Longitudinal Femoral Cartilage T2 Relaxation Time and Thickness Changes with Fast Sequential Radiographic Progression of Medial Knee Osteoarthritis-Data from the Osteoarthritis Initiative (OAI)

Shannon N Edd, Patrick Omoumi, Brigitte M Jolles, Julien Favre, Shannon N Edd, Patrick Omoumi, Brigitte M Jolles, Julien Favre

Abstract

This study tested for longitudinal changes in femoral cartilage T2 relaxation time and thickness in fast-progressing medial femorotibial osteoarthritis (OA). From the Osteoarthritis Initiative (OAI) database, nineteen knees fulfilled the inclusion criteria, which included medial femorotibial OA and sequential progression from Kellgren-Lawrence grade (KL) 1 to KL2 to KL3 within five years. Median T2 value and mean thickness were calculated for six condylar volumes of interest (VOIs; medial/lateral anterior, central, posterior) and six sub-VOIs (medial/lateral anterior external, central, internal). T2 value and thickness changes between severity timepoints were tested using repeated statistics. T2 values increased between KL1 and KL2 and between KL1 and KL3 in the medial compartment (p ≤ 0.02), whereas both increases and decreases were observed between the same timepoints in the lateral compartment (p ≤ 0.02). Cartilage thickness decreased in VOI/subVOIs of the medial compartment from KL1 to KL2 and KL3 (p ≤ 0.014). Cartilage T2 value and thickness changes varied spatially over the femoral condyles. While all T2 changes occurred in the early radiographic stages of OA, thickness changes occurred primarily in the later stages. These data therefore support the use of T2 relaxation time analyses in methods of detecting disease-related change during early OA, a valuable period for therapeutic interventions.

Keywords: cartilage; composition; knee; magnetic resonance imaging; morphology; osteoarthritis; spatial variations; three-dimensional.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure A1
Figure A1
Box and whisker plots of superficial cartilage T2 values per VOI (a) and sub-VOI (c) and their respective medial-lateral ratios (b,d). Horizontal bars indicate statistically significant (p < 0.017) changes between severity timepoints (blue: ES > 0.5; green: ES > 0.8).
Figure A2
Figure A2
Box and whisker plots of deep cartilage T2 values per VOI (a) and sub-VOI (c) and their respective medial-lateral ratios (b,d). Horizontal bars indicate statistically significant (p < 0.017) changes between severity timepoints (blue: ES > 0.5; green: ES > 0.8).
Figure 1
Figure 1
Flowchart of study inclusion.
Figure 2
Figure 2
Cartilage volumes of interest (VOIs) and sub-VOIs displayed on a representative femur.
Figure 3
Figure 3
Box and whisker plots of cartilage T2 values per VOI (a) and sub-VOI (c) and their respective medial-lateral ratios (b,d). Horizontal bars indicate statistically significant (p < 0.017) changes between severity timepoints (blue: ES > 0.5; green: ES > 0.8).
Figure 4
Figure 4
Bar plots (mean ± standard deviation) of cartilage thickness per VOI (a) and sub-VOI (c) and their respective medial-lateral ratios (b,d). Horizontal bars indicate statistically significant (p < 0.017) changes between severity timepoints (blue: ES > 0.5; green: ES > 0.8; black: ES > 1.2).

