Photobiomodulation therapy in management of cancer therapy-induced side effects: WALT position paper 2022

Jolien Robijns, Raj G Nair, Joy Lodewijckx, Praveen Arany, Andrei Barasch, Jan M Bjordal, Paolo Bossi, Anne Chilles, Patricia M Corby, Joel B Epstein, Sharon Elad, Reza Fekrazad, Eduardo Rodrigues Fregnani, Marie-Thérèse Genot, Ana M C Ibarra, Michael R Hamblin, Vladimir Heiskanen, Ken Hu, Jean Klastersky, Rajesh Lalla, Sofia Latifian, Arun Maiya, Jeroen Mebis, Cesar A Migliorati, Dan M J Milstein, Barbara Murphy, Judith E Raber-Durlacher, Hendrik J Roseboom, Stephen Sonis, Nathaniel Treister, Yehuda Zadik, René-Jean Bensadoun, Jolien Robijns, Raj G Nair, Joy Lodewijckx, Praveen Arany, Andrei Barasch, Jan M Bjordal, Paolo Bossi, Anne Chilles, Patricia M Corby, Joel B Epstein, Sharon Elad, Reza Fekrazad, Eduardo Rodrigues Fregnani, Marie-Thérèse Genot, Ana M C Ibarra, Michael R Hamblin, Vladimir Heiskanen, Ken Hu, Jean Klastersky, Rajesh Lalla, Sofia Latifian, Arun Maiya, Jeroen Mebis, Cesar A Migliorati, Dan M J Milstein, Barbara Murphy, Judith E Raber-Durlacher, Hendrik J Roseboom, Stephen Sonis, Nathaniel Treister, Yehuda Zadik, René-Jean Bensadoun

Abstract

Disclaimer: This article is based on recommendations from the 12th WALT Congress, Nice, October 3-6, 2018, and a follow-up review of the existing data and the clinical observations of an international multidisciplinary panel of clinicians and researchers with expertise in the area of supportive care in cancer and/or PBM clinical application and dosimetry. This article is informational in nature. As with all clinical materials, this paper should be used with a clear understanding that continued research and practice could result in new insights and recommendations. The review reflects the collective opinion and, as such, does not necessarily represent the opinion of any individual author. In no event shall the authors be liable for any decision made or action taken in reliance on the proposed protocols.

Objective: This position paper reviews the potential prophylactic and therapeutic effects of photobiomodulation (PBM) on side effects of cancer therapy, including chemotherapy (CT), radiation therapy (RT), and hematopoietic stem cell transplantation (HSCT).

Background: There is a considerable body of evidence supporting the efficacy of PBM for preventing oral mucositis (OM) in patients undergoing RT for head and neck cancer (HNC), CT, or HSCT. This could enhance patients' quality of life, adherence to the prescribed cancer therapy, and treatment outcomes while reducing the cost of cancer care.

Methods: A literature review on PBM effectiveness and dosimetry considerations for managing certain complications of cancer therapy were conducted. A systematic review was conducted when numerous randomized controlled trials were available. Results were presented and discussed at an international consensus meeting at the World Association of photobiomoduLation Therapy (WALT) meeting in 2018 that included world expert oncologists, radiation oncologists, oral oncologists, and oral medicine professionals, physicists, engineers, and oncology researchers. The potential mechanism of action of PBM and evidence of PBM efficacy through reported outcomes for individual indications were assessed.

Results: There is a large body of evidence demonstrating the efficacy of PBM for preventing OM in certain cancer patient populations, as recently outlined by the Multinational Association for Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO). Building on these, the WALT group outlines evidence and prescribed PBM treatment parameters for prophylactic and therapeutic use in supportive care for radiodermatitis, dysphagia, xerostomia, dysgeusia, trismus, mucosal and bone necrosis, lymphedema, hand-foot syndrome, alopecia, oral and dermatologic chronic graft-versus-host disease, voice/speech alterations, peripheral neuropathy, and late fibrosis amongst cancer survivors.

Conclusions: There is robust evidence for using PBM to prevent and treat a broad range of complications in cancer care. Specific clinical practice guidelines or evidence-based expert consensus recommendations are provided. These recommendations are aimed at improving the clinical utilization of PBM therapy in supportive cancer care and promoting research in this field. It is anticipated these guidelines will be revised periodically.

Keywords: cancer supportive care; cancer-treatment side effects; dermatitis; guidelines; mucositis; photobiomodulation (PBM); recommendations.

Conflict of interest statement

MRH declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap Inc, Cleveland, OH; BeWell Global Inc, Wan Chai, Hong Kong; Hologenix Inc. Santa Monica, CA; LumiThera Inc, Poulsbo, WA; Vielight, Toronto, Canada; Bright Photomedicine, Sao Paulo, Brazil; Quantum Dynamics LLC, Cambridge, MA; Global Photon Inc, Bee Cave, TX; Medical Coherence, Boston MA; NeuroThera, Newark DE; JOOVV Inc, Minneapolis-St. Paul MN; AIRx Medical, Pleasanton CA; FIR Industries, Inc. Ramsey, NJ; UVLRx Therapeutics, Oldsmar, FL; Ultralux UV Inc, Lansing MI; Illumiheal & Petthera, Shoreline, WA; MB Lasertherapy, Houston, TX; ARRC LED, San Clemente, CA; Varuna Biomedical Corp. Incline Village, NV; Niraxx Light Therapeutics, Inc, Boston, MA. Consulting; Lexington Int, Boca Raton, FL; USHIO Corp, Japan; Merck KGaA, Darmstadt, Germany; Philips Electronics Nederland B.V. Eindhoven, Netherlands; Johnson & Johnson Inc, Philadelphia, PA; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany. Stockholdings: Global Photon Inc, Bee Cave, TX; Mitonix, Newark, DE, JR, JL and JM are part of the Limburg Clinical Research Center (LCRC) and were supported by the foundation Limburg Sterk Merk, the province of Limburg, the Flemish government, Hasselt University, Ziekenhuis Oost-Limburg, Jessa Hospital, Kom op Tegen Kanker, Limburgs Kankerfonds, Limburgse Kankersamenwerking, and ASA Srl. SE discloses conflicts of interest related to treatment for cGVHD consulting Falk Pharma GmbH. PRA has been supported by travel or serves as a consultant for Mureva, Vielight, Thor Photomedicine, Kerber Applied Research, Lumithera, Jooov, and NST consulting. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

Copyright © 2022 Robijns, Nair, Lodewijckx, Arany, Barasch, Bjordal, Bossi, Chilles, Corby, Epstein, Elad, Fekrazad, Fregnani, Genot, Ibarra, Hamblin, Heiskanen, Hu, Klastersky, Lalla, Latifian, Maiya, Mebis, Migliorati, Milstein, Murphy, Raber-Durlacher, Roseboom, Sonis, Treister, Zadik, Bensadoun and “Cancer Supportive Care” WALT Working Group.

Figures

Figure 1
Figure 1
Timeline of advances in the application of PBM therapy for oral mucositis. The grey font represents basic science advances. *current WALT position paper. Abbreviations used SR&MA – Systematic review and meta-analysis; OM –Oral Mucositis; PBM - Photobiomodulation; MASCC – Multinational Association for Supportive Care in Cancer; ISOO – International Society for Oral oncology; WALT – World Association for Photobiomodulation Therapy; CCO – Cytochrome C Oxidase; TGF-β – Transforming Growth Factor beta 1; TRPV1 - Transient Receptor Potential-V1 .

