline; grants or contracts from ALung Technologies Inc., American College of Radiology, American Lung Association, AstraZeneca, BioScale Inc., Boehringer Ingelheim, BREATH Therapeutics Inc., COPD Foundation, Coridea/ZIDAN, Corvus, Dr Karen Burns of St Michael's Hospital, Fisher & Paykel Healthcare Ltd, Galapagos NV, GlaxoSmithKline, Kinevent, Lungpacer Medical Inc., National Heart, Lung, and Blood Institute, Nurvaira Inc., Patient-Centered Outcomes Research Institute, Pulmonary Fibrosis Foundation, PulmonX, Respironics Inc., Respivant Sciences, Spiration Inc., Steward St Elizabeth's Medical Center of Boston Inc. and Veracyte Inc., and personal fees from Amgen, AstraZeneca, Boehringer Ingelheim, Broncus Medical, CSA Medical, EOLO Medical, Gala Therapeutics, GlaxoSmithKline, Helios Medical, Ion, Merck, Medtronic, Mereo BioPharma, NGM Biopharmaceuticals, Novartis, Olympus, PulmonX, Respironics Inc., Respivant Sciences, The Implementation Group and Verona Pharma, outside the submitted work. D. Halpin reports payment or honoraria for lectures, presentations, manuscript writing or educational events from AstraZeneca, Boehringer Ingelheim, Chiesi, GSK, Novartis, Pfizer, Sanofi and Menarini, support for attending meetings and/or travel from Menarini, and participation on a data safety monitoring board or advisory board with Chiesi, outside the submitted work. A. Anzueto reports consultancy fees from GlaxoSmithKline, AstraZeneca and Boehringer Ingelheim, and payment or honoraria for lectures, presentations, manuscript writing or educational events from Viatrix Pharma, outside the submitted work. P. Barnes reports grants or contracts from AstraZeneca and Boehringer Ingelheim, consultancy fees from AstraZeneca, Boehringer Ingelheim, Novartis, Teva and Epi-Endo, and payment or honoraria for lectures, presentations, manuscript writing or educational events from AstraZeneca, Boehringer Ingelheim, Novartis and Teva, outside the submitted work. J. Bourbeau reports grants or contracts from Canadian Institute of Heath Research (CIHR), Réseau en santé respiratoire du FRQS, McGill University, McGill University Health Centre Foundation, AstraZeneca Canada Ltd, Boehringer Ingelheim Canada Ltd, GlaxoSmithKline Canada Ltd, Grifols, Novartis, Sanofi and Trudell Canada Ltd, and payment or honoraria for lectures, presentations, manuscript writing or educational events from AstraZeneca Canada Ltd, COVIS Pharma Canada Ltd, GlaxoSmithKline Canada Ltd, Pfizer Canada Ltd and Trudell Canada Ltd, outside the submitted work. M.K. Han reports grants or contracts from NIH, Sanofi, Novartis, Nuvaira, Sunovion, Gala Therapeutics, COPD Foundation, AstraZeneca, American Lung Association, Boehringer Ingelheim and Biodesix, royalties or licences from Uptodate, Norton Publishing and Penguin Random House, consultancy fees from AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Pulmonx, Teva, Verona, Merck, Mylan, Sanofi, DevPro, Aerogen, Polarian, United Therapeutics, Regeneron, Altesa BioPharma and Amgen, payment or honoraria for lectures, presentations, manuscript writing or educational events from Cipla, Chiesi, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Medscape, Integrity and NACE, participation on a data safety monitoring board or advisory board with Novartis and Medtronic, leadership or fiduciary roles with COPD Foundation, COPD Foundation Scientific Advisory Committee, ALA advisory committee, American Thoracic Society (journal editor), ALA (volunteer spokesperson), GOLD scientific committee and Emerson School Board, stock or stock options with Meissa Vaccines and Altesa BioPharma, receipt of equipment, materials, drugs, medical writing, gifts or other services from GSK, Boehringer Ingelheim, AstraZeneca and Novartis, and personal fees from Medscape and Integrity, outside the submitted work. F.J. Martinez reports grants or contracts from AstraZeneca, Chiesi, GSK and Sanofi/Regeneron, consultancy fees from AstraZeneca, Boehringer Ingelheim, Chiesi, CSL Behring, GSK, Novartis, Polarean, Pulmonx, Sanofi/Regeneron, Sunovion, Teva, Theravance/Viatris and UpToDate, payment or honoraria for lectures, presentations, manuscript writing or educational events from GSK and AstraZeneca, and participation on a data safety monitoring board or advisory board for MedTronic and GSK, outside the submitted work. M. Montes de Oca reports payment or honoraria for lectures, presentations, manuscript writing or educational events from GlaxoSmithKline and AstraZeneca, outside the submitted work. K. Mortimer has contributed to advisory boards for AstraZeneca and GlaxoSmithKline, outside the submitted work. A. Papi reports grants or contracts from Chiesi, AstraZeneca, GSK, Sanofi and Agenzia Italiana del Farmaco (AIFA), consultancy fees from Chiesi, AstraZeneca, GSK, Novartis, Sanofi, Avillion and Elpen Pharmaceuticals, payment or honoraria for lectures, presentations, manuscript writing or educational events from Chiesi, AstraZeneca, GSK, Menarini, Novartis, Zambon, Mundipharma, Sanofi, Edmond Pharma, Iqvia, Avillion and Elpen Pharmaceuticals, and participation on a data safety monitoring board or advisory board for Chiesi, AstraZeneca, GSK, MSD, Novartis, Sanofi, Iqvia, Avillion and Elpen Pharmaceuticals, outside the submitted work. I. Pavord reports speaker fees from Aerocrine AB, speaker and consultancy fees from Almirall and Novartis, speaker fees, payments for organization of educational events, consultancy fees and international scientific meeting sponsorship from AstraZeneca, GSK, Regeneron Pharmaceuticals, Inc., Sanofi and Teva, speaker fees, consultancy fees and international scientific meeting sponsorship from Boehringer Ingelheim, speaker fees, consultancy fees, research grants and international scientific meeting sponsorship from Chiesi, consultancy fees from Circassia, Dey Pharma, Genentech, Knopp Biosciences, Merck, MSD, RespiVert and Schering-Plough, and consultancy fees and international scientific meeting sponsorship from Napp Pharmaceuticals, outside the submitted work. N. Roche reports grants or contracts from Boehringer Ingelheim, Novartis, GSK and Pfizer, consultancy fees from Boehringer Ingelheim, GSK, AstraZeneca, Sanofi, Chiesi, Pfizer, Novartis, Teva and Bayer, and payment or honoraria for lectures, presentations, manuscript writing or educational events from Boehringer Ingelheim, GSK, AstraZeneca, Sanofi, Chiesi, Pfizer, Novartis, Teva, Zambon and MSD, outside the submitted work. D.D. Sin reports payment or honoraria for lectures, presentations, manuscript writing or educational events from AstraZeneca, Boehringer Ingelheim and GSK, outside the submitted work. D. Singh reports consultancy fees from Aerogen, AstraZeneca, Boehringer Ingelheim, Chiesi, Cipla, CSL Behring, Epiendo, Genentech, GlaxoSmithKline, Glenmark, Gossamerbio, Kinaset, Menarini, Novartis, Pulmatrix, Sanofi, Synairgen, Teva, Theravance and Verona, outside the submitted work. R. Stockley reports consultancy fees from CSL Behring and Mereo Biopharma, and participation on a data safety monitoring board or advisory board for Kamada and Syneos, outside the submitted work. J.A. Wedzicha reports grants or contracts from AstraZeneca, Boehringer, Chiesi, GSK, Novartis, Genentech and 37Clinical, consultancy fees from AstraZeneca, Epiendo, GSK, Gilead, Novartis, Pieris and Pulmatrix, payment or honoraria for lectures, presentations, manuscript writing or educational events from AstraZeneca, GSK, Boehringer, Recipharm and Novartis, and participation on a data safety monitoring board or advisory board for Virtus, outside the submitted work. C.F. Vogelmeier reports grants or contracts from German Ministry of Education and Science (BMBF), AstraZeneca, Boehringer Ingelheim, Chiesi, CSL Behring, GlaxoSmithKline, Grifols and Novartis, consultancy fees from Aerogen, AstraZeneca, Boehringer Ingelheim, CSL Behring, Chiesi, GlaxoSmithKline, Insmed, Menarini, Novartis and Nuvaira, and payment or honoraria for lectures, presentations, manuscript writing or educational events from Aerogen, AstraZeneca, Boehringer Ingelheim, CSL Behring, Chiesi, GlaxoSmithKline, Insmed, Menarini, Novartis, Roche and Sanofi, outside the submitted work. The remaining authors have no potential conflicts of interest to disclose.