References

    1. Oei E.H.G.G., Van Tiel J., Robinson W.H., Gold G.E. Quantitative radiologic imaging techniques for articular cartilage composition: Toward early diagnosis and development of disease-modifying therapeutics for osteoarthritis. Arthritis Care Res. 2014;66:1129–1141. doi: 10.1002/acr.22316.
    1. Hirose J., Nishioka H., Nakamura E., Oniki Y., Yamashita Y., Mizuta H. T1ρ and T2 mapping of the proximal tibiofibular joint in relation to aging and cartilage degeneration. Eur. J. Radiol. 2012;81:2776–2782. doi: 10.1016/j.ejrad.2011.11.019.
    1. Wirth W., Maschek S., Roemer F.W., Eckstein F., Roemer F.W., Eckstein F. Layer-specific femorotibial cartilage T2 relaxation time in knees with and without early knee osteoarthritis: Data from the Osteoarthritis Initiative (OAI) Sci. Rep. 2016;6:1–8. doi: 10.1038/srep34202.
    1. Kretzschmar M., Heilmeier U., Yu A., Joseph G.B., Liu F., Solka M., McCulloch C.E., Nevitt M.C., Link T.M. Longitudinal analysis of cartilage T2 relaxation times and joint degeneration in African American and Caucasian American women over an observation period of 6 years—Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2016;24:1384–1391. doi: 10.1016/j.joca.2016.03.002.
    1. Edd S.N., Babel H., Kerkour N., Jolles B.M., Omoumi P., Favre J., Edd S.N., Babel H., Kerkour N., Jolles B.M., et al. Comprehensive description of T2 value spatial variations in non-osteoarthritic femoral cartilage using three-dimensional registration of morphological and relaxometry data. Knee. 2019;26:555–563. doi: 10.1016/j.knee.2019.03.006.
    1. Kellgren J.H., Lawrence J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957;16:494–502. doi: 10.1136/ard.16.4.494.
    1. Emrani P.S., Katz J.N., Kessler C.L., Reichmann W.M., Wright E.A., McAlindon T.E., Losina E. Joint space narrowing and Kellgren-Lawrence progression in knee osteoarthritis: An analytic literature synthesis. Osteoarthr. Cartil. 2008;16:873–882. doi: 10.1016/j.joca.2007.12.004.
    1. Riddle D.L., Stratford P.W., Perera R.A. The incident tibiofemoral osteoarthritis with rapid progression phenotype: Development and validation of a prognostic prediction rule. Osteoarthr. Cartil. 2016;24:2100–2107. doi: 10.1016/j.joca.2016.06.021.
    1. Surowiec R.K., Lucas E.P., Fitzcharles E.K., Petre B.M., Dornan G.J., Giphart J.E., LaPrade R.F., Ho C.P. T2 values of articular cartilage in clinically relevant subregions of the asymptomatic knee. Knee Surg. Sport. Traumatol. Arthrosc. 2014;22:1404–1414. doi: 10.1007/s00167-013-2779-2.
    1. Eckstein F., Nevitt M., Gimona A., Picha K., Lee J.H., Davies R.Y., Dreher D., Benichou O., Le Graverand M.P.H., Hudelmaier M., et al. Rates of change and sensitivity to change in cartilage morphology in healthy knees and in knees with mild, moderate, and end-stage radiographic osteoarthritis: Results from 831 participants from the osteoarthritis initiative. Arthritis Care Res. 2011;63:311–319. doi: 10.1002/acr.20370.
    1. Buck R.J., Wyman B.T., Le Graverand M.-P.H., Hudelmaier M., Wirth W., Eckstein F., Hellio Le Graverand M.P., Hudelmaier M., Wirth W., Eckstein F. Osteoarthritis may not be a one-way-road of cartilage loss—Comparison of spatial patterns of cartilage change between osteoarthritic and healthy knees. Osteoarthr. Cartil. 2010;18:329–335. doi: 10.1016/j.joca.2009.11.009.