References

    1. Klastersky J, Fontaine C, Force BSCT. Supportive care in cancer patients: a constantly evolving field. Curr Opin Oncol (2019) 31(4):257–8. doi: 10.1097/CCO.0000000000000542
    1. Mester A, Mester A. The history of photobiomodulation: endre mester (1903-1984). Photomedicine Laser Surg (2017) 35(8):393–4. doi: 10.1089/pho.2017.4332
    1. Anders JJ, Arany PR, Baxter GD, Lanzafame RJ. Light-emitting diode therapy and low-level light therapy are photobiomodulation therapy. Photobiomodul Photomed Laser Surg (2019) 37(2):63–5. doi: 10.1089/photob.2018.4600
    1. Zadik Y, Arany PR, Fregnani ER, Bossi P, Antunes HS, Bensadoun RJ, et al. . Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Supportive Care Cancer (2019) 27(10):3969–83. doi: 10.1007/s00520-019-04890-2
    1. Zecha JA, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, et al. . Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Supportive Care Cancer (2016) 24(6):2793–805. doi: 10.1007/s00520-016-3153-y
    1. Somerfield M, Padberg J, Pfister D, Bennett CL, Recht A, Smith TJ, et al. . ASCO clinical practice guidelines: process, progress, pitfalls, and prospects. Class Pap Curr Comments (2000) 4(4):881–6.
    1. Zecha JA, Raber-Durlacher JE, Nair RG, Epstein JB, Sonis ST, Elad S, et al. . Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Supportive Care Cancer (2016) 24(6):2781–92. doi: 10.1007/s00520-016-3152-z
    1. Hamblin M, Ferraresi C, Huang YY, de Freitas LF, Carroll J. Low-level light therapy: Photobiomodulation. Bellingham, Washington USA: SPIE press; (2018). 390 p.
    1. Gavish L, Houreld NN. Therapeutic efficacy of home-use photobiomodulation devices: a systematic literature review. Photobiomodul Photomed Laser Surg (2019) 37(1):4–16. doi: 10.1089/photob.2018.4512
    1. Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy - an update. Dose-response (2011) 9(4):602–18. doi: 10.2203/dose-response.11-009.Hamblin
    1. Bensadoun RJ, Nair RG. Low-level laser therapy in the prevention and treatment of cancer therapy-induced mucositis: 2012 state of the art based on literature review and meta-analysis. Curr Opin Oncol (2012) 24(4):363–70. doi: 10.1097/CCO.0b013e328352eaa3
    1. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose-response: Publ Int Hormesis Society (2009) 7(4):358–83. doi: 10.2203/dose-response.09-027.Hamblin
    1. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed engineering (2012) 40(2):516–33. doi: 10.1007/s10439-011-0454-7
    1. Bjordal JM. Low level laser therapy (LLLT) and world association for laser therapy (walt) dosage recommendations. Photomed Laser Surg (2012) 30(2):61–2. doi: 10.1089/pho.2012.9893
    1. Jenkins PA, Carroll JD. How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomedicine Laser Surg (2011) 29(12):785–7. doi: 10.1089/pho.2011.9895
    1. Guirro RR, Weis LC. Radiant power determination of low-level laser therapy equipment and characterization of its clinical use procedures. Photomed Laser Surg (2009) 27(4):633–9. doi: 10.1089/pho.2008.2361
    1. Chermetz M, Gobbo M, Ronfani L, Ottaviani G, Zanazzo GA, Verzegnassi F, et al. . Class IV laser therapy as treatment for chemotherapy-induced oral mucositis in onco-haematological paediatric patients: a prospective study. Int J Paediatr Dent (2014) 24(6):441–9. doi: 10.1111/ipd.12090
    1. Hedberg ML, Peyser ND, Bauman JE, Gooding WE, Li H, Bhola NE, et al. . Use of nonsteroidal anti-inflammatory drugs predicts improved patient survival for PIK3CA-altered head and neck cancer. J Exp Med (2019) 216(2):419–27. doi: 10.1084/jem.20181936
    1. Mester E, Ludany G, Sellyei M, Szende B. [On the biologic effect of laser rays]. Bull Soc Int Chir (1968) 27(1):68–73.
    1. Mester E, Sellyei M, Tota J. The effect of laser beam on Ehrlich ascites tumor cells in vitro . Orv Hetil (1968) 109(46):2551–2.
    1. Mester E, Juhasz J, Varga P, Karika G. Lasers in clinical practice. Acta Chir Acad Sci Hung (1968) 9(3):349–57.
    1. Schartinger VH, Galvan O, Riechelmann H, Dudas J. Differential responses of fibroblasts, non-neoplastic epithelial cells, and oral carcinoma cells to low-level laser therapy. Support Care Cancer (2012) 20(3):523–9. doi: 10.1007/s00520-011-1113-0
    1. Powell K, Low P, McDonnell PA, Laakso EL, Ralph SJ. The effect of laser irradiation on proliferation of human breast carcinoma, melanoma, and immortalized mammary epithelial cells. Photomed Laser Surg (2010) 28(1):115–23. doi: 10.1089/pho.2008.2445
    1. Marchesini R, Dasdia T, Melloni E, Rocca E. Effect of low-energy laser irradiation on colony formation capability in different human tumor cells in vitro. Lasers Surg Med (1989) 9(1):59–62. doi: 10.1002/lsm.1900090112
    1. Schaffer M, Sroka R, Fuchs C, Schrader-Reichardt U, Schaffer PM, Busch M, et al. . Biomodulative effects induced by 805 nm laser light irradiation of normal and tumor cells. J Photochem Photobiol B (1997) 40(3):253–7. doi: 10.1016/S1011-1344(97)00065-1
    1. Ocana-Quero JM, Gomez-Villamandos R, Moreno-Millan M, Santisteban-Valenzuela JM. Helium-neon (he-ne) laser irradiation increases the incidence of unreduced bovine oocytes during the first meiotic division in vitro. Lasers Med Sci (1998) 13(4):260–4. doi: 10.1007/s101030050005
    1. Pinheiro AL, do Nascliento SC, de Vieira AL, Rolim AB, da Silva PS, Brugnera A., Jr. Does LLLT stimulate laryngeal carcinoma cells? an in vitro study. Braz Dent J (2002) 13(2):109–12. doi: 10.1590/S0103-64402002000200006
    1. Kreisler M, Christoffers AB, Willershausen B, d’Hoedt B. Low-level 809 nm GaAlAs laser irradiation increases the proliferation rate of human laryngeal carcinoma cells in vitro. Lasers Med Sci (2003) 18(2):100–3. doi: 10.1007/s10103-003-0265-7
    1. de Castro JL, Pinheiro AL, Werneck CE, Soares CP. The effect of laser therapy on the proliferation of oral KB carcinoma cells: an in vitro study. Photomedicine Laser Surg (2005) 23(6):586–9. doi: 10.1089/pho.2005.23.586
    1. Werneck CE, Pinheiro AL, Pacheco MT, Soares CP, de Castro JL. Laser light is capable of inducing proliferation of carcinoma cells in culture: a spectroscopic in vitro study. Photomedicine Laser Surg (2005) 23(3):300–3. doi: 10.1089/pho.2005.23.300
    1. Renno AC, McDonnell PA, Parizotto NA, Laakso EL. The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomedicine Laser Surg (2007) 25(4):275–80. doi: 10.1089/pho.2007.2055
    1. Gomes Henriques AC, Ginani F, Oliveira RM, Keesen TS, Galvao Barboza CA, Oliveira Rocha HA, et al. . Low-level laser therapy promotes proliferation and invasion of oral squamous cell carcinoma cells. Lasers Med Sci (2014) 29(4):1385–95. doi: 10.1007/s10103-014-1535-2
    1. Sperandio FF, Giudice FS, Correa L, Pinto DS, Jr., Hamblin MR, de Sousa SC. Low-level laser therapy can produce increased aggressiveness of dysplastic and oral cancer cell lines by modulation of Akt/mTOR signaling pathway. J Biophotonics (2013) 6(10):839–47. doi: 10.1002/jbio.201300015
    1. Bamps M, Dok R, Nuyts S. Low-level laser therapy stimulates proliferation in head and neck squamous cell carcinoma cells. Front Oncol (2018) 8:343. doi: 10.3389/fonc.2018.00343
    1. da Silva JL, Silva-de-Oliveira AFS, Andraus RAC, Maia LP. Effects of low level laser therapy in cancer cells-a systematic review of the literature. Lasers Med Sci (2020) 35(3):523–9. doi: 10.1007/s10103-019-02824-2
    1. Djavid GE, Bigdeli B, Goliaei B, Nikoofar A, Hamblin MR. Photobiomodulation leads to enhanced radiosensitivity through induction of apoptosis and autophagy in human cervical cancer cells. J Biophotonics (2017) 10(12):1732–42. doi: 10.1002/jbio.201700004
    1. Chu J, Wu S, Xing D. Survivin mediates self-protection through ROS/cdc25c/CDK1 signaling pathway during tumor cell apoptosis induced by high fluence low-power laser irradiation. Cancer Letters (2010) 297(2):207–19. doi: 10.1016/j.canlet.2010.05.013
    1. Tsai SR, Yin R, Huang YY, Sheu BC, Lee SC, Hamblin MR. Low-level light therapy potentiates NPe6-mediated photodynamic therapy in a human osteosarcoma cell line via increased ATP. Photodiagnosis Photodyn Ther (2015) 12(1):123–30. doi: 10.1016/j.pdpdt.2014.10.009
    1. Schaffer M, Bonel H, Sroka R, Schaffer PM, Busch M, Reiser M, et al. . Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary findings on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI). J Photochem Photobiol B (2000) 54(1):55–60. doi: 10.1016/S1011-1344(99)00155-4
    1. Barasch A, Li H, Rajasekhar VK, Raber-Durlacher J, Epstein JB, Carroll J, et al. . Photobiomodulation effects on head and neck squamous cell carcinoma (HNSCC) in an orthotopic animal model. Support Care Cancer (2020) 28(6):2721–7. doi: 10.1007/s00520-019-05060-0
    1. Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, et al. . The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res (2001) 4(1):3–14. doi: 10.1034/j.1600-0544.2001.040102.x