Figures

FIGURE 1
FIGURE 1
Proposed taxonomy (etiotypes) for COPD. Reproduced with permission from www.goldcopd.org
FIGURE 2
FIGURE 2
GOLD ABE assessment tool. Exacerbation history refers to exacerbations suffered the previous year. mMRC: modified Medical Research Council Dyspnea Questionnaire; CAT: COPD Assessment Test; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity. Reproduced with permission from www.goldcopd.org
FIGURE 3
FIGURE 3
Initial pharmacological treatment. mMRC: modified Medical Research Council Dyspnea Questionnaire; CAT: COPD Assessment Test; LAMA: long-acting anti-muscarinic antagonist; LABA: long-acting β2 receptor agonist; ICS: inhaled corticosteroid; eos: eosinophils. Reproduced with permission from www.goldcopd.org
FIGURE 4
FIGURE 4
Follow-up pharmacological treatment. LAMA: long-acting anti-muscarinic antagonist; LABA: long-acting β2 receptor agonist; ICS: inhaled corticosteroid; eos: eosinophils; FEV1: forced expiratory volume in 1 s. Reproduced with permission from www.goldcopd.org
FIGURE 5
FIGURE 5
Factors to consider when adding treatment with inhaled corticosteroids (ICS) to long-acting bronchodilators (note the scenario is different when considering ICS withdrawal). Reproduced with permission from www.goldcopd.org
FIGURE 6
FIGURE 6
Evidence supporting a reduction in mortality with pharmacotherapy and non-pharmacotherapy in COPD patients. RCT: randomized controlled trial; ICS: inhaled corticosteroids; IPAP: inspiratory positive airway pressure; LABD: long-acting bronchodilator; LABA: long-acting β2 agonist; LAMA: long-acting anti-muscarinic antagonist; PaO2: arterial partial pressure of oxygen; NPPV: noninvasive positive pressure ventilation; LVRS: lung volume reduction surgery; UC: usual treatment control group. Reproduced with permission from www.goldcopd.org
FIGURE 7
FIGURE 7
Surgical and interventional therapies in advanced emphysema. Homogeneous emphysema was defined as 10% difference between the targeted and non-targeted lobe is considered a heterogeneous pattern of emphysematous destruction. CV: collateral ventilation measure by Chartis; FI+: fissure integrity >90% by high-resolution CT (HRCT); FI−: fissure integrity www.goldcopd.org
FIGURE 8
FIGURE 8
Classification of the severity of COPD exacerbations (ECOPD). VAS: visual analog scale; RR: respiratory rate; HR: heart rate; CRP: C-reactive protein. SaO2: arterial oxygen saturation; PaO2: arterial partial pressure of oxygen; PaCO2: arterial partial pressure of carbon dioxide; ABG: arterial blood gases. ABG should show new onset/worsening hypercapnia or acidosis since a few patients may have chronic hypercapnia. Reproduced with permission from www.goldcopd.org

References

    1. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for Prevention, Diagnosis and Management of COPD: 2023 Report.
    1. Celli B, Fabbri L, Criner G, et al. . Definition and nomenclature of chronic obstructive pulmonary disease: time for its revision. Am J Respir Crit Care Med 2022; 206: 1317–1325. doi:10.1164/rccm.202204-0671PP
    1. Global Initiative for Chronic Obstructive Lung Disease. 2022 Global Strategy for Prevention, Diagnosis and Management of COPD.
    1. Agustí A, Melén E, DeMeo DL, et al. . Pathogenesis of chronic obstructive pulmonary disease: understanding the contributions of gene–environment interactions across the lifespan. Lancet Respir Med 2022; 10: 512–524. doi:10.1016/S2213-2600(21)00555-5
    1. Kohansal R, Martinez-Camblor P, Agusti A, et al. . The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. Am J Respir Crit Care Med 2009; 180: 3–10. doi:10.1164/rccm.200901-0047OC
    1. Rennard SI, Vestbo J. COPD: the dangerous underestimate of 15%. Lancet 2006; 367: 1216–1219. doi:10.1016/S0140-6736(06)68516-4
    1. Raad D, Gaddam S, Schunemann HJ, et al. . Effects of water-pipe smoking on lung function: a systematic review and meta-analysis. Chest 2011; 139: 764–774. doi:10.1378/chest.10-0991
    1. Günen H, Tarraf H, Nemati A, et al. . Waterpipe tobacco smoking. Tuberk Toraks 2016; 64: 94–96. doi:10.5578/tt.13935
    1. She J, Yang P, Wang Y, et al. . Chinese water-pipe smoking and the risk of COPD. Chest 2014; 146: 924–931. doi:10.1378/chest.13-1499
    1. Tan WC, Lo C, Jong A, et al. . Marijuana and chronic obstructive lung disease: a population-based study. CMAJ 2009; 180: 814–820. doi:10.1503/cmaj.081040
    1. Yin P, Jiang CQ, Cheng KK, et al. . Passive smoking exposure and risk of COPD among adults in China: the Guangzhou Biobank Cohort Study. Lancet 2007; 370: 751–757. doi:10.1016/S0140-6736(07)61378-6
    1. Tager IB, Ngo L, Hanrahan JP. Maternal smoking during pregnancy. Effects on lung function during the first 18 months of life. Am J Respir Crit Care Med 1995; 152: 977–983. doi:10.1164/ajrccm.152.3.7663813
    1. Yang IA, Jenkins CR, Salvi SS. Chronic obstructive pulmonary disease in never-smokers: risk factors, pathogenesis, and implications for prevention and treatment. Lancet Respir Med 2022; 10: 497–511. doi:10.1016/S2213-2600(21)00506-3
    1. Orozco-Levi M, Garcia-Aymerich J, Villar J, et al. . Wood smoke exposure and risk of chronic obstructive pulmonary disease. Eur Respir J 2006; 27: 542–546. doi:10.1183/09031936.06.00052705
    1. Mortimer K, Montes de Oca M, Salvi S, et al. . Household air pollution and COPD: cause and effect or confounding by other aspects of poverty? Int J Tuberc Lung Dis 2022; 26: 206–216. doi:10.5588/ijtld.21.0570