    1. Le Graverand M.P.H., Buck R.J., Wyman B.T., Vignon E., Mazzuca S.A., Brandt K.D., Piperno M., Charles H.C., Hudelmaier M., Hunter D.J., et al. Change in regional cartilage morphology and joint space width in osteoarthritis participants versus healthy controls: A multicentre study using 3.0 Tesla MRI and Lyon-Schuss radiography. Ann. Rheum. Dis. 2010;69:155–162. doi: 10.1136/ard.2008.099762.
    1. Favre J., Erhart-Hledik J.C., Blazek K., Fasel B., Gold G.E., Andriacchi T.P. Anatomically-standardized maps reveal distinct patterns of cartilage thickness with increasing severity of medial compartment knee osteoarthritis: Cartilage Thickness Maps with OA. J. Orthop. Res. 2017 doi: 10.1002/jor.23548.
    1. Le Graverand M.P.H., Buck R.J., Wyman B.T., Vignon E., Mazzuca S.A., Brandt K.D., Piperno M., Charles H.C., Hudelmaier M., Hunter D.J., et al. Subregional femorotibial cartilage morphology in women—Comparison between healthy controls and participants with different grades of radiographic knee osteoarthritis. Osteoarthr. Cartil. 2009;17:1177–1185. doi: 10.1016/j.joca.2009.03.008.
    1. Favre J., Scanlan S.F., Erhart-Hledik J.C., Blazek K., Andriacchi T.P. Patterns of femoral cartilage thickness are different in asymptomatic and osteoarthritic knees and can be used to detect disease-related differences between samples. J. Biomech. Eng. 2013;135:101002–101012. doi: 10.1115/1.4024629.
    1. Koo S., Gold G.E., Andriacchi T.P. Considerations in measuring cartilage thickness using MRI: Factors influencing reproducibility and accuracy. Osteoarthr. Cartil. 2005;13:782–789. doi: 10.1016/j.joca.2005.04.013.
    1. Favre J., Babel H., Cavinato A., Blazek K., Jolles B.M., Andriacchi T.P. Analyzing femorotibial cartilage thickness using anatomically standardized maps: Reproducibility and reference data. J. Clin. Med. 2021;10:461. doi: 10.3390/jcm10030461.
    1. Peterfy C.G., Schneider E., Nevitt M. The osteoarthritis initiative: Report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr. Cartil. 2008;16:1433–1441. doi: 10.1016/j.joca.2008.06.016.
    1. Shiomi T., Nishii T., Nakata K., Tamura S., Tanaka H., Yamazaki Y., Murase K., Yoshikawa H., Sugano N. Three-dimensional topographical variation of femoral cartilage T2 in healthy volunteer knees. Skelet. Radiol. 2013;42:363–370. doi: 10.1007/s00256-012-1522-2.
    1. Raya J.G., Dietrich O., Horng A., Weber J., Reiser M.F., Glaser C. T2 measurement in articular cartilage: Impact of the fitting method on accuracy and precision at low SNR. Magn. Reson. Med. 2010;63:181–193. doi: 10.1002/mrm.22178.
    1. Pelletier J.-P., Raynauld J.-P., Berthiaume M.-J., Abram F., Choquette D., Haraoui B., Beary J.F., Cline G.A., Meyer J.M., Martel-Pelletier J. Risk factors associated with the loss of cartilage volume on weight-bearing areas in knee osteoarthritis patients assessed by quantitative magnetic resonance imaging: A longitudinal study. Arthritis Res. Ther. 2007;9:1–11. doi: 10.1186/ar2272.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Academic Press; New York, NY, USA: 2013.
    1. Su F., Hilton J.F., Nardo L., Wu S., Liang F., Link T.M., Ma C.B., Li X. Cartilage morphology and T1ρ and T2 Quantification in ACL- reconstructed knees: A 2-year follow-up. Osteoarthr. Cartil. 2013;21:1058–1067. doi: 10.1016/j.joca.2013.05.010.
    1. Williams A., Winalski C.S., Chu C.R. Early articular cartilage MRI T2 changes after anterior cruciate ligament reconstruction correlate with later changes in T2 and cartilage thickness. J. Orthop. Res. 2017;35:699–706. doi: 10.1002/jor.23358.