    1. Liu YH, Cheng CC, Ho CC, Pei RJ, Lee KY, Yeh KT, et al. . Effects of diode 808 nm GaAlAs low-power laser irradiation on inhibition of the proliferation of human hepatoma cells in vitro and their possible mechanism. Res Commun Mol Pathol Pharmacol (2004) 115-116:185–201.
    1. Sroka R, Schaffer M, Fuchs C, Pongratz T, Schrader-Reichard U, Busch M, et al. . Effects on the mitosis of normal and tumor cells induced by light treatment of different wavelengths. Lasers Surg Med (1999) 25(3):263–71. doi: 10.1002/(SICI)1096-9101(1999)25:3<263::AID-LSM11>;2-T
    1. Murayama H, Sadakane K, Yamanoha B, Kogure S. Low-power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro. Lasers Med Sci (2012) 27(1):87–93. doi: 10.1007/s10103-011-0924-z
    1. Al-Watban FA, Andres BL. Laser biomodulation of normal and neoplastic cells. Lasers Med Sci (2012) 27(5):1039–43. doi: 10.1007/s10103-011-1040-9
    1. Crous AM, Abrahamse H. Lung cancer stem cells and low-intensity laser irradiation: a potential future therapy? Stem Cell Res Ther (2013) 4(5):129. doi: 10.1186/scrt340
    1. Frigo L, Luppi JS, Favero GM, Maria DA, Penna SC, Bjordal JM, et al. . The effect of low-level laser irradiation (In-Ga-Al-AsP - 660 nm) on melanoma in vitro and in vivo. BMC Cancer (2009) 9:404. doi: 10.1186/1471-2407-9-404
    1. Schalch TD, Fernandes MH, Destro Rodrigues MFS, Guimaraes DM, Nunes FD, Rodrigues JC, et al. . Photobiomodulation is associated with a decrease in cell viability and migration in oral squamous cell carcinoma. Lasers Med Sci (2019) 34(3):629–36. doi: 10.1007/s10103-018-2640-4
    1. Ottaviani G, Martinelli V, Rupel K, Caronni N, Naseem A, Zandona L, et al. . Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization. EBioMedicine (2016) 11:165–72. doi: 10.1016/j.ebiom.2016.07.028
    1. Silveira FM, Paglioni MP, Marques MM, Santos-Silva AR, Migliorati CA, Arany P, et al. . Examining tumor modulating effects of photobiomodulation therapy on head and neck squamous cell carcinomas. Photochem Photobiol Sci (2019) 18(7):1621–37. doi: 10.1039/C9PP00120D
    1. de CMJS, Pinheiro AN, de Oliveira SC, Aciole GT, Sousa JA, Canguss MC, et al. . Influence of laser phototherapy (lambda660 nm) on the outcome of oral chemical carcinogenesis on the hamster cheek pouch model: histological study. Photomedicine Laser Surg (2011) 29(11):741–5. doi: 10.1089/pho.2010.2896
    1. Myakishev-Rempel M, Stadler I, Brondon P, Axe DR, Friedman M, Nardia FB, et al. . A preliminary study of the safety of red light phototherapy of tissues harboring cancer. Photomed Laser Surg (2012) 30(9):551–8. doi: 10.1089/pho.2011.3186
    1. Mikhailov VA, Skobelkin OK, Denisov IN, Frank GA, Voltchenko NN. Investigations on the influence of low level diode laser irradiation on the growth of experimental tumours. LASER Ther (1993) 5(1):33–8. doi: 10.5978/islsm.93-OR-03
    1. Shabbir M, Ryten M, Thompson C, Mikhailidis D, Burnstock G. Purinergic receptor-mediated effects of ATP in high-grade bladder cancer. BJU Int (2008) 101(1):106–12. doi: 10.1111/j.1464-410X.2007.07286.x
    1. Karu T. Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomed Laser Surg (2010) 28(2):159–60. doi: 10.1089/pho.2010.2789
    1. Wikramanayake TC, Villasante AC, Mauro LM, Nouri K, Schachner LA, Perez CI, et al. . Low-level laser treatment accelerated hair regrowth in a rat model of chemotherapy-induced alopecia (CIA). Lasers Med Sci (2013) 28(3):701–6. doi: 10.1007/s10103-012-1139-7
    1. Antunes HS, Herchenhorn D, Small IA, Araujo CMM, Viegas CMP, de Assis Ramos G, et al. . Long-term survival of a randomized phase III trial of head and neck cancer patients receiving concurrent chemoradiation therapy with or without low-level laser therapy (LLLT) to prevent oral mucositis. Oral Oncol (2017) 71:11–5. doi: 10.1016/j.oraloncology.2017.05.018
    1. Bensadoun RJ, Epstein JB, Nair RG, Barasch A, Raber-Durlacher JE, Migliorati C, et al. . Safety and efficacy of photobiomodulation therapy in oncology: A systematic review. Cancer Med (2020) 9(22):8279–300. doi: 10.1002/cam4.3582
    1. Bezinelli LM, Correa L, Vogel C, Kutner JM, Ribeiro AF, Hamerschlak N, et al. . Long-term safety of photobiomodulation therapy for oral mucositis in hematopoietic cell transplantation patients: a 15-year retrospective study. Support Care Cancer (2021) 29(11):6891–902. doi: 10.1007/s00520-021-06268-9
    1. Arany PR. Healing tumors with light: science fiction or the future of medicine? Photomed Laser Surg (2018) 36(5):227–9. doi: 10.1089/pho.2018.4457
    1. Hamblin MR, Nelson ST, Strahan JR. Photobiomodulation and cancer: what is the truth? Photomed Laser Surg (2018) 36(5):241–5. doi: 10.1089/pho.2017.4401
    1. Arany PR. Photobiomodulation therapy–easy to do, but difficult to get right. Laser Focus World (2019). .
    1. Young NC, Maxiamano V, Arany PR. Thermodynamic basis for multi-wavelength dosing for photobiomodulation therapy to direct odontoblast differentiation. J Biophotonics (2022) 15(6):e202100398. doi: 10.1002/jbio.202100398
    1. Piller N, Dawson R, Rice J, De Vries D. Is there a link between LE treatment and breast cancer reoccurence? J Lymphoedema (2011) 15(6):202100398.
    1. Antunes HS, Herchenhorn D, Small IA, Araujo CM, Viegas CM, Cabral E, et al. . Phase III trial of low-level laser therapy to prevent oral mucositis in head and neck cancer patients treated with concurrent chemoradiation. Radiother Oncol (2013) 109(2):297–302. doi: 10.1016/j.radonc.2013.08.010
    1. Brandao TB, Morais-Faria K, Ribeiro ACP, Rivera C, Salvajoli JV, Lopes MA, et al. . Locally advanced oral squamous cell carcinoma patients treated with photobiomodulation for prevention of oral mucositis: retrospective outcomes and safety analyses. Support Care Cancer (2018) 26(7):2417–23. doi: 10.1007/s00520-018-4046-z
    1. de Pauli Paglioni M, Araujo ALD, Arboleda LPA, Palmier NR, Fonseca JM, Gomes-Silva W, et al. . Tumor safety and side effects of photobiomodulation therapy used for prevention and management of cancer treatment toxicities. A systematic review. Oral Oncol (2019) 93:21–8. doi: 10.1016/j.oraloncology.2019.04.004
    1. Bowen J, Al-Dasooqi N, Bossi P, Wardill H, Van Sebille Y, Al-Azri A, et al. . The pathogenesis of mucositis: updated perspectives and emerging targets. Support Care Cancer (2019) 27(10):4023–33. doi: 10.1007/s00520-019-04893-z
    1. Epstein JB, Thariat J, Bensadoun RJ, Barasch A, Murphy BA, Kolnick L, et al. . Oral complications of cancer and cancer therapy: from cancer treatment to survivorship. CA Cancer J Clin (2012) 62(6):400–22. doi: 10.3322/caac.21157
    1. Sonis ST. A biological approach to mucositis. J Support Oncol (2004) 2(1):21–32.
    1. Gouvea de Lima A, Villar RC, de Castro G, Jr., Antequera R, Gil E, Rosalmeida MC, et al. . Oral mucositis prevention by low-level laser therapy in head-and-neck cancer patients undergoing concurrent chemoradiotherapy: a phase III randomized study. Int J Radiat Oncol Biol Phys (2012) 82(1):270–5. doi: 10.1016/j.ijrobp.2010.10.012
    1. Vasconcelos RM, Sanfilippo N, Paster BJ, Kerr AR, Li Y, Ramalho L, et al. . Host-microbiome cross-talk in oral mucositis. J Dent Res (2016) 95(7):725–33. doi: 10.1177/0022034516641890
    1. Elting LS, Keefe DM, Sonis ST, Garden AS, Spijkervet FK, Barasch A, et al. . Patient-reported measurements of oral mucositis in head and neck cancer patients treated with radiotherapy with or without chemotherapy: demonstration of increased frequency, severity, resistance to palliation, and impact on quality of life. Cancer (2008) 113(10):2704–13. doi: 10.1002/cncr.23898
    1. Sonis ST, Oster G, Fuchs H, Bellm L, Bradford WZ, Edelsberg J, et al. . Oral mucositis and the clinical and economic outcomes of hematopoietic stem-cell transplantation. J Clin Oncol (2001) 19(8):2201–5. doi: 10.1200/JCO.2001.19.8.2201
    1. Lalla RV, Treister N, Sollecito T, Schmidt B, Patton LL, Mohammadi K, et al. . Oral complications at 6 months after radiation therapy for head and neck cancer. Oral Dis (2017) 23(8):1134–43. doi: 10.1111/odi.12710
    1. Elad S, Zadik Y. Chronic oral mucositis after radiotherapy to the head and neck: a new insight. Support Care Cancer (2016) 24(11):4825–30. doi: 10.1007/s00520-016-3337-5
    1. Lalla RV, Bowen J, Barasch A, Elting L, Epstein J, Keefe DM, et al. . MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer (2014) 120(10):1453–61. doi: 10.1002/cncr.28592
    1. Elad S. The MASCC/ISOO mucositis guidelines 2019: the second set of articles and future directions. Support Care Cancer (2020) 28(5):2445–7. doi: 10.1007/s00520-019-05153-w
    1. Heiskanen V, Zadik Y, Elad S. Photobiomodulation therapy for cancer treatment-related salivary gland dysfunction: a systematic review. Photobiomodul Photomed Laser Surg (2020) 38(6):340–7. doi: 10.1089/photob.2019.4767
    1. Nunes LFM, de Arruda JAA, Souza AF, Silva RCC, Lanza CRM, Kakehasi FM, et al. . Prophylactic photobiomodulation therapy using 660 nm diode laser for oral mucositis in paediatric patients under chemotherapy: 5-year experience from a Brazilian referral service. Lasers Med Sci (2020) 35(8):1857–66. doi: 10.1007/s10103-020-03060-9