    1. Sana A, Somda SMA, Meda N, et al. . Chronic obstructive pulmonary disease associated with biomass fuel use in women: a systematic review and meta-analysis. BMJ Open Respir Res 2018; 5: e000246. doi:10.1136/bmjresp-2017-000246
    1. Ramírez-Venegas A, Montiel-Lopez F, Falfan-Valencia R, et al. . The “slow horse racing effect” on lung function in adult life in chronic obstructive pulmonary disease associated to biomass exposure. Front Med (Lausanne) 2021; 8: 700836. doi:10.3389/fmed.2021.700836
    1. Paulin LM, Diette GB, Blanc PD, et al. . Occupational exposures are associated with worse morbidity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015; 191: 557–565. doi:10.1164/rccm.201408-1407OC
    1. De Matteis S, Jarvis D, Darnton A, et al. . The occupations at increased risk of COPD: analysis of lifetime job-histories in the population-based UK Biobank Cohort. Eur Respir J 2019; 54: 1900186. doi:10.1183/13993003.00186-2019
    1. Hnizdo E, Sullivan PA, Bang KM, et al. . Association between chronic obstructive pulmonary disease and employment by industry and occupation in the US population: a study of data from the Third National Health and Nutrition Examination Survey. Am J Epidemiol 2002; 156: 738–746. doi:10.1093/aje/kwf105
    1. Guo C, Zhang Z, Lau AKH, et al. . Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: a longitudinal, cohort study. Lancet Planet Health 2018; 2: e114–e125. doi:10.1016/S2542-5196(18)30028-7
    1. Bourbeau J, Doiron D, Biswas S, et al. . Ambient air pollution and dysanapsis: associations with lung function and chronic obstructive pulmonary disease in the Canadian Cohort Obstructive Lung Disease Study. Am J Respir Crit Care Med 2022; 206: 44–55. doi:10.1164/rccm.202106-1439OC
    1. Li J, Sun S, Tang R, et al. . Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 2016; 11: 3079–3091. doi:10.2147/COPD.S122282
    1. Stoller JK, Aboussouan LS. α1-antitrypsin deficiency. Lancet 2005; 365: 2225–2236. doi:10.1016/S0140-6736(05)66781-5
    1. Blanco I, Diego I, Bueno P, et al. . Prevalence of α(1)-antitrypsin PiZZ genotypes in patients with COPD in Europe: a systematic review. Eur Respir Rev 2020; 29: 200014. doi:10.1183/16000617.0014-2020
    1. Stockley RA. Alpha-1 antitrypsin deficiency: the learning goes on. Am J Respir Crit Care Med 2020; 202: 6–7. doi:10.1164/rccm.202004-0922ED
    1. Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. Lancet Respir Med 2022; 10: 485–496. doi:10.1016/S2213-2600(21)00510-5
    1. Agusti A, Faner R. Lung function trajectories in health and disease. Lancet Respir Med 2019; 7: 358–364. doi:10.1016/S2213-2600(18)30529-0
    1. Agustí A, Noell G, Brugada J, et al. . Lung function in early adulthood and health in later life: a transgenerational cohort analysis. Lancet Respir Med 2017; 5: 935–945. doi:10.1016/S2213-2600(17)30434-4
    1. Çolak Y, Nordestgaard BG, Vestbo J, et al. . Relationship between supernormal lung function and long-term risk of hospitalisations and mortality: a population-based cohort study. Eur Respir J 2021; 57: 2004055. doi:10.1183/13993003.04055-2020
    1. Çolak Y, Nordestgaard BG, Lange P, et al. . Supernormal lung function and risk of COPD: a contemporary population-based cohort study. EClinicalMedicine 2021; 37: 100974. doi:10.1016/j.eclinm.2021.100974
    1. Lawlor DA, Ebrahim S, Davey Smith G. Association of birth weight with adult lung function: findings from the British Women's Heart and Health Study and a meta-analysis. Thorax 2005; 60: 851–858. doi:10.1136/thx.2005.042408
    1. Green M, Mead J, Turner JM. Variability of maximum expiratory flow-volume curves. J Appl Physiol 1974; 37: 67–74. doi:10.1152/jappl.1974.37.1.67
    1. Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. Chest 2009; 135: 173–180. doi:10.1378/chest.08-1419
    1. Martin TR, Feldman HA, Fredberg JJ, et al. . Relationship between maximal expiratory flows and lung volumes in growing humans. J Appl Physiol (1985) 1988; 65: 822–828. doi:10.1152/jappl.1988.65.2.822
    1. Rawlins EL, Okubo T, Xue Y, et al. . The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 2009; 4: 525–534. doi:10.1016/j.stem.2009.04.002
    1. Smith BM, Kirby M, Hoffman EA, et al. . Association of dysanapsis with chronic obstructive pulmonary disease among older adults. JAMA 2020; 323: 2268–2280. doi:10.1001/jama.2020.6918
    1. Dharmage SC, Bui DS, Walters EH, et al. . Lifetime spirometry patterns of obstruction and restriction, and their risk factors and outcomes: a prospective cohort study. Lancet Respir Med 2023; 11: 273–282. doi:10.1016/S2213-2600(22)00364-2
    1. Bose S, Pascoe C, McEvoy C. Lifetime lung function trajectories and COPD: when the train derails. Lancet Respir Med 2023; 11: 221–222. doi:10.1016/S2213-2600(22)00391-5
    1. Stern DA, Morgan WJ, Wright AL, et al. . Poor airway function in early infancy and lung function by age 22 years: a non-selective longitudinal cohort study. Lancet 2007; 370: 758–764. doi:10.1016/S0140-6736(07)61379-8
    1. Regan EA, Lynch DA, Curran-Everett D, et al. . Clinical and radiologic disease in smokers with normal spirometry. JAMA Intern Med 2015; 175: 1539–1549. doi:10.1001/jamainternmed.2015.2735
    1. Lange P, Celli B, Agusti A, et al. . Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med 2015; 373: 111–122. doi:10.1056/NEJMoa1411532
    1. Landis SH, Muellerova H, Mannino DM, et al. . Continuing to Confront COPD International Patient Survey: methods, COPD prevalence, and disease burden in 2012–2013. Int J Chron Obstruct Pulmon Dis 2014; 9: 597–611.
