Determining the mechanisms underlying augmented renal drug clearance in the critically ill: use of exogenous marker compounds

Andrew A Udy, Paul Jarrett, Janine Stuart, Melissa Lassig-Smith, Therese Starr, Rachel Dunlop, Steven C Wallis, Jason A Roberts, Jeffrey Lipman, Andrew A Udy, Paul Jarrett, Janine Stuart, Melissa Lassig-Smith, Therese Starr, Rachel Dunlop, Steven C Wallis, Jason A Roberts, Jeffrey Lipman

Abstract

Introduction: The aim of this study was to explore changes in glomerular filtration (GFR) and renal tubular function in critically ill patients at risk of augmented renal clearance (ARC), using exogenous marker compounds.

Methods: This prospective, observational pharmacokinetic (PK) study was performed in a university-affiliated, tertiary-level, adult intensive care unit (ICU). Patients aged less than or equal to 60 years, manifesting a systemic inflammatory response, with an expected ICU length of stay more than 24 hours, no evidence of acute renal impairment (plasma creatinine concentration < 120 μmol/L) and no history of chronic kidney disease or renal replacement therapy were eligible for inclusion. The following study markers were administered concurrently: sinistrin 2,500 mg (Inutest; Laevosan, Linz, Austria), p-aminohippuric acid (PAH) 440 mg (4% p-aminohippuric acid sodium salt; CFM Oskar Tropitzsch, Marktredwitz, Germany), rac-pindolol 5 or 15 mg (Barbloc; Alphapharm, Millers Point, NSW, Australia) and fluconazole 100 mg (Diflucan; Pfizer Australia Pty Ltd, West Ryde, NSW, Australia). Plasma concentrations were then measured at 5, 10, 15, 30, 60 and 120 minutes and 4, 6, 12 and 24 hours post-administration. Non-compartmental PK analysis was used to quantify GFR, tubular secretion and tubular reabsorption.

Results: Twenty patients were included in the study. Marker administration was well tolerated, with no adverse events reported. Sinistrin clearance as a marker of GFR was significantly elevated (mean, 180 (95% confidence interval (CI), 141 to 219) ml/min) and correlated well with creatinine clearance (r = 0.70, P < 0.01). Net tubular secretion of PAH, a marker of tubular anion secretion, was also elevated (mean, 428 (95% CI, 306 to 550) ml/min), as was net tubular reabsorption of fluconazole (mean, 135 (95% CI, 100 to 169) ml/min). Net tubular secretion of (S)- and (R)-pinodolol, a marker of tubular cation secretion, was impaired.

Conclusions: In critically ill patients at risk of ARC, significant alterations in glomerular filtration, renal tubular secretion and tubular reabsorption are apparent. This has implications for accurate dosing of renally eliminated drugs.

Figures

Figure 1
Figure 1
Plot of plasma concentration versus time for intravenous study markers. Mean (95% confidence interval) plasma sinistrin (A) and p-aminohippuric acid (PAH) (B) concentrations (y-axis) versus time (x-axis) are shown.
Figure 2
Figure 2
Bland-Altman plots of sinistrin clearance versus creatinine clearance and Chronic Kidney Disease Epidemiology Collaboration estimated glomerular filtration rate. Comparison of the difference between sinistrin clearance (CL) and Chronic Kidney Disease Epidemiology Collaboration estimated glomerular filtration rate (CKD-EPI eGFR) (A) and creatinine clearance (CLCR) (B) on the y-axis versus the average value on the x-axis. The solid lines represent the bias (mean difference), and the dotted lines represent the 95% limits of agreement.
Figure 3
Figure 3
Graphical correlations between sinistrin clearance, creatinine clearance, p-aminohippuric acid renal clearance and filtration fraction. (A) Sinistrin clearance (CL) (y-axis) versus creatinine clearance (CLCR) (x-axis) (r =0.70, P <0.01). (B) p-Aminohippuric acid renal clearance (PAH CLR) (y-axis) versus CLCR (x-axis) (r =0.65, P <0.01). (C) Filtration fraction (y-axis) versus sinistrin CL (x-axis) (r =0.68, P <0.01). (D) Filtration fraction (y-axis) versus PAH CLR (x-axis) (r = −0.49, P =0.06). (E) Sinistrin CL (y-axis) versus PAH CLR (x-axis) (r =0.27, P =0.32). A linear regression line has been fitted in each case.
Figure 4
Figure 4
Plot of plasma concentration versus time for (S)- and (R)-pindolol. Mean (95% confidence interval) plasma (S)-pindolol (A) and (R)-pindolol (B) concentrations (y-axis) versus time (x-axis) are plotted.
Figure 5
Figure 5
Fluconazole plasma concentration versus time plot. Mean (95% confidence interval) plasma fluconazole concentration (y-axis) versus time (x-axis) values are plotted.