    1. Abramoff MM, Lopes NN, Lopes LA, Dib LL, Guilherme A, Caran EM, et al. . Low-level laser therapy in the prevention and treatment of chemotherapy-induced oral mucositis in young patients. Photomed Laser Surg (2008) 26(4):393–400. doi: 10.1089/pho.2007.2144
    1. Medeiros-Filho JB, Maia Filho EM, Ferreira MC. Laser and photochemotherapy for the treatment of oral mucositis in young patients: Randomized clinical trial. Photodiagnosis Photodyn Ther (2017) 18:39–45. doi: 10.1016/j.pdpdt.2017.01.004
    1. Noirrit-Esclassan E, Valera MC, Vignes E, Munzer C, Bonal S, Daries M, et al. . Photobiomodulation with a combination of two wavelengths in the treatment of oral mucositis in children: The PEDIALASE feasibility study. Arch Pediatr (2019) 26(5):268–74. doi: 10.1016/j.arcped.2019.05.012
    1. Cruz LB, Ribeiro AS, Rech A, Rosa LG, Castro CG, Jr., Brunetto AL. Influence of low-energy laser in the prevention of oral mucositis in children with cancer receiving chemotherapy. Pediatr Blood Cancer (2007) 48(4):435–40. doi: 10.1002/pbc.20943
    1. Whelan HT, Connelly JF, Hodgson BD, Barbeau L, Post AC, Bullard G, et al. . NASA Light-emitting diodes for the prevention of oral mucositis in pediatric bone marrow transplant patients. J Clin Laser Med Surg (2002) 20(6):319–24. doi: 10.1089/104454702320901107
    1. de Castro JF, Abreu EG, Correia AV, da Mota Vasconcelos Brasil C, da Cruz Perez DE, de Paula Ramos Pedrosa F. Low-level laser in prevention and treatment of oral mucositis in pediatric patients with acute lymphoblastic leukemia. Photomed Laser Surg (2013) 31(12):613–8. doi: 10.1089/pho.2012.3327
    1. Treister NS, London WB, Guo D, Malsch M, Verrill K, Brewer J, et al. . A feasibility study evaluating extraoral photobiomodulation therapy for prevention of mucositis in pediatric hematopoietic cell transplantation. Photomed Laser Surg (2016) 34(4):178–84. doi: 10.1089/pho.2015.4021
    1. Amadori F, Bardellini E, Conti G, Pedrini N, Schumacher RF, Majorana A. Low-level laser therapy for treatment of chemotherapy-induced oral mucositis in childhood: a randomized double-blind controlled study. Lasers Med Sci (2016) 31(6):1231–6. doi: 10.1007/s10103-016-1975-y
    1. Kuhn A, Porto FA, Miraglia P, Brunetto AL. Low-level infrared laser therapy in chemotherapy-induced oral mucositis: a randomized placebo-controlled trial in children. J Pediatr Hematol Oncol (2009) 31(1):33–7. doi: 10.1097/MPH.0b013e318192cb8e
    1. Vitale MC, Modaffari C, Decembrino N, Zhou FX, Zecca M, Defabianis P. Preliminary study in a new protocol for the treatment of oral mucositis in pediatric patients undergoing hematopoietic stem cell transplantation (HSCT) and chemotherapy (CT). Lasers Med Sci (2017) 32(6):1423–8. doi: 10.1007/s10103-017-2266-y
    1. Soto M, Lalla RV, Gouveia RV, Zecchin VG, Seber A, Lopes NN. Pilot study on the efficacy of combined intraoral and extraoral low-level laser therapy for prevention of oral mucositis in pediatric patients undergoing hematopoietic stem cell transplantation. Photomed Laser Surg (2015) 33(11):540–6. doi: 10.1089/pho.2015.3954
    1. Eduardo Fde P, Bezinelli LM, de Carvalho DL, Lopes RM, Fernandes JF, Brumatti M, et al. . Oral mucositis in pediatric patients undergoing hematopoietic stem cell transplantation: clinical outcomes in a context of specialized oral care using low-level laser therapy. Pediatr Transplant (2015) 19(3):316–25. doi: 10.1111/petr.12440
    1. Eduardo FP, Bezinelli L, Luiz AC, Correa L, Vogel C, Eduardo CP. Severity of oral mucositis in patients undergoing hematopoietic cell transplantation and an oral laser phototherapy protocol: a survey of 30 patients. Photomed Laser Surg (2009) 27(1):137–44. doi: 10.1089/pho.2007.2225
    1. Weissheimer C, Curra M, Gregianin LJ, Daudt LE, Wagner VP, Martins MAT, et al. . New photobiomodulation protocol prevents oral mucositis in hematopoietic stem cell transplantation recipients-a retrospective study. Lasers Med Sci (2017) 32(9):2013–21. doi: 10.1007/s10103-017-2314-7
    1. Tomazevic T, Potocnik U, Cizerl D, Jazbec J. Optimization of photobiomodulation protocol for chemotherapy-induced mucositis in pediatric patients. Photobiomodul Photomed Laser Surg (2020) 38(8):466–71. doi: 10.1089/photob.2019.4794
    1. Gobbo M, Verzegnassi F, Ronfani L, Zanon D, Melchionda F, Bagattoni S, et al. . Multicenter randomized, double-blind controlled trial to evaluate the efficacy of laser therapy for the treatment of severe oral mucositis induced by chemotherapy in children: laMPO RCT. Pediatr Blood Cancer (2018) 65(8):e27098. doi: 10.1002/pbc.27098
    1. Patel P, Robinson PD, Baggott C, Gibson P, Ljungman G, Massey N, et al. . Clinical practice guideline for the prevention of oral and oropharyngeal mucositis in pediatric cancer and hematopoietic stem cell transplant patients: 2021 update. Eur J Cancer (2021) 154:92–101. doi: 10.1016/j.ejca.2021.05.013
    1. He M, Zhang B, Shen N, Wu N, Sun J. A systematic review and meta-analysis of the effect of low-level laser therapy (LLLT) on chemotherapy-induced oral mucositis in pediatric and young patients. Eur J Pediatr (2018) 177(1):7–17. doi: 10.1007/s00431-017-3043-4
    1. Miranda-Silva W, Gomes-Silva W, Zadik Y, Yarom N, Al-Azri AR, Hong CHL, et al. . MASCC/ISOO clinical practice guidelines for the management of mucositis: sub-analysis of current interventions for the management of oral mucositis in pediatric cancer patients. Support Care Cancer (2021) 29(7):3539–62. doi: 10.1007/s00520-020-05803-4
    1. Miranda-Silva W, da Fonseca FP, Gomes AA, Mafra ABB, Rocha V, Fregnani ER. Oral mucositis in paediatric cancer patients undergoing allogeneic hematopoietic stem cell transplantation preventively treated with professional dental care and photobiomodulation: Incidence and risk factors. Int J Paediatr Dent (2022) 32(2):251–63. doi: 10.1111/ipd.12850
    1. Epstein JB, Robertson M, Emerton S, Phillips N, Stevenson-Moore P. Quality of life and oral function in patients treated with radiation therapy for head and neck cancer. Head Neck (2001) 23(5):389–98. doi: 10.1002/hed.1049
    1. Shiboski CH, Hodgson TA, Ship JA, Schiodt M. Management of salivary hypofunction during and after radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod (2007) 103 Suppl:S66 e1–19. doi: 10.1016/j.tripleo.2006.11.013
    1. Peterson D, Jensen SB. Oral complications of nonsurgical cancer therapies: diagnosis and treatment. In: Glick M, editor. Burket’s oral medicine. People’s Medical Publishing House, USA. (2014). p. 201–18.
    1. Jensen SB, Pedersen AM, Vissink A, Andersen E, Brown CG, Davies AN, et al. . A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life. Supportive Care Cancer (2010) 18(8):1039–60. doi: 10.1007/s00520-010-0827-8
    1. Vissink A, van Luijk P, Langendijk JA, Coppes RP. Current ideas to reduce or salvage radiation damage to salivary glands. Oral Dis (2015) 21(1):e1–10. doi: 10.1111/odi.12222
    1. Gonnelli FA, Palma LF, Giordani AJ, Deboni AL, Dias RS, Segreto RA, et al. . Low-level laser for mitigation of low salivary flow rate in head and neck cancer patients undergoing radiochemotherapy: a prospective longitudinal study. Photomedicine Laser Surg (2016) 34(8):326–30. doi: 10.1089/pho.2016.4104
    1. Gonnelli FA, Palma LF, Giordani AJ, Deboni AL, Dias RS, Segreto RA, et al. . Low-level laser therapy for the prevention of low salivary flow rate after radiotherapy and chemotherapy in patients with head and neck cancer. Radiol Bras (2016) 49(2):86–91. doi: 10.1590/0100-3984.2014.0144
    1. Palma LF, Gonnelli FAS, Marcucci M, Dias RS, Giordani AJ, Segreto RA, et al. . Impact of low-level laser therapy on hyposalivation, salivary pH, and quality of life in head and neck cancer patients post-radiotherapy. Lasers Med Sci (2017) 32(4):827–32. doi: 10.1007/s10103-017-2180-3
    1. Saleh J, Figueiredo MA, Cherubini K, Braga-Filho A, Salum FG. Effect of low-level laser therapy on radiotherapy-induced hyposalivation and xerostomia: a pilot study. Photomedicine Laser Surg (2014) 32(10):546–52. doi: 10.1089/pho.2014.3741
    1. Simoes A, de Campos L, de Souza DN, de Matos JA, Freitas PM, Nicolau J. Laser phototherapy as topical prophylaxis against radiation-induced xerostomia. Photomedicine Laser Surg (2010) 28(3):357–63. doi: 10.1089/pho.2009.2486
    1. Cowen D, Tardieu C, Schubert M, Peterson D, Resbeut M, Faucher C, et al. . Low energy helium-neon laser in the prevention of oral mucositis in patients undergoing bone marrow transplant: results of a double blind randomized trial. Int J Radiat Oncol Biol Phys (1997) 38(4):697–703. doi: 10.1016/S0360-3016(97)00076-X
    1. Dysphagia Section OCSGMAoSCiCISoOO. Raber-Durlacher JE, Brennan MT, Verdonck-de Leeuw IM, Gibson RJ, Eilers JG, et al. . Swallowing dysfunction in cancer patients. Supportive Care Cancer (2012) 20(3):433–43. doi: 10.1007/s00520-011-1342-2