    1. DeMeo DL, Ramagopalan S, Kavati A, et al. . Women manifest more severe COPD symptoms across the life course. Int J Chron Obstruct Pulmon Dis 2018; 13: 3021–3029. doi:10.2147/COPD.S160270
    1. Townend J, Minelli C, Mortimer K, et al. . The association between chronic airflow obstruction and poverty in 12 sites of the multinational BOLD study. Eur Respir J 2017; 49: 1601880. doi:10.1183/13993003.01880-2016
    1. Gershon AS, Warner L, Cascagnette P, et al. . Lifetime risk of developing chronic obstructive pulmonary disease: a longitudinal population study. Lancet 2011; 378: 991–996. doi:10.1016/S0140-6736(11)60990-2
    1. de Marco R, Accordini S, Marcon A, et al. . Risk factors for chronic obstructive pulmonary disease in a European cohort of young adults. Am J Respir Crit Care Med 2011; 183: 891–897. doi:10.1164/rccm.201007-1125OC
    1. McGeachie MJ, Yates KP, Zhou X, et al. . Patterns of growth and decline in lung function in persistent childhood asthma. N Engl J Med 2016; 374: 1842–1852. doi:10.1056/NEJMoa1513737
    1. Allinson JP, Hardy R, Donaldson GC, et al. . Combined impact of smoking and early life exposures on adult lung function trajectories. Am J Respir Crit Care Med 2017; 196: 1021–1030. doi:10.1164/rccm.201703-0506OC
    1. Martínez-García M, Faner R, Oscullo G, et al. . Chronic bronchial infection is associated with more rapid lung function decline in chronic obstructive pulmonary disease. Ann Am Thorac Soc 2022; 19: 1842–1847. doi:10.1513/AnnalsATS.202108-974OC
    1. Fan H, Wu F, Liu J, et al. . Pulmonary tuberculosis as a risk factor for chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ann Transl Med 2021; 9: 390. doi:10.21037/atm-20-4576
    1. Bigna JJ, Kenne AM, Asangbeh SL, et al. . Prevalence of chronic obstructive pulmonary disease in the global population with HIV: a systematic review and meta-analysis. Lancet Glob Health 2018; 6: e193–e202. doi:10.1016/S2214-109X(17)30451-5
    1. Aaron SD, Tan WC, Bourbeau J, et al. . Diagnostic instability and reversals of chronic obstructive pulmonary disease diagnosis in individuals with mild to moderate airflow obstruction. Am J Respir Crit Care Med 2017; 196: 306–314. doi:10.1164/rccm.201612-2531OC
    1. Schermer TR, Robberts B, Crockett AJ, et al. . Should the diagnosis of COPD be based on a single spirometry test? NPJ Prim Care Respir Med 2016; 26: 16059. doi:10.1038/npjpcrm.2016.59
    1. van Dijk W, Tan W, Li P, et al. . Clinical relevance of fixed ratio vs lower limit of normal of FEV1/FVC in COPD: patient-reported outcomes from the CanCOLD cohort. Ann Fam Med 2015; 13: 41–48. doi:10.1370/afm.1714
    1. Guder G, Brenner S, Angermann CE, et al. . GOLD or lower limit of normal definition? A comparison with expert-based diagnosis of chronic obstructive pulmonary disease in a prospective cohort-study. Respir Res 2012; 13: 13. doi:10.1186/1465-9921-13-13
    1. Bhatt SP, Balte PP, Schwartz JE, et al. . Discriminative accuracy of FEV1:FVC thresholds for COPD-related hospitalization and mortality. JAMA 2019; 321: 2438–2447. doi:10.1001/jama.2019.7233
    1. Albert P, Agusti A, Edwards L, et al. . Bronchodilator responsiveness as a phenotypic characteristic of established chronic obstructive pulmonary disease. Thorax 2012; 67: 701–708. doi:10.1136/thoraxjnl-2011-201458
    1. Hansen JE, Porszasz J. Counterpoint: Is an increase in FEV1 and/or FVC ≥12% of control and ≥200 mL the best way to assess positive bronchodilator response? No. Chest 2014; 146: 538–541. doi:10.1378/chest.14-0437
    1. Agusti A, Hogg JC. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med 2019; 381: 1248–1256. doi:10.1056/NEJMra1900475
    1. Zhou Y, Zhong NS, Li X, et al. . Tiotropium in early-stage chronic obstructive pulmonary disease. N Engl J Med 2017; 377: 923–935. doi:10.1056/NEJMoa1700228
    1. Morla M, Busquets X, Pons J, et al. . Telomere shortening in smokers with and without COPD. Eur Respir J 2006; 27: 525–528. doi:10.1183/09031936.06.00087005
    1. Martinez FJ, Han MK, Allinson JP, et al. . At the root: defining and halting progression of early chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2018; 197: 1540–1551. doi:10.1164/rccm.201710-2028PP
    1. Colak Y, Afzal S, Nordestgaard BG, et al. . Importance of early COPD in young adults for development of clinical COPD: findings from the Copenhagen General Population Study. Am J Respir Crit Care Med 2020; 203: 1245–1256. doi:10.1164/rccm.202003-0532OC
    1. Cosío BG, Pascual-Guardia S, Borras-Santos A, et al. . Phenotypic characterisation of early COPD: a prospective case–control study. ERJ Open Res 2020; 6: 00047-2020. doi:10.1183/23120541.00047-2020
    1. Sanchez-Salcedo P, Divo M, Casanova C, et al. . Disease progression in young patients with COPD: rethinking the Fletcher and Peto model. Eur Respir J 2014; 44: 324–331. doi:10.1183/09031936.00208613
    1. Han MK, Agusti A, Celli BR, et al. . From GOLD 0 to pre-COPD. Am J Respir Crit Care Med 2021; 203: 414–423. doi:10.1164/rccm.202008-3328PP
    1. Han MK, Ye W, Wang D, et al. . Bronchodilators in tobacco-exposed persons with symptoms and preserved lung function. N Engl J Med 2022; 387: 1173–1184. doi:10.1056/NEJMoa2204752
    1. Martinez FA, Celli BR, Han, MK, et al. . Treatment trials in Pre-COPD and young COPD: time to move forward. Am J Respir Crit Care Med 2022; 205: 275–287. doi:10.1164/rccm.202107-1663SO
    1. Wan ES, Castaldi PJ, Cho MH, et al. . Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene. Respir Res 2014; 15: 89. doi:10.1186/s12931-014-0089-y
    1. Wan ES. The clinical spectrum of PRISm. Am J Respir Crit Care Med 2022; 206: 524–525. doi:10.1164/rccm.202205-0965ED
    1. Stolz D, Mkorombindo T, Schumann DM, et al. . Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet 2022; 400: 921–972. doi:10.1016/S0140-6736(22)01273-9
    1. Divo M, Cote C, de Torres JP, et al. . Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 186: 155–161. doi:10.1164/rccm.201201-0034OC
    1. Rodriguez-Roisin R, Rabe K, Vestbo J, et al. . GOLD 20th anniversary: a brief history of time. Eur Respir J 2017; 50: 1700671. doi:10.1183/13993003.00671-2017
    1. Scioscia G, Blanco I, Arismendi E, et al. . Different dyspnoea perception in COPD patients with frequent and infrequent exacerbations. Thorax 2017; 72: 117–121. doi:10.1136/thoraxjnl-2016-208332
    1. Haruna A, Muro S, Nakano Y, et al. . CT scan findings of emphysema predict mortality in COPD. Chest 2010; 138: 635–640. doi:10.1378/chest.09-2836
    1. Martinez-Garcia MA, de la Rosa-Carrillo D, Soler-Cataluna JJ, et al. . Bronchial infection and temporal evolution of bronchiectasis in patients with chronic obstructive pulmonary disease. Clin Infect Dis 2021; 72: 403–410. doi:10.1093/cid/ciaa069
    1. National Lung Screening Trial Research Team , Aberle DR, Adams AM, et al. . Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365: 395–409. doi:10.1056/NEJMoa1102873