References

    1. Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J. Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet. 2010;49:1–16. doi: 10.2165/11318140-000000000-00000.
    1. Conil JM, Georges B, Mimoz O, Dieye E, Ruiz S, Cougot P, Samii K, Houin G, Saivin S. Influence of renal function on trough serum concentrations of piperacillin in intensive care unit patients. Intensive Care Med. 2006;32:2063–2066. doi: 10.1007/s00134-006-0421-1.
    1. Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, Lipman J, Roberts JA. Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest. 2012;142:30–39. doi: 10.1378/chest.11-1671.
    1. Claus BO, Hoste EA, Colpaert K, Robays H, Decruyenaere J, De Waele JJ. Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J Crit Care. 2013;28:695–700. doi: 10.1016/j.jcrc.2013.03.003.
    1. Baptista JP, Sousa E, Martins PJ, Pimentel JM. Augmented renal clearance in septic patients and implications for vancomycin optimisation. Int J Antimicrob Agents. 2012;39:420–423. doi: 10.1016/j.ijantimicag.2011.12.011.
    1. Udy A, Roberts JA, Boots RJ, Lipman J. You only find what you look for: the importance of high creatinine clearance in the critically ill. Anaesth Intensive Care. 2009;37:11–13.
    1. Lipman J, Udy AA, Roberts JA. Do we understand the impact of altered physiology, consequent interventions and resultant clinical scenarios in the intensive care unit? The antibiotic story. Anaesth Intensive Care. 2011;39:999–1000.
    1. Tett SE, Kirkpatrick CM, Gross AS, McLachlan AJ. Principles and clinical application of assessing alterations in renal elimination pathways. Clin Pharmacokinet. 2003;42:1193–1211. doi: 10.2165/00003088-200342140-00002.
    1. Gross AS, McLachlan AJ, Minns I, Beal JB, Tett SE. Simultaneous administration of a cocktail of markers to measure renal drug elimination pathways: absence of a pharmacokinetic interaction between fluconazole and sinistrin, p-aminohippuric acid and pindolol. Br J Clin Pharmacol. 2001;51:547–555. doi: 10.1046/j.1365-2125.2001.01390.x.
    1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–1655. doi: 10.1378/chest.101.6.1644.
    1. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, cute Dialysis Quality Initiative AAcute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–R212. doi: 10.1186/cc2872.
    1. Johnson DW, Jones GR, Mathew TH, Ludlow MJ, Doogue MP, Jose MD, Langham RG, Lawton PD, McTaggart SJ, Peake MJ, Polkinghorne K, Usherwood T. Chronic kidney disease and automatic reporting of estimated glomerular filtration rate: new developments and revised recommendations. Med J Aust. 2012;197:224–225.
    1. Buclin T, Pechère-Bertschi A, Séchaud R, Décosterd LA, Munafo A, Burnier M, Biollaz J. Sinistrin clearance for determination of glomerular filtration rate: a reappraisal of various approaches using a new analytical method. J Clin Pharmacol. 1997;37:679–692. doi: 10.1002/j.1552-4604.1997.tb04355.x.
    1. Hsyu PH, Giacomini KM. Stereoselective renal clearance of pindolol in humans. J Clin Invest. 1985;76:1720–1726. doi: 10.1172/JCI112161.
    1. Carlier M, Carrette S, Roberts JA, Stove V, Verstraete AG, Hoste E, Decruyenaere J, Depuydt P, Lipman J, Wallis SC, De Waele JJ. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: Does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care. 2013;17:R84. doi: 10.1186/cc12705.
    1. Buclin T, Sechaud R, Bertschi AP, Decosterd LA, Belaz N, Appenzeller M, Burnier M, Biollaz J. Estimation of glomerular filtration rate by sinistrin clearance using various approaches. Ren Fail. 1998;20:267–276. doi: 10.3109/08860229809045111.