    1. Russi EG, Corvo R, Merlotti A, Alterio D, Franco P, Pergolizzi S, et al. . Swallowing dysfunction in head and neck cancer patients treated by radiotherapy: review and recommendations of the supportive task group of the Italian association of radiation oncology. Cancer Treat Rev (2012) 38(8):1033–49. doi: 10.1016/j.ctrv.2012.04.002
    1. Mercadante S, Aielli F, Adile C, Ferrera P, Valle A, Fusco F, et al. . Prevalence of oral mucositis, dry mouth, and dysphagia in advanced cancer patients. Supportive Care Cancer (2015) 23(11):3249–55. doi: 10.1007/s00520-015-2720-y
    1. Gautam AP, Fernandes DJ, Vidyasagar MS, Maiya AG, Vadhiraja BM. Low level laser therapy for concurrent chemoradiotherapy induced oral mucositis in head and neck cancer patients - a triple blinded randomized controlled trial. Radiotherapy oncology: J Eur Soc Ther Radiol Oncol (2012) 104(3):349–54. doi: 10.1016/j.radonc.2012.06.011
    1. Cox JD, Stetz J, Pajak TF. Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int J Radiat oncology biology physics (1995) 31(5):1341–6. doi: 10.1016/0360-3016(95)00060-C
    1. Chen AP, Setser A, Anadkat MJ, Cotliar J, Olsen EA, Garden BC, et al. . Grading dermatologic adverse events of cancer treatments: the common terminology criteria for adverse events version 4.0. J Am Acad Dermatol (2012) 67(5):1025–39. doi: 10.1016/j.jaad.2012.02.010
    1. Twardella D, Popanda O, Helmbold I, Ebbeler R, Benner A, von Fournier D, et al. . Personal characteristics, therapy modalities and individual DNA repair capacity as predictive factors of acute skin toxicity in an unselected cohort of breast cancer patients receiving radiotherapy. Radiotherapy Oncol (2003) 69(2):145–53. doi: 10.1016/S0167-8140(03)00166-X
    1. De Langhe S, Mulliez T, Veldeman L, Remouchamps V, van Greveling A, Gilsoul M, et al. . Factors modifying the risk for developing acute skin toxicity after whole-breast intensity modulated radiotherapy. BMC cancer (2014) 14:711. doi: 10.1186/1471-2407-14-711
    1. Robijns J, Laubach H-J. Acute and chronic radiodermatitis: clinical signs, pathophysiology, risk factors and management options. J Egyptian Women’s Dermatologic Soc (2018) 15(1):2–9. doi: 10.1097/01.EWX.0000529960.52517.4c
    1. Hymes SR, Strom EA, Fife C. Radiation dermatitis: clinical presentation, pathophysiology, and treatment 2006. J Am Acad Dermatol (2006) 54(1):28–46. doi: 10.1016/j.jaad.2005.08.054
    1. Mendelsohn FA, Divino CM, Reis ED, Kerstein MD. Wound care after radiation therapy. Adv skin Wound Care (2002) 15(5):216–24. doi: 10.1097/00129334-200209000-00007
    1. Haubner F, Ohmann E, Pohl F, Strutz J, Gassner HG. Wound healing after radiation therapy: review of the literature. Radiat Oncol (2012) 7:162. doi: 10.1186/1748-717X-7-162
    1. Wong RK, Bensadoun RJ, Boers-Doets CB, Bryce J, Chan A, Epstein JB, et al. . Clinical practice guidelines for the prevention and treatment of acute and late radiation reactions from the MASCC skin toxicity study group. Support Care Cancer (2013) 21(10):2933–48. doi: 10.1007/s00520-013-1896-2
    1. Schindl M, Kerschan K, Schindl A, Schon H, Heinzl H, Schindl L. Induction of complete wound healing in recalcitrant ulcers by low-intensity laser irradiation depends on ulcer cause and size. Photodermatology photoimmunology photomedicine (1999) 15(1):18–21. doi: 10.1111/j.1600-0781.1999.tb00047.x
    1. Schindl A, Schindl M, Schindl L, Jurecka W, Honigsmann H, Breier F. Increased dermal angiogenesis after low-intensity laser therapy for a chronic radiation ulcer determined by a video measuring system. J Am Acad Dermatol (1999) 40(3):481–4. doi: 10.1016/S0190-9622(99)70503-7
    1. DeLand MM, Weiss RA, McDaniel DH, Geronemus RG. Treatment of radiation-induced dermatitis with light-emitting diode (LED) photomodulation. Lasers Surg Med (2007) 39(2):164–8. doi: 10.1002/lsm.20455
    1. Fife D, Rayhan DJ, Behnam S, Ortiz A, Elkeeb L, Aquino L, et al. . A randomized, controlled, double-blind study of light emitting diode photomodulation for the prevention of radiation dermatitis in patients with breast cancer. Dermatologic Surg (2010) 36(12):1921–7. doi: 10.1111/j.1524-4725.2010.01801.x
    1. Censabella S, Claes S, Robijns J, Bulens P, Mebis J. Photobiomodulation for the management of radiation dermatitis: the DERMIS trial, a pilot study of MLS((R)) laser therapy in breast cancer patients. Support Care Cancer (2016) 24(9):3925–33. doi: 10.1007/s00520-016-3232-0
    1. Strouthos I, Chatzikonstantinou G, Tselis N, Bon D, Karagiannis E, Zoga E, et al. . Photobiomodulation therapy for the management of radiation-induced dermatitis: A single-institution experience of adjuvant radiotherapy in breast cancer patients after breast conserving surgery. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al] (2017) 193(6):491–8. doi: 10.1007/s00066-017-1117-x
    1. Robijns J, Censabella S, Claes S, Pannekoeke L, Busse L, Colson D, et al. . Biophysical skin measurements to evaluate the effectiveness of photobiomodulation therapy in the prevention of acute radiation dermatitis in breast cancer patients. Supportive Care Cancer (2019) 27(4):1245. doi: 10.1007/s00520-018-4487-4
    1. Robijns J, Censabella S, Claes S, Pannekoeke L, Busse L, Colson D, et al. . Prevention of acute radiodermatitis by photobiomodulation: A randomized, placebo-controlled trial in breast cancer patients (TRANSDERMIS trial). Lasers Surg Med (2018) 50(7):763–71. doi: 10.1002/lsm.22804
    1. Zhang X, Li H, Li Q, Li Y, Li C, Zhu M, et al. . Application of red light phototherapy in the treatment of radioactive dermatitis in patients with head and neck cancer. World J Surg Oncol (2018) 16(1):222. doi: 10.1186/s12957-018-1522-3
    1. Robijns J, Lodewijckx J, Bensadoun RJ, Mebis J. A narrative review on the use of photobiomodulation therapy for the prevention and management of acute radiodermatitis: proposed mechanisms, current clinical outcomes, and preliminary guidance for clinical studies. Photobiomodul Photomed Laser Surg (2020) 38(6):332–9. doi: 10.1089/photob.2019.4761
    1. DiSipio T, Rye S, Newman B, Hayes S. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncol (2013) 14(6):500–15. doi: 10.1016/S1470-2045(13)70076-7
    1. Deng J, Ridner SH, Murphy BA. Lymphedema in patients with head and neck cancer. Oncol Nurs Forum (2011) 38(1):E1–10. doi: 10.1188/11.ONF.E1-E10
    1. Deng J, Ridner SH, Dietrich MS, Wells N, Wallston KA, Sinard RJ, et al. . Prevalence of secondary lymphedema in patients with head and neck cancer. J Pain symptom management (2012) 43(2):244–52. doi: 10.1016/j.jpainsymman.2011.03.019
    1. Hwang JM, Hwang JH, Kim TW, Lee SY, Chang HJ, Chu IH. Long-term effects of complex decongestive therapy in breast cancer patients with arm lymphedema after axillary dissection. Ann Rehabil Med (2013) 37(5):690–7. doi: 10.5535/arm.2013.37.5.690
    1. Smith BG, Lewin JS. Lymphedema management in head and neck cancer. Curr Opin Otolaryngol Head Neck Surg (2010) 18(3):153–8. doi: 10.1097/MOO.0b013e3283393799
    1. Lee N, Wigg J, Carroll J. The use of low level light therapy in the treatment of head and neck oedema. J Lymphoedema (2013) 8(1):35–42.
    1. Robijns J, Censabella S, Bulens P, Maes A, Noé L, Brosens M, et al. . The role of photobiomodulation therapy in the care of cancer patients: review of the literature. BELG J Med Oncol (2017) 11(8):364–74.
    1. Nair RG, Bensadoun RJ. Mitigation of cancer therapy side-effects with light. Morgan & Claypool Publishers, San Rafael (California, USA) (2016).
    1. Bensadoun RJ. Photobiomodulation or low-level laser therapy in the management of cancer therapy-induced mucositis, dermatitis and lymphedema. Curr Opin Oncol (2018) 30(4):226–32. doi: 10.1097/CCO.0000000000000452
    1. Smoot B, Chiavola-Larson L, Lee J, Manibusan H, Allen DD. Effect of low-level laser therapy on pain and swelling in women with breast cancer-related lymphedema: a systematic review and meta-analysis. J Cancer survivorship: Res Pract (2014) 9(2):287–304. doi: 10.1007/s11764-014-0411-1
    1. Storz MA, Gronwald B, Gottschling S, Schope J, Mavrova R, Baum S. Photobiomodulation therapy in breast cancer-related lymphedema: a randomized placebo-controlled trial. Photodermatology photoimmunology photomedicine (2017) 33(1):32–40. doi: 10.1111/phpp.12284
    1. Kilmartin L, Denham T, Fu MR, Yu G, Kuo TT, Axelrod D, et al. . Complementary low-level laser therapy for breast cancer-related lymphedema: a pilot, double-blind, randomized, placebo-controlled study. Lasers Med Sci (2020) 35(1):95–105. doi: 10.1007/s10103-019-02798-1
    1. Brand JG. Within reach of an end to unnecessary bitterness? Lancet (2000) 356(9239):1371–2. doi: 10.1016/S0140-6736(00)02836-1
    1. Heckmann SM, Hujoel P, Habiger S, Friess W, Wichmann M, Heckmann JG, et al. . Zinc gluconate in the treatment of dysgeusia–a randomized clinical trial. J Dent Res (2005) 84(1):35–8. doi: 10.1177/154405910508400105