    1. Liebl H., Joseph G., Nevitt M.C., Singh N., Heilmeier U., Subburaj K., Jungmann P.M., McCulloch C.E., Lynch J.A., Lane N.E., et al. Early T2 changes predict onset of radiographic knee osteoarthritis: Data from the osteoarthritis initiative. Ann. Rheum. Dis. 2015;74 doi: 10.1136/annrheumdis-2013-204157.
    1. Shim V.B., Besier T.F., Lloyd D.G., Mithraratne K., Fernandez J.F. The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait. Biomech. Model. Mechanobiol. 2016;15:195–204. doi: 10.1007/s10237-015-0668-y.
    1. Eckstein F., Maschek S., Wirth W., Hudelmaier M., Hitzl W., Wyman B., Nevitt M., Le Graverand M.P.H. One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort: Association with sex, body mass index, symptoms and radiographic osteoarthritis status. Ann. Rheum. Dis. 2009;68:674–679. doi: 10.1136/ard.2008.089904.
    1. Frobell R.B., Nevitt M.C., Hudelmaier M., Wirth W., Wyman B.T., Benichou O., Dreher D., Davies R., Lee J.H., Baribaud F., et al. Femorotibial subchondral bone area and regional cartilage thickness: A cross-sectional description in healthy reference cases and various radiographic stages of osteoarthritis in 1003 knees from the Osteoarthritis Initiative. Arthritis Care Res. 2010;62:1612–1623. doi: 10.1002/acr.20262.
    1. Vignon E., Arlot M., Hartmann D., Moyen B., Ville G. Hypertrophic repair of articular cartilage in experimental osteoarthrosis. Ann. Rheum. Dis. 1983;42:82–88. doi: 10.1136/ard.42.1.82.
    1. Edd S.N., Omoumi P., Andriacchi T.P., Jolles B.M., Favre J. Modeling knee osteoarthritis pathophysiology using an integrated joint system (IJS): A systematic review of relationships among cartilage thickness, gait mechanics, and subchondral bone mineral density. Osteoarthr. Cartil. 2018;26:1425–1437. doi: 10.1016/j.joca.2018.06.017.
    1. Omoumi P., Babel H., Jolles B.M., Favre J. Cartilage can be thicker in advanced osteoarthritic knees: A tridimensional quantitative analysis of cartilage thickness at posterior aspect of femoral condyles. Br. J. Radiol. 2018:20170729. doi: 10.1259/bjr.20170729.
    1. Omoumi P., Michoux N., Roemer F.W., Thienpont E., Berg B.C.V. Cartilage thickness at the posterior medial femoral condyle is increased in femorotibial knee osteoarthritis: A cross-sectional CT arthrography study (Part 2) Osteoarthr. Cartil. 2015;23:224–231. doi: 10.1016/j.joca.2014.08.017.
    1. McAlindon T.E., Snow S., Cooper C., Dieppe P.A. Radiographic patterns of osteoarthritis of the knee joint in the community: The importance of the patellofemoral joint. Ann. Rheum. Dis. 1992;51:844–849. doi: 10.1136/ard.51.7.844.
    1. Buck R.J., Wirth W., Dreher D., Nevitt M., Eckstein F. Frequency and spatial distribution of cartilage thickness change in knee osteoarthritis and its relation to clinical and radiographic covariates—Data from the osteoarthritis initiative. Osteoarthr. Cartil. 2013;21:102–109. doi: 10.1016/j.joca.2012.10.010.
    1. Pan J., Pialat J.-B., Joseph T., Kuo D., Joseph G.B., Nevitt M.C., Link T.M. Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: A longitudinal study of the normal control cohort from the osteoarthritis initiative. Radiology. 2011;261:507–515. doi: 10.1148/radiol.11102234.
    1. Waldschmidt J.G., Rilling R.J., Kajdacsy-Balla A.A., Boynton M.D., Erickson S.J. In Vitro and in vivo MR imaging of hyaline cartilage: Zonal anatomy, imaging pitfalls, and pathologic conditions. Radiographics. 1997;17:1387–1402. doi: 10.1148/radiographics.17.6.9397453.

Source: PubMed

3
Subscribe