    1. de Koning HJ, van der Aalst CM, de Jong PA, et al. . Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med 2020; 382: 503–513. doi:10.1056/NEJMoa1911793
    1. Galban CJ, Han MK, Boes JL, et al. . Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 2012; 18: 1711–1715. doi:10.1038/nm.2971
    1. Vasilescu DM, Martinez FJ, Marchetti N, et al. . Noninvasive imaging biomarker identifies small airway damage in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2019; 200: 575–581. doi:10.1164/rccm.201811-2083OC
    1. Bhatt SP, Soler X, Wang X, et al. . Association between functional small airway disease and FEV1 decline in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2016; 194: 178–184. doi:10.1164/rccm.201511-2219OC
    1. Ezponda A, Casanova C, Divo M, et al. . Chest CT-assessed comorbidities and all-cause mortality risk in COPD patients in the BODE cohort. Respirology 2022; 27: 286–293. doi:10.1111/resp.14223
    1. Halpin DMG, Mahler DA. A systematic review of published algorithms for selecting an inhaled delivery system in chronic obstructive pulmonary disease. Ann Am Thorac Soc 2022; 19: 1213–1220. doi:10.1513/AnnalsATS.202108-930OC
    1. Mahler DA, Decramer M, D'Urzo A, et al. . Dual bronchodilation with QVA149 reduces patient-reported dyspnoea in COPD: the BLAZE study. Eur Respir J 2014; 43: 1599–1609. doi:10.1183/09031936.00124013
    1. Singh D, Ferguson GT, Bolitschek J, et al. . Tiotropium+olodaterol shows clinically meaningful improvements in quality of life. Respir Med 2015; 109: 1312–1319. doi:10.1016/j.rmed.2015.08.002
    1. Maltais F, Bjermer L, Kerwin EM, et al. . Efficacy of umeclidinium/vilanterol versus umeclidinium and salmeterol monotherapies in symptomatic patients with COPD not receiving inhaled corticosteroids: the EMAX randomised trial. Respir Res 2019; 20: 238. doi:10.1186/s12931-019-1193-9
    1. Lipson DA, Barnhart F, Brealey N, et al. . Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med 2018; 378: 1671–1680. doi:10.1056/NEJMoa1713901
    1. Rabe KF, Martinez FJ, Ferguson GT, et al. . Triple inhaled therapy at two glucocorticoid doses in moderate-to-very-severe COPD. N Engl J Med 2020; 383: 35–48. doi:10.1056/NEJMoa1916046
    1. Reddel HK, Bacharier LB, Bateman ED, et al. . Global initiative for asthma strategy 2021: executive summary and rationale for key changes. Am J Respir Crit Care Med 2022; 205: 17–35. doi:10.1164/rccm.202109-2205PP
    1. Agusti A, Bel E, Thomas M, et al. . Treatable traits: toward precision medicine of airway diseases. Eur Respir J 2016; 47: 410–419. doi:10.1183/13993003.01359-2015
    1. Agusti A, Rapsomaniki E, Beasley R, et al. . Treatable traits in the NOVELTY study. Respirology 2022; 27: 929–940. doi:10.1111/resp.14325
    1. Martinez FJ, Calverley PM, Goehring UM, et al. . Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet 2015; 385: 857–866. doi:10.1016/S0140-6736(14)62410-7
    1. Martinez FJ, Rabe KF, Sethi S, et al. . Effect of roflumilast and inhaled corticosteroid/long-acting β2-agonist on chronic obstructive pulmonary disease exacerbations (RE2SPOND). A randomized clinical trial. Am J Respir Crit Care Med 2016; 194: 559–567. doi:10.1164/rccm.201607-1349OC
    1. Rabe KF, Calverley PMA, Martinez FJ, et al. . Effect of roflumilast in patients with severe COPD and a history of hospitalisation. Eur Respir J 2017; 50: 1700158. doi:10.1183/13993003.00158-2017
    1. Albert RK, Connett J, Bailey WC, et al. . Azithromycin for prevention of exacerbations of COPD. N Engl J Med 2011; 365: 689–698. doi:10.1056/NEJMoa1104623
    1. Han MK, Tayob N, Murray S, et al. . Predictors of COPD exacerbation reduction in response to daily azithromycin therapy. Am J Respir Crit Care Med 2014; 189: 1503–1508. doi:10.1164/rccm.201402-0207OC
    1. Magnussen H, Disse B, Rodriguez-Roisin R, et al. . Withdrawal of inhaled glucocorticoids and exacerbations of COPD. N Engl J Med 2014; 371: 1285–1294. doi:10.1056/NEJMoa1407154
    1. Siddiqui SH, Guasconi A, Vestbo J, et al. . Blood eosinophils: a biomarker of response to extrafine beclomethasone/formoterol in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015; 192: 523–525. doi:10.1164/rccm.201502-0235LE
    1. Pascoe S, Locantore N, Dransfield MT, et al. . Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med 2015; 3: 435–442. doi:10.1016/S2213-2600(15)00106-X
    1. Papi A, Vestbo J, Fabbri L, et al. . Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE): a double-blind, parallel group, randomised controlled trial. Lancet 2017; 391: 1076–1084. doi:10.1016/S0140-6736(18)30206-X
    1. Vestbo J, Papi A, Corradi M, et al. . Single inhaler extrafine triple therapy versus long-acting muscarinic antagonist therapy for chronic obstructive pulmonary disease (TRINITY): a double-blind, parallel group, randomised controlled trial. Lancet 2017; 389: 1919–1929. doi:10.1016/S0140-6736(17)30188-5
    1. Agusti A, Fabbri LM, Singh D, et al. . Inhaled corticosteroids in COPD: friend or foe? Eur Respir J 2018; 52: 1801219. doi:10.1183/13993003.01219-2018
    1. Singh D, Agusti A, Martinez FJ, et al. . Blood eosinophils and chronic obstructive pulmonary disease: A Global Initiative for Chronic Obstructive Lung Disease Science Committee 2022 Review. Am J Respir Crit Care Med 2022; 206: 17–24. doi:10.1164/rccm.202201-0209PP
    1. Landis SH, Suruki R, Hilton E, et al. . Stability of blood eosinophil count in patients with COPD in the UK Clinical Practice Research Datalink. COPD 2017; 14: 382–388. doi:10.1080/15412555.2017.1313827
    1. Oshagbemi MOA, Burden DAM, Braeken MDCW, et al. . Stability of blood eosinophils in COPD and controls and the impact of gender, age, smoking and baseline counts. Am J Respir Crit Care Med 2017; 195: 1402–1404. doi:10.1164/rccm.201701-0009LE
    1. Stolbrink M, Thomson H, Hadfield RM, et al. . The availability, cost, and affordability of essential medicines for asthma and COPD in low-income and middle-income countries: a systematic review. Lancet Glob Health 2022; 10: e1423–e1442. doi:10.1016/S2214-109X(22)00330-8
    1. Montes de Oca M. Smoking cessation/vaccinations. Clin Chest Med 2020; 41: 495–512. doi:10.1016/j.ccm.2020.06.013
    1. Pitta F, Troosters T, Spruit MA, et al. . Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005; 171: 972–977. doi:10.1164/rccm.200407-855OC
    1. Mantoani LC, Rubio N, McKinstry B, et al. . Interventions to modify physical activity in patients with COPD: a systematic review. Eur Respir J 2016; 48: 69–81. doi:10.1183/13993003.01744-2015
    1. Watz H, Pitta F, Rochester CL, et al. . An official European Respiratory Society statement on physical activity in COPD. Eur Respir J 2014; 44: 1521–1537. doi:10.1183/09031936.00046814
    1. Spielmanns M, Gloeckl R, Jarosch I, et al. . Using a smartphone application maintains physical activity following pulmonary rehabilitation in patients with COPD: a randomised controlled trial. Thorax 2022; in press [10.1136/thoraxjnl-2021-218338].