    1. Boltong A, Aranda S, Keast R, Wynne R, Francis PA, Chirgwin J, et al. . A prospective cohort study of the effects of adjuvant breast cancer chemotherapy on taste function, food liking, appetite and associated nutritional outcomes. PloS One (2014) 9(7):e103512. doi: 10.1371/journal.pone.0103512
    1. Ponticelli E, Clari M, Frigerio S, De Clemente A, Bergese I, Scavino E, et al. . Dysgeusia and health-related quality of life of cancer patients receiving chemotherapy: A cross-sectional study. Eur J Cancer Care (2017) 26(2):e12633. doi: 10.1111/ecc.12633
    1. Hovan AJ, Williams PM, Stevenson-Moore P, Wahlin YB, Ohrn KE, Elting LS, et al. . A systematic review of dysgeusia induced by cancer therapies. Supportive Care Cancer (2010) 18(8):1081–7. doi: 10.1007/s00520-010-0902-1
    1. Epstein JB, Smutzer G, Doty RL. Understanding the impact of taste changes in oncology care. Supportive Care Cancer (2016) 24(4):1917–31. doi: 10.1007/s00520-016-3083-8
    1. Mobadder ME, Farhat F, Mobadder WE, Nammour S. Photobiomodulation therapy in the treatment of oral mucositis, dysgeusia and oral dryness as side-effects of head and neck radiotherapy in a cancer patient: A case report. Dent J (Basel) (2018) 6(4):1–6. doi: 10.3390/dj6040064
    1. Dijkstra PU, Huisman PM, Roodenburg JL. Criteria for trismus in head and neck oncology. Int J Oral Maxillofac Surg (2006) 35(4):337–42. doi: 10.1016/j.ijom.2005.08.001
    1. Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP. Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med (2003) 14(3):199–212. doi: 10.1177/154411130301400305
    1. Bensadoun RJ, Riesenbeck D, Lockhart PB, Elting LS, Spijkervet FK, Brennan MT, et al. . A systematic review of trismus induced by cancer therapies in head and neck cancer patients. Supportive Care Cancer (2010) 18(8):1033–8. doi: 10.1007/s00520-010-0847-4
    1. Teguh DN, Levendag PC, Voet P, van der Est H, Noever I, de Kruijf W, et al. . Trismus in patients with oropharyngeal cancer: relationship with dose in structures of mastication apparatus. Head Neck (2008) 30(5):622–30. doi: 10.1002/hed.20760
    1. Goldstein M, Maxymiw WG, Cummings BJ, Wood RE. The effects of antitumor irradiation on mandibular opening and mobility: a prospective study of 58 patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod (1999) 88(3):365–73. doi: 10.1016/S1079-2104(99)70044-2
    1. Wang CJ, Huang EY, Hsu HC, Chen HC, Fang FM, Hsiung CY. The degree and time-course assessment of radiation-induced trismus occurring after radiotherapy for nasopharyngeal cancer. Laryngoscope (2005) 115(8):1458–60. doi: 10.1097/01.mlg.0000171019.80351.46
    1. Dijkstra PU, Kalk WW, Roodenburg JL. Trismus in head and neck oncology: a systematic review. Oral Oncol (2004) 40(9):879–89. doi: 10.1016/j.oraloncology.2004.04.003
    1. van der Molen L, van Rossum MA, Burkhead LM, Smeele LE, Hilgers FJ. Functional outcomes and rehabilitation strategies in patients treated with chemoradiotherapy for advanced head and neck cancer: a systematic review. Eur Arch Otorhinolaryngol (2009) 266(6):889–900. doi: 10.1007/s00405-008-0817-3
    1. van der Molen L, Heemsbergen WD, de Jong R, van Rossum MA, Smeele LE, Rasch CR, et al. . Dysphagia and trismus after concomitant chemo-Intensity-Modulated radiation therapy (chemo-IMRT) in advanced head and neck cancer; dose-effect relationships for swallowing and mastication structures. Radiotherapy Oncol (2013) 106(3):364–9. doi: 10.1016/j.radonc.2013.03.005
    1. Carnaby-Mann G, Crary MA, Schmalfuss I, Amdur R. “Pharyngocise”: randomized controlled trial of preventative exercises to maintain muscle structure and swallowing function during head-and-neck chemoradiotherapy. Int J Radiat oncology biology physics (2012) 83(1):210–9. doi: 10.1016/j.ijrobp.2011.06.1954
    1. Bernal Rodriguez CG, CdP E, Aranha ACC, de Freitas PM. Photobiomodulation with low-level laser in the treatment of trismus after radiotherapy: a case report. Photobiomodulation Photomedicine Laser Surg (2019) 37(4):240–3. doi: 10.1089/photob.2018.4524
    1. Chrcanovic BR, Reher P, Sousa AA, Harris M. Osteoradionecrosis of the jaws–a current overview–part 1: Physiopathology and risk and predisposing factors. Oral Maxillofac Surg (2010) 14(1):3–16. doi: 10.1007/s10006-009-0198-9
    1. Chrcanovic BR, Reher P, Sousa AA, Harris M. Osteoradionecrosis of the jaws–a current overview–part 2: dental management and therapeutic options for treatment. Oral Maxillofac Surg (2010) 14(2):81–95. doi: 10.1007/s10006-010-0205-1
    1. Kurzweg T, Mockelmann N, Laban S, Knecht R. Current treatment options for recurrent/metastatic head and neck cancer: a post-ASCO 2011 update and review of last year’s literature. Eur Arch Otorhinolaryngol (2012) 269(10):2157–67. doi: 10.1007/s00405-012-1998-3
    1. Paulo S, Abrantes AM, Laranjo M, Carvalho L, Serra A, Botelho MF, et al. . Bisphosphonate-related osteonecrosis of the jaw: specificities. Oncol Rev (2014) 8(2):254. doi: 10.4081/oncol.2014.254
    1. Epstein JB, Wong FL, Stevenson-Moore P. Osteoradionecrosis: clinical experience and a proposal for classification. J Oral Maxillofac Surg (1987) 45(2):104–10. doi: 10.1016/0278-2391(87)90399-5
    1. Delanian S, Lefaix JL. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiotherapy Oncol (2004) 73(2):119–31. doi: 10.1016/j.radonc.2004.08.021
    1. Bagan JV, Jimenez Y, Hernandez S, Murillo J, Diaz JM, Poveda R, et al. . Osteonecrosis of the jaws by intravenous bisphosphonates and osteoradionecrosis: a comparative study. Med Oral Patol Oral Cir Bucal (2009) 14(12):e616–9. doi: 10.4317/medoral.14.e616
    1. Madrid C, Abarca M, Bouferrache K. Osteoradionecrosis: an update. Oral Oncol (2010) 46(6):471–4. doi: 10.1016/j.oraloncology.2010.03.017
    1. West C, Azria D, Chang-Claude J, Davidson S, Lambin P, Rosenstein B, et al. . The REQUITE project: validating predictive models and biomarkers of radiotherapy toxicity to reduce side-effects and improve quality of life in cancer survivors. Clin Oncol (2014) 26(12):739–42. doi: 10.1016/j.clon.2014.09.008
    1. Binello PB, Bandelloni R, Labanca M, Buffoli B, Rezzani R, Rodella LF. Osteonecrosis and the jaws and bevacizumab therapy: A case report. Int J Immunopathology Pharmacol (2012) 25(3):789–91. doi: 10.1177/039463201202500328
    1. Sivolella S, Lumachi F, Stellini E, Favero L. Denosumab and anti-angiogenetic drug-related osteonecrosis of the jaw: an uncommon but potentially severe disease. Anticancer Res (2013) 33(5):1793–7.
    1. Estilo CL, Fornier M, Farooki A, Carlson D, Bohle G, 3rd, Huryn JM. Osteonecrosis of the jaw related to bevacizumab. J Clin Oncol (2008) 26(24):4037–8. doi: 10.1200/JCO.2007.15.5424
    1. Santos-Silva AR, Belizario Rosa GA, Castro Junior G, Dias RB, Prado Ribeiro AC, Brandao TB. Osteonecrosis of the mandible associated with bevacizumab therapy. Oral surgery Oral medicine Oral Pathol Oral radiology (2013) 115(6):e32–6. doi: 10.1016/j.oooo.2013.02.001
    1. Koch FP, Walter C, Hansen T, Jager E, Wagner W. Osteonecrosis of the jaw related to sunitinib. Oral Maxillofac Surg (2011) 15(1):63–6. doi: 10.1007/s10006-010-0224-y
    1. Nicolatou-Galitis O, Migkou M, Psyrri A, Bamias A, Pectasides D, Economopoulos T, et al. . Gingival bleeding and jaw bone necrosis in patients with metastatic renal cell carcinoma receiving sunitinib: report of 2 cases with clinical implications. Oral surgery Oral medicine Oral Pathol Oral radiology (2012) 113(2):234–8. doi: 10.1016/j.tripleo.2011.08.024
    1. Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, et al. . American Association of oral and maxillofacial surgeons position paper on medication-related osteonecrosis of the jaw–2014 update. J Oral Maxillofac Surg (2014) 72(10):1938–56. doi: 10.1016/j.joms.2014.04.031
    1. Da Cunha SS, Sarmento V, Ramalho LM, De Almeida D, Veeck EB, Da Costa NP, et al. . Effect of laser therapy on bone tissue submitted to radiotherapy: experimental study in rats. Photomedicine Laser Surg (2007) 25(3):197–204. doi: 10.1089/pho.2007.2002
    1. El-Maghraby EM, El-Rouby DH, Saafan AM. Assessment of the effect of low-energy diode laser irradiation on gamma irradiated rats’ mandibles. Arch Oral Biol (2013) 58(7):796–805. doi: 10.1016/j.archoralbio.2012.10.003
    1. Batista JD, Zanetta-Barbosa D, Cardoso SV, Dechichi P, Rocha FS, Pagnoncelli RM. Effect of low-level laser therapy on repair of the bone compromised by radiotherapy. Lasers Med Sci (2014) 29(6):1913–8. doi: 10.1007/s10103-014-1602-8
    1. Scoletta M, Arduino PG, Dalmasso P, Broccoletti R, Mozzati M. Treatment outcomes in patients with bisphosphonate-related osteonecrosis of the jaws: a prospective study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod (2010) 110(1):46–53. doi: 10.1016/j.tripleo.2010.02.020