    1. Estelberger W, Petek W, Zitta S, Mauric A, Horn S, Holzer H, Pogglitsch H. Determination of the glomerular filtration rate by identification of sinistrin kinetics. Eur J Clin Chem Clin Biochem. 1995;33:201–209.
    1. Prescott LF, Freestone S, McAuslane JA. The concentration-dependent disposition of intravenous p-aminohippurate in subjects with normal and impaired renal function. Br J Clin Pharmacol. 1993;35:20–29.
    1. Dowling TC, Frye RF, Fraley DS, Matzke GR. Characterization of tubular functional capacity in humans using para-aminohippurate and famotidine. Kidney Int. 2001;59:295–303. doi: 10.1046/j.1523-1755.2001.00491.x.
    1. Cole BR, Giangiacomo J, Ingelfinger JR, Robson AM. Measurement of renal function without urine collection—a critical evaluation of the constant-infusion technic for determination of inulin and para-aminohippurate. N Engl J Med. 1972;287:1109–1114. doi: 10.1056/NEJM197211302872202.
    1. Sinnollareddy M, Peake SL, Roberts MS, Playford EG, Lipman J, Roberts JA. Pharmacokinetic evaluation of fluconazole in critically ill patients. Expert Opin Drug Metab Toxicol. 2011;7:1431–1440. doi: 10.1517/17425255.2011.615309.
    1. Toon S, Ross CE, Gokal R, Rowland M. An assessment of the effects of impaired renal function and haemodialysis on the pharmacokinetics of fluconazole. Br J Clin Pharmacol. 1990;29:221–226. doi: 10.1111/j.1365-2125.1990.tb03623.x.
    1. Ujhelyi MR, Bottorff MB, Schur M, Roll K, Zhang H, Stewart J, Markel ML. Urine acidification affects the activity of the organic base transporter in a nonstereoselective manner. J Pharmacol Exp Ther. 1996;276:683–689.
    1. Somogyi AA, Bochner F, Sallustio BC. Stereoselective inhibition of pindolol renal clearance by cimetidine in humans. Clin Pharmacol Ther. 1992;51:379–387. doi: 10.1038/clpt.1992.37.
    1. Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, Sugiyama Y. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012;340:393–403. doi: 10.1124/jpet.111.184986.
    1. Wittwer MB, Zur AA, Khuri N, Kido Y, Kosaka A, Zhang X, Morrissey KM, Sali A, Huang Y, Giacomini KM. Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling. J Med Chem. 2013;56:781–795. doi: 10.1021/jm301302s.
    1. McLachlan AJ, Gross AS, Beal JL, Minns I, Tett SE. Analytical validation for a series of marker compounds used to assess renal drug elimination processes. Ther Drug Monit. 2001;23:39–46. doi: 10.1097/00007691-200102000-00008.
    1. Wainer E, Boner G, Rosenfeld JB. Effects of pindolol on renal function. Clin Pharmacol Ther. 1980;28:575–580. doi: 10.1038/clpt.1980.205.
    1. Lee LJ, Smith DE. Renal excretion and metabolism of p-aminohippurate in the isolated perfused rat kidney. Pharm Res. 1988;5:745–747. doi: 10.1023/A:1015924331585.
    1. Buijk SL, Gyssens IC, Mouton JW, Verbrugh HA, Touw DJ, Bruining HA. Pharmacokinetics of sequential intravenous and enteral fluconazole in critically ill surgical patients with invasive mycoses and compromised gastro-intestinal function. Intensive Care Med. 2001;27:115–121. doi: 10.1007/s001340000771.
    1. Udy A, Boots R, Senthuran S, Stuart J, Deans R, Lassig-Smith M, Lipman J. Augmented creatinine clearance in traumatic brain injury. Anesth Analg. 2010;111:1505–1510. doi: 10.1213/ANE.0b013e3181f7107d.