    1. Spruit MA, Singh SJ, Garvey C, et al. . An Official American Thoracic Society/European Respiratory Society Statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med 2013; 188: e13–e64. doi:10.1164/rccm.201309-1634ST
    1. Vogiatzis I, Rochester CL, Spruit MA, et al. . Increasing implementation and delivery of pulmonary rehabilitation: key messages from the new ATS/ERS policy statement. Eur Respir J 2016; 47: 1336–1341. doi:10.1183/13993003.02151-2015
    1. Garvey C, Bayles MP, Hamm LF, et al. . Pulmonary rehabilitation exercise prescription in chronic obstructive pulmonary disease: review of selected guidelines: an official statement from the American Association of Cardiovascular and Pulmonary Rehabilitation. J Cardiopulm Rehabil Prev 2016; 36: 75–83. doi:10.1097/HCR.0000000000000171
    1. Stone PW, Hickman K, Steiner MC, et al. . Predictors of referral to pulmonary rehabilitation from UK primary care. Int J Chron Obstruct Pulmon Dis 2020; 15: 2941–2952. doi:10.2147/COPD.S273336
    1. Cox NS, Dal Corso S, Hansen H, et al. . Telerehabilitation for chronic respiratory disease. Cochrane Database Syst Rev 2021; 1: CD013040.
    1. Houchen-Wolloff L, Steiner MC. Pulmonary rehabilitation at a time of social distancing: prime time for tele-rehabilitation? Thorax 2020; 75: 446–447. doi:10.1136/thoraxjnl-2020-214788
    1. Holland AE, Malaguti C, Hoffman M, et al. . Home-based or remote exercise testing in chronic respiratory disease, during the COVID-19 pandemic and beyond: a rapid review. Chron Respir Dis 2020; 17: 1479973120952418. doi:10.1177/1479973120952418
    1. Celli BR, Fabbri LM, Aaron SD, et al. . An updated definition and severity classification of COPD exacerbations: the Rome proposal. Am J Respir Crit Care Med 2021; 204: 1251–1258. doi:10.1164/rccm.202108-1819PP
    1. Beghe B, Verduri A, Roca M, et al. . Exacerbation of respiratory symptoms in COPD patients may not be exacerbations of COPD. Eur Respir J 2013; 41: 993–995. doi:10.1183/09031936.00180812
    1. Soler-Cataluña JJ, Miravitlles M, Fernandez-Villar A, et al. . Exacerbations in COPD: a personalised approach to care. Lancet Respir Med 2023; 11: 224–226. doi:10.1016/S2213-2600(22)00533-1
    1. Bardsley G, Pilcher J, McKinstry S, et al. . Oxygen versus air-driven nebulisers for exacerbations of chronic obstructive pulmonary disease: a randomised controlled trial. BMC Pulm Med 2018; 18: 157. doi:10.1186/s12890-018-0720-7
    1. Barr RG, Rowe BH, Camargo CA Jr. Methylxanthines for exacerbations of chronic obstructive pulmonary disease: meta-analysis of randomised trials. BMJ 2003; 327: 643. doi:10.1136/bmj.327.7416.643
    1. Duffy N, Walker P, Diamantea F, et al. . Intravenous aminophylline in patients admitted to hospital with non-acidotic exacerbations of chronic obstructive pulmonary disease: a prospective randomised controlled trial. Thorax 2005; 60: 713–717. doi:10.1136/thx.2004.036046
    1. Davies L, Angus RM, Calverley PM. Oral corticosteroids in patients admitted to hospital with exacerbations of chronic obstructive pulmonary disease: a prospective randomised controlled trial. Lancet 1999; 354: 456–460. doi:10.1016/S0140-6736(98)11326-0
    1. Maltais F, Ostinelli J, Bourbeau J, et al. . Comparison of nebulized budesonide and oral prednisolone with placebo in the treatment of acute exacerbations of chronic obstructive pulmonary disease: a randomized controlled trial. Am J Respir Crit Care Med 2002; 165: 698–703. doi:10.1164/ajrccm.165.5.2109093
    1. Aaron SD, Vandemheen KL, Hebert P, et al. . Outpatient oral prednisone after emergency treatment of chronic obstructive pulmonary disease. N Engl J Med 2003; 348: 2618. doi:10.1056/NEJMoa023161
    1. Leuppi JD, Schuetz P, Bingisser R. Short-term vs conventional glucocorticoid therapy in acute exacerbations of chronic obstructive pulmonary disease: the REDUCE randomized clinical trial. JAMA 2013; 309: 2223–2231. doi:10.1001/jama.2013.5023
    1. Sivapalan P, Ingebrigtsen TS, Rasmussen DB, et al. . COPD exacerbations: the impact of long versus short courses of oral corticosteroids on mortality and pneumonia: nationwide data on 67 000 patients with COPD followed for 12 months. BMJ Open Respir Res 2019; 6: e000407. doi:10.1136/bmjresp-2019-000407
    1. de Jong YP, Uil SM, Grotjohan HP, et al. . Oral or IV prednisolone in the treatment of COPD exacerbations: a randomized, controlled, double-blind study. Chest 2007; 132: 1741–1747. doi:10.1378/chest.07-0208
    1. Gunen H, Hacievliyagil SS, Yetkin O, et al. . The role of nebulised budesonide in the treatment of exacerbations of COPD. Eur Respir J 2007; 29: 660–667. doi:10.1183/09031936.00073506
    1. Bafadhel M, McKenna S, Terry S, et al. . Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 186: 48–55. doi:10.1164/rccm.201108-1553OC
    1. Anthonisen NR, Manfreda J, Warren CP, et al. . Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med 1987; 106: 196–204. doi:10.7326/0003-4819-106-2-196
    1. Llor C, Moragas A, Miravitlles M, et al. . Are short courses of antibiotic therapy as effective as standard courses for COPD exacerbations? A systematic review and meta-analysis. Pulm Pharmacol Ther 2022; 72: 102111. doi:10.1016/j.pupt.2022.102111
    1. Couturaud F, Bertoletti L, Pastre J, et al. . Prevalence of pulmonary embolism among patients with COPD hospitalized with acutely worsening respiratory symptoms. JAMA 2021; 325: 59–68. doi:10.1001/jama.2020.23567