    1. Romeo U, Galanakis A, Marias C, Vecchio AD, Tenore G, Palaia G, et al. . Observation of pain control in patients with bisphosphonate-induced osteonecrosis using low level laser therapy: preliminary results. Photomedicine Laser Surg (2011) 29(7):447–52. doi: 10.1089/pho.2010.2835
    1. Vescovi P, Merigo E, Meleti M, Manfredi M, Guidotti R, Nammour S. Bisphosphonates-related osteonecrosis of the jaws: a concise review of the literature and a report of a single-centre experience with 151 patients. J Oral Pathol Med (2012) 41(3):214–21. doi: 10.1111/j.1600-0714.2011.01091.x
    1. Angiero F, Sannino C, Borloni R, Crippa R, Benedicenti S, Romanos GE. Osteonecrosis of the jaws caused by bisphosphonates: evaluation of a new therapeutic approach using the er : YAG laser. Lasers Med Sci (2009) 24(6):849–56. doi: 10.1007/s10103-009-0654-7
    1. Atalay B, Yalcin S, Emes Y, Aktas I, Aybar B, Issever H, et al. . Bisphosphonate-related osteonecrosis: laser-assisted surgical treatment or conventional surgery? Lasers Med Sci (2011) 26(6):815–23. doi: 10.1007/s10103-011-0974-2
    1. Martins MA, Martins MD, Lascala CA, Curi MM, Migliorati CA, Tenis CA, et al. . Association of laser phototherapy with PRP improves healing of bisphosphonate-related osteonecrosis of the jaws in cancer patients: a preliminary study. Oral Oncol (2012) 48(1):79–84. doi: 10.1016/j.oraloncology.2011.08.010
    1. Altay MA, Tasar F, Tosun E, Kan B. Low-level laser therapy supported surgical treatment of bisphosphonate related osteonecrosis of jaws: a retrospective analysis of 11 cases. Photomedicine Laser Surg (2014) 32(8):468–75. doi: 10.1089/pho.2014.3742
    1. Latifyan S, Genot MT, Klastersky J. Bisphosphonate-related osteonecrosis of the jaw: a review of the potential efficacy of low-level laser therapy. Supportive Care Cancer (2016) 24(9):3687–93. doi: 10.1007/s00520-016-3139-9
    1. Colombo F, Neto Ade A, Sousa AP, Marchionni AM, Pinheiro AL, Reis SR. Effect of low-level laser therapy (lambda660 nm) on angiogenesis in wound healing: a immunohistochemical study in a rodent model. Braz Dent J (2013) 24(4):308–12. doi: 10.1590/0103-6440201301867
    1. Epstein JB, Song PY, Ho AS, Larian B, Asher A, Bensadoun RJ. Photobiomodulation therapy: management of mucosal necrosis of the oropharynx in previously treated head and neck cancer patients. Supportive Care Cancer (2017) 25(4):1031–4. doi: 10.1007/s00520-016-3525-3
    1. de Bataille C, Sibaud V, Prioul A, Laprie A, Vigarios E. Management of radiation-induced mucosal necrosis with photobiomodulation therapy. Supportive Care Cancer (2018) 26(8):2491–2. doi: 10.1007/s00520-017-3899-x
    1. Epstein JB, Song P, Ho A, Larian B, Asher A, Bensadoun RJ. Management of radiation-induced mucosal necrosis with photobiomodulation therapy. Supportive Care Cancer (2018) 26(8):2493. doi: 10.1007/s00520-018-4228-8
    1. Jacobi I, van der Molen L, Huiskens H, van Rossum MA, Hilgers FJM. Voice and speech outcomes of chemoradiation for advanced head and neck cancer: a systematic review. Eur Arch oto-rhino-laryngology (2010) 267(10):1495–505. doi: 10.1007/s00405-010-1316-x
    1. van der Molen L, van Rossum MA, Jacobi I, van Son RJ, Smeele LE, Rasch CR, et al. . Pre- and posttreatment voice and speech outcomes in patients with advanced head and neck cancer treated with chemoradiotherapy: expert listeners’ and patient’s perception. J voice: Off J Voice Foundation (2012) 26(5):664.e25–33. doi: 10.1016/j.jvoice.2011.08.016
    1. Meleca RJ, Dworkin JP, Kewson DT, Stachler RJ, Hill SL. Functional outcomes following nonsurgical treatment for advanced-stage laryngeal carcinoma. Laryngoscope (2003) 113(4):720–8. doi: 10.1097/00005537-200304000-00025
    1. Johns MM, Kolachala V, Berg E, Muller S, Creighton FX, Branski RC. Radiation fibrosis of the vocal fold: from man to mouse. Laryngoscope (2012) 122 Suppl 5:S107–25. doi: 10.1002/lary.23735
    1. de Bruijn MJ, ten Bosch L, Kuik DJ, Quene H, Langendijk JA, Leemans CR, et al. . Objective acoustic-phonetic speech analysis in patients treated for oral or oropharyngeal cancer. Folia Phoniatr Logop (2009) 61(3):180–7. doi: 10.1159/000219953
    1. Hunter KU, Schipper M, Feng FY, Lyden T, Haxer M, Murdoch-Kinch CA, et al. . Toxicities affecting quality of life after chemo-IMRT of oropharyngeal cancer: prospective study of patient-reported, observer-rated, and objective outcomes. Int J Radiat oncology biology physics (2013) 85(4):935–40. doi: 10.1016/j.ijrobp.2012.08.030
    1. Miller KK, Gorcey L, McLellan BN. Chemotherapy-induced hand-foot syndrome and nail changes: a review of clinical presentation, etiology, pathogenesis, and management. J Am Acad Dermatol (2014) 71(4):787–94. doi: 10.1016/j.jaad.2014.03.019
    1. Wilkes GM, Doyle D. Palmar-plantar erythrodysesthesia. Clin J Oncol Nurs (2005) 9(1):103–6. doi: 10.1188/05.CJON.103-106
    1. Webster-Gandy JD, How C, Harrold K. Palmar-plantar erythrodysesthesia (PPE): a literature review with commentary on experience in a cancer centre. Eur J Oncol Nurs (2007) 11(3):238–46. doi: 10.1016/j.ejon.2006.10.004
    1. Lipworth AD, Robert C, Zhu AX. Hand-foot syndrome (hand-foot skin reaction, palmar-plantar erythrodysesthesia): focus on sorafenib and sunitinib. Oncology (2009) 77(5):257–71. doi: 10.1159/000258880
    1. Chidharla A, Kasi A. Cancer, chemotherapy acral erythema (Palmar-plantar erythrodysesthesia, palmoplantar erythrodysesthesia, hand-foot syndrome). StatPearls Publishing, Treasure Island; (Florida, USA) (2020).
    1. Abstracts of the MASCC/ISOO annual meeting 2018. Supportive Care Cancer (2018) 26(suppl 2):39–364. doi: 10.1007/s00520-018-4193-2
    1. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet (2009) 373(9674):1550–61. doi: 10.1016/S0140-6736(09)60237-3
    1. Epstein JB, Raber-Durlacher JE, Huysmans MC, Schoordijk MCE, Cheng JE, Bensadoun RJ, et al. . Photobiomodulation therapy alleviates tissue fibroses associated with chronic graft-versus-host disease: two case reports and putative anti-fibrotic roles of tgf-beta. Photomed Laser Surg (2018) 36(2):92–9. doi: 10.1089/pho.2017.4297
    1. Aladag E, Kelkitli E, Goker H. Acute graft-versus-host disease: a brief review. Turk J Haematol (2020) 37(1):1–4. doi: 10.4274/tjh.galenos.2019.2019.0157
    1. Justiz Vaillant AA, Mohammadi O. Graft versus host disease. StatPearls Publishing, Treasure Island (Florida, USA) (2020).
    1. Gonzalez RM, Pidala J. Evolving therapeutic options for chronic graft-versus-Host disease. Pharmacotherapy (2020) 40(8):756–72. doi: 10.1002/phar.2427
    1. Elshenawy HM, Eldin AM, Abdelmonem MA. Clinical assessment of the efficiency of low level laser therapy in the treatment of oral lichen planus. Open Access Maced J Med Sci (2015) 3(4):717–21. doi: 10.3889/oamjms.2015.112
    1. Derikvand N, Ghasemi SS, Moharami M, Shafiei E, Chiniforush N. Management of oral lichen planus by 980 nm diode laser. J Lasers Med Sci (2017) 8(3):150–4. doi: 10.15171/jlms.2017.27
    1. Al-Maweri SA, Kalakonda B, Al-Soneidar WA, Al-Shamiri HM, Alakhali MS, Alaizari N. Efficacy of low-level laser therapy in management of symptomatic oral lichen planus: a systematic review. Lasers Med Sci (2017) 32(6):1429–37. doi: 10.1007/s10103-017-2233-7
    1. Mutafchieva MZ, Draganova-Filipova MN, Zagorchev PI, Tomov GT. Effects of low level laser therapy on erosive-atrophic oral lichen planus. Folia Med (Plovdiv) (2018) 60(3):417–24. doi: 10.2478/folmed-2018-0008
    1. Hoseinpour Jajarm H, Asadi R, Bardideh E, Shafaee H, Khazaei Y, Emadzadeh M. The effects of photodynamic and low-level laser therapy for treatment of oral lichen planus-a systematic review and meta-analysis. Photodiagnosis Photodyn Ther (2018) 23:254–60. doi: 10.1016/j.pdpdt.2018.07.001
    1. Bhattacharya PT, Patil K, Guledgud MV. Effectiveness of 904nm gallium-arsenide diode laser in treatment of oral lichen planus: Report of 2 cases. Actas Dermosifiliogr (2019) 110(4):325–7. doi: 10.1016/j.adengl.2019.02.009
    1. Mirza S, Rehman N, Alrahlah A, Alamri WR, Vohra F. Efficacy of photodynamic therapy or low level laser therapy against steroid therapy in the treatment of erosive-atrophic oral lichen planus. Photodiagnosis Photodyn Ther (2018) 21:404–8. doi: 10.1016/j.pdpdt.2018.02.001
    1. Akram Z, Abduljabbar T, Vohra F, Javed F. Efficacy of low-level laser therapy compared to steroid therapy in the treatment of oral lichen planus: A systematic review. J Oral Pathol Med (2018) 47(1):11–7. doi: 10.1111/jop.12619
    1. Epstein JB, Raber-Durlacher JE, Lill M, Linhares YP, Chang J, Barasch A, et al. . Photobiomodulation therapy in the management of chronic oral graft-versus-host disease. Supportive Care Cancer (2017) 25(2):357–64. doi: 10.1007/s00520-016-3401-1
    1. Elad S, Or R, Shapira MY, Haviv A, Galili D, Garfunkel AA, et al. . CO2 laser in oral graft-versus-host disease: a pilot study. Bone Marrow Transplant (2003) 32(10):1031–4. doi: 10.1038/sj.bmt.1704272
    1. Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, et al. . Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain (2014) 155(12):2461–70. doi: 10.1016/j.pain.2014.09.020
