Role of electrical impedance tomography in clinical practice in pediatric respiratory medicine

Wojciech Durlak, Przemko Kwinta, Wojciech Durlak, Przemko Kwinta

Abstract

This paper summarizes current knowledge about electrical impedance tomography (EIT) and its present and possible applications in clinical practice in pediatric respiratory medicine. EIT is a relatively new technique based on real-time monitoring of bioimpedance. Its possible application in clinical practice related to ventilation and perfusion monitoring in children has gaine increasing attention in recent years. Most of the currently published data is based on studies performed on small and heterogenous groups of patients. Thus the results need to be corroborated in future well-designed clinical trials. Firstly a short theoretical overview summarizing physical principles and main advantages and disadvantages is provided. It is followed by a review of the current data regarding EIT application in ventilation distribution monitoring in healthy individuals. Finally the most important studies utilizing EIT in ventilation and perfusion monitoring in critically ill newborns and children are outlined.

References

    1. Brown BH, Barber DC, Seagar AD. Applied potential tomography: possible clinical applications. Clinical Physics and Physiological Measurement. 1985;6(2):109–121.
    1. Hahn G, Sipinkova I, Baisch F, Hellige G. Changes in the thoracic impedance distribution under different ventilatory conditions. Physiological Measurement. 1995;16(3) supplement A:A161–A173.
    1. Luepschen H, Meier T, Grossherr M, Leibecke T, Karsten J, Leonhardt S. Protective ventilation using electrical impedance tomography. Physiological Measurement. 2007;28(7):S247–S260.
    1. Leonhardt S, Lachmann B. Electrical impedance tomography: the holy grail of ventilation and perfusion monitoring? Intensive Care Medicine. 2012;38(12):1917–1929.
    1. Bodenstein M, David M, Markstaller K. Principles of electrical impedance tomography and its clinical application. Critical Care Medicine. 2009;37(2):713–724.
    1. Putensen C, Wrigge H, Zinserling J. Electrical impedance tomography guided ventilation therapy. Current Opinion in Critical Care. 2007;13(3):344–350.
    1. Frerichs I, Hinz J, Herrmann P, et al. Detection of local lung air content by electrical impedance tomography compared with electron beam CT. Journal of Applied Physiology. 2002;93(2):660–666.
    1. Hinz J, Neumann P, Dudykevych T, et al. Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest. 2003;124(1):314–322.
    1. Hinz J, Hahn G, Neumann P, et al. End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Medicine. 2003;29(1):37–43.
    1. Brown BH, Primhak RA, Smallwood RH, Milnes P, Narracott AJ, Jackson MJ. Neonatal lungs: maturational changes in lung resistivity spectra. Medical and Biological Engineering and Computing. 2002;40(5):506–511.
    1. Davies H, Helms P, Gordon I. Effect of posture on regional ventilation in children. Pediatric Pulmonology. 1992;12(4):227–232.
    1. Davies H, Kitchman R, Gordon I, Helms P. Regional ventilation in infancy. Reversal of adult pattern. The New England Journal of Medicine. 1985;313(26):1626–1628.
    1. Riedel T, Richards T, Schibler A. The value of electrical impedance tomography in assessing the effect of body position and positive airway pressures on regional lung ventilation in spontaneously breathing subjects. Intensive Care Medicine. 2005;31(11):1522–1528.
    1. Frerichs I, Schiffmann H, Oehler R, et al. Distribution of lung ventilation in spontaneously breathing neonates lying in different body positions. Intensive Care Medicine. 2003;29(5):787–794.
    1. Heinrich S, Schiffmann H, Frerichs A, Klockgether-Radke A, Frerichs I. Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study. Intensive Care Medicine. 2006;32(9):1392–1398.
    1. Schibler A, Yuill M, Parsley C, Pham T, Gilshenan K, Dakin C. Regional ventilation distribution in non-sedated spontaneously breathing newborns and adults is not different. Pediatric Pulmonology. 2009;44(9):851–858.
    1. Pham TMT, Yuill M, Dakin C, Schibler A. Regional ventilation distribution in the first 6 months of life. European Respiratory Journal. 2011;37(4):919–924.
    1. Lupton-Smith AR, Argent AC, Rimensberger PC, Morrow BM. Challenging a paradigm: positional changes in ventilation distribution are highly variable in healthy infants and children. Pediatric Pulmonology. 2013
    1. Frerichs I, Schiffmann H, Hahn G, Hellige G. Non-invasive radiation-free monitoring of regional lung ventilation in critically ill infants. Intensive Care Medicine. 2001;27(8):1385–1394.
    1. Wolf GK, Grychtol B, Frerichs I, et al. Regional lung volume changes in children with acute respiratory distress syndrome during a derecruitment maneuver. Critical Care Medicine. 2007;35(8):1972–1978.
    1. van Veenendaal MB, Miedema M, de Jongh FHC, van Der Lee JH, Frerichs I, van Kaam AH. Effect of closed endotracheal suction in high-frequency ventilated premature infants measured with electrical impedance tomography. Intensive Care Medicine. 2009;35(12):2130–2134.
    1. Miedema M, de Jongh FH, Frerichs I, van Veenendaal MB, van Kaam AH. Changes in lung volume and ventilation during surfactant treatment in ventilated preterm infants. American Journal of Respiratory and Critical Care Medicine. 2011;184(1):100–105.
    1. Chatziionnaidis I, Samaras T, Mitsiakos G, Karagianni P, Nikolaidis N. Assessment of lung ventilation in infants with respiratory distress syndrome using electrical impedance tomography. Hippocratia. 2013;17(2):115–119.
    1. Miedema M, Frerichs I, de Jongh FHC, van Veenendaal MB, van Kaam AH. Pneumothorax in a preterm infant monitored by electrical impedance tomography: a case report. Neonatology. 2011;99(1):10–13.
    1. Miedema M, van der Burg PS, Beuger S, de Jongh FH, Frerichs I, van Kaam AH. Effect of nasal continuous and biphasic positive airway pressure on lung volume in preterm infants. Journal of Pediatrics. 2013;162(4):691–697.
    1. Fde Rossi S, Yagui AC, Haddad LB, Deutsch AD, Rebello CM. Electrical impedance tomography to evaluate air distribution prior to extubation in very-low-birth-weight infants: a feasibility study. Clinics (Sao Paulo) 2013;68(3):345–350.
    1. Wolf GK, Gómez-Laberge C, Rettig JS, et al. Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury. Critical Care Medicine. 2013;41(5):1296–1304.
    1. Steinmann D, Engehausen M, Stiller B, Guttmann J. Electrical impedance tomography for verification of correct endotracheal tube placement in paediatric patients: a feasibility study. Acta Anaesthesiologica Scandinavica. 2013;57(7):881–887.
    1. Schmölzer GM, Bhatia R, Davis PG, Tingay DG. A comparison of different bedside techniques to determine endotracheal tube position in a neonatal piglet model. Pediatric Pulmonology. 2013;48(2):138–145.
    1. Nguyen DT, Jin C, Thiagalingam A, McEwan AL. A review on electrical impedance tomography for pulmonary perfusion imaging. Physiological Measurement. 2012;33(5):695–706.
    1. Carlisle HR, Armstrong RK, Davis PG, Schibler A, Frerichs I, Tingay DG. Regional distribution of blood volume within the preterm infant thorax during synchronised mechanical ventilation. Intensive Care Medicine. 2010;36(12):2101–2108.

Source: PubMed

3
Subscribe