    1. Jimenez D, Agusti A, Tabernero E, et al. . Effect of a pulmonary embolism diagnostic strategy on clinical outcomes in patients hospitalized for COPD exacerbation: a randomized clinical trial. JAMA 2021; 326: 1277–1285. doi:10.1001/jama.2021.14846
    1. Austin MA, Wills KE, Blizzard L, et al. . Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ 2010; 341: c5462. doi:10.1136/bmj.c5462
    1. Lacasse Y, Thériault S, St-Pierre B, et al. . Oximetry neither to prescribe long-term oxygen therapy nor to screen for severe hypoxaemia. ERJ Open Res 2021; 7: 00272-2021. doi:10.1183/23120541.00272-2021
    1. Sjoding MW, Dickson RP, Iwashyna TJ, et al. . Racial bias in pulse oximetry measurement. N Engl J Med 2020; 383: 2477–2478. doi:10.1056/NEJMc2029240
    1. Roca O, Hernández G, Díaz-Lobato S, et al. . Current evidence for the effectiveness of heated and humidified high flow nasal cannula supportive therapy in adult patients with respiratory failure. Crit Care 2016; 20: 109. doi:10.1186/s13054-016-1263-z
    1. Fraser JF, Spooner AJ, Dunster KR, et al. . Nasal high flow oxygen therapy in patients with COPD reduces respiratory rate and tissue carbon dioxide while increasing tidal and end-expiratory lung volumes: a randomised crossover trial. Thorax 2016; 71: 759–761. doi:10.1136/thoraxjnl-2015-207962
    1. Mauri T, Turrini C, Eronia N, et al. . Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med 2017; 195: 1207–1215. doi:10.1164/rccm.201605-0916OC
    1. Nagata K, Horie T, Chohnabayashi N, et al. . Home high-flow nasal cannula oxygen therapy for stable hypercapnic COPD: a randomized clinical trial. Am J Respir Crit Care Med 2022; 206: 1326–1335. doi:10.1164/rccm.202201-0199OC
    1. Xia J, Gu S, Lei W, et al. . High-flow nasal cannula versus conventional oxygen therapy in acute COPD exacerbation with mild hypercapnia: a multicenter randomized controlled trial. Crit Care 2022; 26: 109. doi:10.1186/s13054-022-03973-7
    1. Oczkowski S, Ergan B, Bos L, et al. . ERS clinical practice guidelines: high-flow nasal cannula in acute respiratory failure. Eur Respir J 2022; 59: 2101574. doi:10.1183/13993003.01574-2021
    1. Clinical indications for noninvasive positive pressure ventilation in chronic respiratory failure due to restrictive lung disease, COPD, and nocturnal hypoventilation – a consensus conference report. Chest 1999; 116: 521–534. doi:10.1378/chest.116.2.521
    1. Osadnik CR, Tee VS, Carson-Chahhoud KV, et al. . Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017; 7: CD004104.
    1. Sellares J, Ferrer M, Anton A, et al. . Discontinuing noninvasive ventilation in severe chronic obstructive pulmonary disease exacerbations: a randomised controlled trial. Eur Respir J 2017; 50: 1601448. doi:10.1183/13993003.01448-2016
    1. Chandra D, Stamm JA, Taylor B, et al. . Outcomes of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease in the United States, 1998–2008. Am J Respir Crit Care Med 2012; 185: 152–159. doi:10.1164/rccm.201106-1094OC
    1. Alqahtani JS, Njoku CM, Bereznicki B, et al. . Risk factors for all-cause hospital readmission following exacerbation of COPD: a systematic review and meta-analysis. Eur Respir Rev 2020; 29: 190166. doi:10.1183/16000617.0166-2019
    1. Benzo R, Vickers K, Novotny PJ, et al. . Health coaching and chronic obstructive pulmonary disease rehospitalization. A randomized study. Am J Respir Crit Care Med 2016; 194: 672–680. doi:10.1164/rccm.201512-2503OC
    1. Gavish R, Levy A, Dekel OK, et al. . The association between hospital readmission and pulmonologist follow-up visits in patients with COPD. Chest 2015; 148: 375–381. doi:10.1378/chest.14-1453
    1. Oga T, Tsukino M, Hajiro T, et al. . Predictive properties of different multidimensional staging systems in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2011; 6: 521–526. doi:10.2147/COPD.S24420
    1. Spece LJ, Epler EM, Duan K, et al. . Reassessment of home oxygen prescription after hospitalization for chronic obstructive pulmonary disease. a potential target for deimplementation. Ann Am Thorac Soc 2021; 18: 426–432. doi:10.1513/AnnalsATS.202004-364OC
    1. Puhan MA, Gimeno-Santos E, Scharplatz M, et al. . Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2011; 10: CD005305.
    1. Puhan MA, Gimeno-Santos E, Cates CJ, et al. . Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2016; 12: CD005305.
    1. Hoogendoorn M, Hoogenveen RT, Rutten-van Mölken MP, et al. . Case fatality of COPD exacerbations: a meta-analysis and statistical modelling approach. Eur Respir J 2011; 37: 508–515. doi:10.1183/09031936.00043710
    1. Guo Y, Zhang T, Wang Z, et al. . Body mass index and mortality in chronic obstructive pulmonary disease: a dose-response meta-analysis. Medicine (Baltimore) 2016; 95: e4225. doi:10.1097/MD.0000000000004225
    1. Singanayagam A, Schembri S, Chalmers JD. Predictors of mortality in hospitalized adults with acute exacerbation of chronic obstructive pulmonary disease. Ann Am Thorac Soc 2013; 10: 81–89. doi:10.1513/AnnalsATS.201208-043OC
    1. Piquet J, Chavaillon JM, David P, et al. . High-risk patients following hospitalisation for an acute exacerbation of COPD. Eur Respir J 2013; 42: 946–955. doi:10.1183/09031936.00180312
    1. Beghe B, Clini E, Fabbri L. Chronic respiratory abnormalities in the multi-morbid frail elderly. BRN Reviews 2017; 3: 247–266.