    1. Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, Boots RJ, Lipman J. Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically Ill patients with normal plasma creatinine concentrations. Crit Care Med. 2014;42:520–527. doi: 10.1097/CCM.0000000000000029.
    1. Minville V, Asehnoune K, Ruiz S, Breden A, Georges B, Seguin T, Tack I, Jaafar A, Saivin S, Fourcade O, Samii K, Conil JM. Increased creatinine clearance in polytrauma patients with normal serum creatinine: a retrospective observational study. Crit Care. 2011;15:R49. doi: 10.1186/cc10013.
    1. Conil JM, Georges B, Fourcade O, Seguin T, Lavit M, Samii K, Houin G, Tack I, Saivin S. Assessment of renal function in clinical practice at the bedside of burn patients. Br J Clin Pharmacol. 2007;63:583–594. doi: 10.1111/j.1365-2125.2006.02807.x.
    1. Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care. 2013;17:R35. doi: 10.1186/cc12544.
    1. Ambrose PG, Bhavnani SM, Ellis-Grosse EJ, Drusano GL. Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-associated bacterial pneumonia studies: Look before you leap! Clin Infect Dis. 2010;51:S103–S110. doi: 10.1086/653057.
    1. Lautrette A, Phan TN, Ouchchane L, Aithssain A, Tixier V, Heng AE, Souweine B. High creatinine clearance in critically ill patients with community-acquired acute infectious meningitis. BMC Nephrol. 2012;13:124. doi: 10.1186/1471-2369-13-124.
    1. Brown R, Babcock R, Talbert J, Gruenberg J, Czurak C, Campbell M. Renal function in critically ill postoperative patients: sequential assessment of creatinine osmolar and free water clearance. Crit Care Med. 1980;8:68–72. doi: 10.1097/00003246-198002000-00004.
    1. Fuster-Lluch O, Gerónimo-Pardo M, Peyró-García R, Lizán-García M. Glomerular hyperfiltration and albuminuria in critically ill patients. Anaesth Intensive Care. 2008;36:674–680.
    1. Shimamoto Y, Fukuda T, Tanaka K, Komori K, Sadamitsu D. Systemic inflammatory response syndrome criteria and vancomycin dose requirement in patients with sepsis. Intensive Care Med. 2013;39:1247–1252. doi: 10.1007/s00134-013-2909-9.
    1. Thomas DM, Coles GA, Williams JD. What does the renal reserve mean? Kidney Int. 1994;45:411–416. doi: 10.1038/ki.1994.53.
    1. Udy AA, Morton FJ, Nguyen-Pham S, Jarrett P, Lassig-Smith M, Stuart J, Dunlop R, Starr T, Boots RJ, Lipman J. A comparison of CKD-EPI estimated glomerular filtration rate and measured creatinine clearance in recently admitted critically ill patients with normal plasma creatinine concentrations. BMC Nephrol. 2013;14:250. doi: 10.1186/1471-2369-14-250.
    1. Bragadottir G, Redfors B, Ricksten SE. Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury - true GFR versus urinary creatinine clearance and estimating equations. Crit Care. 2013;17:R108. doi: 10.1186/cc12777.
    1. Nicolau DP, Crowe H, Nightingale CH, Quintiliani R. Bioavailability of fluconazole administered via a feeding tube in intensive care unit patients. J Antimicrob Chemother. 1995;36:395–401. doi: 10.1093/jac/36.2.395.
    1. Meier J, Nuesch E. Pindolol, a β-adrenoceptor blocking agent with a negligible first-pass effect. Br J Clin Pharmacol. 1977;4:371–372. doi: 10.1111/j.1365-2125.1977.tb00726.x.
    1. Debruyne D. Clinical pharmacokinetics of fluconazole in superficial and systemic mycoses. Clin Pharmacokinet. 1997;33:52–77. doi: 10.2165/00003088-199733010-00005.
    1. Hirata-Dulas CA, Awni WM, Matzke GR, Halstenson CE, Guay DR. Evaluation of two intravenous single-bolus methods for measuring effective renal plasma flow. Am J Kidney Dis. 1994;23:374–381. doi: 10.1016/S0272-6386(12)80999-1.

Source: PubMed

3
Subscribe