    1. Rivera E, Cianfrocca M. Overview of neuropathy associated with taxanes for the treatment of metastatic breast cancer. Cancer Chemother Pharmacol (2015) 75(4):659–70. doi: 10.1007/s00280-014-2607-5
    1. LaPointe NE, Morfini G, Brady ST, Feinstein SC, Wilson L, Jordan MA. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: implications for chemotherapy-induced peripheral neuropathy. Neurotoxicology (2013) 37:231–9. doi: 10.1016/j.neuro.2013.05.008
    1. Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy-induced peripheral neuropathy: A current review. Ann neurology (2017) 81(6):772–81. doi: 10.1002/ana.24951
    1. Hong JS, Tian J, Wu LH. The influence of chemotherapy-induced neurotoxicity on psychological distress and sleep disturbance in cancer patients. Curr Oncol (2014) 21(4):174–80. doi: 10.3747/co.21.1984
    1. Pike CT, Birnbaum HG, Muehlenbein CE, Pohl GM, Natale RB. Healthcare costs and workloss burden of patients with chemotherapy-associated peripheral neuropathy in breast, ovarian, head and neck, and nonsmall cell lung cancer. Chemotherapy Res Practice (2012) 2012:913848. doi: 10.1155/2012/913848
    1. Izycki D, Niezgoda AA, Kazmierczak M, Piorunek T, Izycka N, Karaszewska B, et al. . Chemotherapy-induced peripheral neuropathy - diagnosis, evolution and treatment. Ginekologia polska (2016) 87(7):516–21. doi: 10.5603/GP.2016.0036
    1. Khamseh ME, Kazemikho N, Aghili R, Forough B, Lajevardi M, Hashem Dabaghian F, et al. . Diabetic distal symmetric polyneuropathy: effect of low-intensity laser therapy. Lasers Med science (2011) 26(6):831–5. doi: 10.1007/s10103-011-0977-z
    1. De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S. Taxane induced neuropathy in patients affected by breast cancer: Literature review. Crit Rev Oncol Hematol (2015) 96(1):34–45. doi: 10.1016/j.critrevonc.2015.04.011
    1. Hsieh YL, Chou LW, Chang PL, Yang CC, Kao MJ, Hong CZ. Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1alpha (HIF-1alpha). J Comp Neurol (2012) 520(13):2903–16. doi: 10.1002/cne.23072
    1. Hsieh YL, Fan YC, Yang CC. Low-level laser therapy alleviates mechanical and cold allodynia induced by oxaliplatin administration in rats. Supportive Care Cancer (2016) 24(1):233–42. doi: 10.1007/s00520-015-2773-y
    1. de Andrade AL, Bossini PS, do Canto De Souza AL, Sanchez AD, Parizotto NA. Effect of photobiomodulation therapy (808 nm) in the control of neuropathic pain in mice. Lasers Med Sci (2017) 32(4):865–72. doi: 10.1007/s10103-017-2186-x
    1. Bashiri H. Evaluation of low level laser therapy in reducing diabetic polyneuropathy related pain and sensorimotor disorders. Acta Med Iranica (2013) 51(8):543–7.
    1. Yamany AA, Sayed HM. Effect of low level laser therapy on neurovascular function of diabetic peripheral neuropathy. J Advanced Res (2012) 3(1):21–8. doi: 10.1016/j.jare.2011.02.009
    1. Kumar S, Maiya AG, Hande HM, Vidyasagar S, Rao K, Rajagopal KV. Efficacy of low level laser therapy on painful diabetic peripheral neuropathy. Laser Ther (2015) 24(3):195–200. doi: 10.5978/islsm.15-OR-12
    1. Yamada K, Kaise H, Ogata A. Low-level laser therapy for symptoms induced by breast cancer treatments. ASCO San Antonio Breast Cancer Symposium (SABCS) (2010). weblink: .
    1. Argenta PA, Ballman KV, Geller MA, Carson LF, Ghebre R, Mullany SA, et al. . The effect of photobiomodulation on chemotherapy-induced peripheral neuropathy: A randomized, sham-controlled clinical trial. Gynecologic Oncol (2017) 144(1):159–66. doi: 10.1016/j.ygyno.2016.11.013
    1. Hsieh YL, Chou LW, Hong SF, Chang FC, Tseng SW, Huang CC, et al. . Laser acupuncture attenuates oxaliplatin-induced peripheral neuropathy in patients with gastrointestinal cancer: a pilot prospective cohort study. Acupuncture medicine: J Br Med Acupuncture Soc (2016) 34(5):398–405. doi: 10.1136/acupmed-2016-011112
    1. Lodewijckx J, Robijns J, Bensadoun RJ, Mebis J. Photobiomodulation therapy for the management of chemotherapy-induced peripheral neuropathy: an overview. Photobiomodul Photomed Laser Surg (2020) 38(6):348–54. doi: 10.1089/photob.2019.4771
    1. Ridner SH, Dietrich MS, Niermann K, Cmelak A, Mannion K, Murphy B. A prospective study of the lymphedema and fibrosis continuum in patients with head and neck cancer. Lymphatic Res Biol (2016) 14(4):198–205. doi: 10.1089/lrb.2016.0001
    1. Straub JM, New J, Hamilton CD, Lominska C, Shnayder Y, Thomas SM. Radiation-induced fibrosis: mechanisms and implications for therapy. J Cancer Res Clin Oncol (2015) 141(11):1985–94. doi: 10.1007/s00432-015-1974-6
    1. Dorr W, Hendry JH. Consequential late effects in normal tissues. Radiotherapy oncology: J Eur Soc Ther Radiol Oncol (2001) 61(3):223–31. doi: 10.1016/S0167-8140(01)00429-7
    1. Villa A, Sonis S. Toxicities associated with head and neck cancer treatment and oncology-related clinical trials. Curr Problems Cancer (2016) 40(5-6):244–57. doi: 10.1016/j.currproblcancer.2016.06.001
    1. Mamalis A, Koo E, Tepper C, Jagdeo J. MicroRNA expression analysis of human skin fibroblasts treated with high-fluence light-emitting diode-red light. J Biophotonics (2018) 11:e201800207. doi: 10.1002/jbio.201800207
    1. Mamalis A, Siegel D, Jagdeo J. Visible red light emitting diode photobiomodulation for skin fibrosis: key molecular pathways. Curr Dermatol Rep (2016) 5:121–8. doi: 10.1007/s13671-016-0141-x
    1. Mamalis A, Jagdeo J. The combination of resveratrol and high-fluence light emitting diode-red light produces synergistic photobotanical inhibition of fibroblast proliferation and collagen synthesis: a novel treatment for skin fibrosis. Dermatologic Surg (2017) 43(1):81–6. doi: 10.1097/DSS.0000000000000921
    1. Mamalis A, Koo E, Garcha M, Murphy WJ, Isseroff RR, Jagdeo J. High fluence light emitting diode-generated red light modulates characteristics associated with skin fibrosis. J Biophotonics (2016) 9(11-12):1167–79. doi: 10.1002/jbio.201600059
    1. Tam M, Arany PR, Robijns J, Vasconcelos R, Corby P, Hu K. Photobiomodulation therapy to mitigate radiation fibrosis syndrome. Photobiomodul Photomed Laser Surg (2020) 38(6):355–63. doi: 10.1089/photob.2019.4766
    1. Trueb RM. Chemotherapy-induced hair loss. Skin Ther letter (2010) 15(7):5–7.
    1. Rosman S. Cancer and stigma: experience of patients with chemotherapy-induced alopecia. Patient Educ counseling (2004) 52(3):333–9. doi: 10.1016/S0738-3991(03)00040-5
    1. Browall M, Gaston-Johansson F, Danielson E. Postmenopausal women with breast cancer: their experiences of the chemotherapy treatment period. Cancer nursing (2006) 29(1):34–42. doi: 10.1097/00002820-200601000-00006
    1. Hesketh PJ, Batchelor D, Golant M, Lyman GH, Rhodes N, Yardley D. Chemotherapy-induced alopecia: psychosocial impact and therapeutic approaches. Supportive Care Cancer (2004) 12(8):543–9. doi: 10.1007/s00520-003-0562-5
    1. Choi EK, Kim IR, Chang O, Kang D, Nam SJ, Lee JE, et al. . Impact of chemotherapy-induced alopecia distress on body image, psychosocial well-being, and depression in breast cancer patients. Psycho-oncology (2014) 23(10):1103–10. doi: 10.1002/pon.3531
    1. Duvic M, Lemak NA, Valero V, Hymes SR, Farmer KL, Hortobagyi GN, et al. . A randomized trial of minoxidil in chemotherapy-induced alopecia. J Am Acad Dermatol (1996) 35(1):74–8. doi: 10.1016/S0190-9622(96)90500-9
    1. Yang X, Thai KE. Treatment of permanent chemotherapy-induced alopecia with low dose oral minoxidil. Australas J Dermatol (2016) 57(4):e130–e2. doi: 10.1111/ajd.12350
    1. Ross M, Fischer-Cartlidge E. Scalp cooling: a literature review of efficacy, safety, and tolerability for chemotherapy-induced alopecia. Clin J Oncol Nurs (2017) 21(2):226–33. doi: 10.1188/17.CJON.226-233
    1. Dodd EM, Winter MA, Hordinsky MK, Sadick NS, Farah RS. Photobiomodulation therapy for androgenetic alopecia: A clinician’s guide to home-use devices cleared by the federal drug administration. J cosmetic laser Ther (2017) 9:1–9. doi: 10.1080/14764172.2017.1383613
    1. Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS biophysics (2017) 4(3):337–61. doi: 10.3934/biophy.2017.3.337
    1. Darwin E, Heyes A, Hirt PA, Wikramanayake TC, Jimenez JJ. Low-level laser therapy for the treatment of androgenic alopecia: a review. Lasers Med Sci (2018) 33(2):425–34. doi: 10.1007/s10103-017-2385-5
    1. Peterson DE, Bensadoun RJ, Roila F, Group EGW. Management of oral and gastrointestinal mucositis: ESMO clinical practice guidelines. Ann Oncol (2011) 22 Suppl 6:vi78–84. doi: 10.1093/annonc/mdr391
    1. Interventional procedure overview of low-level laser therapy for preventing or treating oral mucositis caused by radiotherapy or chemotherapy (2018). Available at: .
    1. Pedersen AM, Bardow A, Jensen SB, Nauntofte B. Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis (2002) 8(3):117–29. doi: 10.1034/j.1601-0825.2002.02851.x

Source: PubMed

3
Subscribe