    1. Divo MJ, Casanova C, Marin JM, et al. . COPD comorbidities network. Eur Respir J 2015; 46: 640–650. doi:10.1183/09031936.00171614
    1. Mannino DM, Thorn D, Swensen A, et al. . Prevalence and outcomes of diabetes, hypertension and cardiovascular disease in COPD. Eur Respir J 2008; 32: 962–969. doi:10.1183/09031936.00012408
    1. de Torres JP, Marin JM, Casanova C, et al. . Lung cancer in patients with chronic obstructive pulmonary disease: incidence and predicting factors. Am J Respir Crit Care Med 2011; 184: 913–919. doi:10.1164/rccm.201103-0430OC
    1. Huang JT-J, Cant E, Keir HR, et al. . Endotyping chronic obstructive pulmonary disease, bronchiectasis, and the “Chronic Obstructive Pulmonary Disease–Bronchiectasis Association”. Am J Respir Crit Care Med 2022; 206: 417–426. doi:10.1164/rccm.202108-1943OC
    1. Soler X, Gaio E, Powell FL, et al. . High prevalence of obstructive sleep apnea in patients with moderate to severe chronic obstructive pulmonary disease. Ann Am Thorac Soc 2015; 12: 1219–1225. doi:10.1513/AnnalsATS.201506-379LE
    1. Jorgensen NR, Schwarz P, Holme I, et al. . The prevalence of osteoporosis in patients with chronic obstructive pulmonary disease: a cross sectional study. Respir Med 2007; 101: 177–185. doi:10.1016/j.rmed.2006.03.029
    1. Cebron Lipovec N, Beijers RJHCG, van den Borst B, et al. . The prevalence of metabolic syndrome in chronic obstructive pulmonary disease: a systematic review. COPD 2016; 13: 399–406. doi:10.3109/15412555.2016.1140732
    1. Hurst JR, Vestbo J, Anzueto A, et al. . Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med 2010; 363: 1128–1138. doi:10.1056/NEJMoa0909883
    1. Ingebrigtsen TS, Marott JL, Vestbo J, et al. . Gastro-esophageal reflux disease and exacerbations in chronic obstructive pulmonary disease. Respirology 2015; 20: 101–107. doi:10.1111/resp.12420
    1. Sasaki T, Nakayama K, Yasuda H, et al. . A randomized, single-blind study of lansoprazole for the prevention of exacerbations of chronic obstructive pulmonary disease in older patients. J Am Geriatr Soc 2009; 57: 1453–1457. doi:10.1111/j.1532-5415.2009.02349.x
    1. Baumeler L, Papakonstantinou E, Milenkovic B, et al. . Therapy with proton-pump inhibitors for gastroesophageal reflux disease does not reduce the risk for severe exacerbations in COPD. Respirology 2016; 21: 883–890. doi:10.1111/resp.12758
    1. Putcha N, Fawzy A, Paul GG, et al. . Anemia and adverse outcomes in a chronic obstructive pulmonary disease population with a high burden of comorbidities. An analysis from SPIROMICS. Ann Am Thorac Soc 2018; 15: 710–717. doi:10.1513/AnnalsATS.201708-687OC
    1. Nakamura A, Kasamatsu N, Hashizume I, et al. . Effects of hemoglobin on pulmonary arterial pressure and pulmonary vascular resistance in patients with chronic emphysema. Respiration 2000; 67: 502–506. doi:10.1159/000067463
    1. Samareh Fekri M, Torabi M, Azizi Shoul S, et al. . Prevalence and predictors associated with severe pulmonary hypertension in COPD. Am J Emerg Med 2018; 36: 277–280. doi:10.1016/j.ajem.2017.08.014
    1. Kent BD, Mitchell PD, McNicholas WT. Hypoxemia in patients with COPD: cause, effects, and disease progression. Int J Chron Obstruct Pulmon Dis 2011; 6: 199–208.
    1. Chambellan A, Chailleux E, Similowski T, et al. . Prognostic value of the hematocrit in patients with severe COPD receiving long-term oxygen therapy. Chest 2005; 128: 1201–1208. doi:10.1378/chest.128.3.1201
    1. Hanania NA, Mullerova H, Locantore NW, et al. . Determinants of depression in the ECLIPSE chronic obstructive pulmonary disease cohort. Am J Respir Crit Care Med 2011; 183: 604–611. doi:10.1164/rccm.201003-0472OC
    1. Kunik ME, Roundy K, Veazey C, et al. . Surprisingly high prevalence of anxiety and depression in chronic breathing disorders. Chest 2005; 127: 1205–1211.
    1. Ng TP, Niti M, Tan WC, et al. . Depressive symptoms and chronic obstructive pulmonary disease: effect on mortality, hospital readmission, symptom burden, functional status, and quality of life. Arch Intern Med 2007; 167: 60–67. doi:10.1001/archinte.167.1.60
    1. Maurer J, Rebbapragada V, Borson S, et al. . Anxiety and depression in COPD: current understanding, unanswered questions, and research needs. Chest 2008; 134: 43S–56S. doi:10.1378/chest.08-0342
    1. Eisner MD, Blanc PD, Yelin EH, et al. . Influence of anxiety on health outcomes in COPD. Thorax 2010; 65: 229–234. doi:10.1136/thx.2009.126201
    1. Chen W, Thomas J, Sadatsafavi M, et al. . Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Lancet Respir Med 2015; 3: 631–639. doi:10.1016/S2213-2600(15)00241-6
    1. Cleutjens FA, Franssen FM, Spruit MA, et al. . Domain-specific cognitive impairment in patients with COPD and control subjects. Int J Chron Obstruct Pulmon Dis 2017; 12: 1–11. doi:10.2147/COPD.S119633
    1. Cleutjens F, Spruit MA, Ponds R, et al. . Cognitive impairment and clinical characteristics in patients with chronic obstructive pulmonary disease. Chron Respir Dis 2018; 15: 91–102. doi:10.1177/1479972317709651
    1. Fried LP, Tangen CM, Walston J, et al. . Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56: M146–M156. doi:10.1093/gerona/56.3.M146
    1. Talic S, Shah S, Wild H, et al. . Effectiveness of public health measures in reducing the incidence of Covid-19, SARS-CoV-2 transmission, and Covid-19 mortality: systematic review and meta-analysis. BMJ 2021; 375: e068302.
    1. Halpin DMG, Criner GJ, Papi A, et al. . Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2021; 203: 24–36. doi:10.1164/rccm.202009-3533SO
    1. Alqahtani JS, Oyelade T, Aldhahir AM, et al. . Reduction in hospitalised COPD exacerbations during COVID-19: a systematic review and meta-analysis. PLoS ONE 2021; 16: e0255659. doi:10.1371/journal.pone.0255659
    1. Halpin DMG, Rabe AP, Loke WJ, et al. . Epidemiology, healthcare resource utilization, and mortality of asthma and COPD in COVID-19: a systematic literature review and meta-analyses. J Asthma Allergy 2022; 15: 811–825. doi:10.2147/JAA.S360985
    1. Lipson DA, Crim C, Criner GJ, et al. . Reduction in all-cause mortality with fluticasone furoate/umeclidinium/vilanterol in COPD patients. Am J Respir Crit Care Med 2020; 201: 1508–1516. doi:10.1164/rccm.201911-2207OC
    1. Anthonisen NR, Skeans MA, Wise RA, et al. . The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med 2005; 142: 233–239. doi:10.7326/0003-4819-142-4-200502150-00005
    1. Ryrsø CK, Godtfredsen NS, Kofod LM, et al. . Lower mortality after early supervised pulmonary rehabilitation following COPD-exacerbations: a systematic review and meta-analysis. BMC Pulm Med 2018; 18: 154. doi:10.1186/s12890-018-0718-1
    1. Nocturnal Oxygen Therapy Trial Group . Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial. Ann Intern Med 1980; 93: 391–398. doi:10.7326/0003-4819-93-3-391
    1. Report of the Medical Research Council Working Party . Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Lancet 1981; 1: 681-685.
    1. Kohnlein T, Windisch W, Kohler D, et al. . Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial. Lancet Respir Med 2014; 2: 698–705. doi:10.1016/S2213-2600(14)70153-5
    1. Fishman A, Martinez F, Naunheim K, et al. . A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med 2003; 348: 2059–2073. doi:10.1056/NEJMoa030287

Source: PubMed

3
Subscribe