Accuracy of height estimation and tidal volume setting using anthropometric formulas in an ICU Caucasian population

Erwan L'her, Jérôme Martin-Babau, François Lellouche, Erwan L'her, Jérôme Martin-Babau, François Lellouche

Abstract

Background: Knowledge of patients' height is essential for daily practice in the intensive care unit. However, actual height measurements are unavailable on a daily routine in the ICU and measured height in the supine position and/or visual estimates may lack consistency. Clinicians do need simple and rapid methods to estimate the patients' height, especially in short height and/or obese patients. The objectives of the study were to evaluate several anthropometric formulas for height estimation on healthy volunteers and to test whether several of these estimates will help tidal volume setting in ICU patients.

Methods: This was a prospective, observational study in a medical intensive care unit of a university hospital. During the first phase of the study, eight limb measurements were performed on 60 healthy volunteers and 18 height estimation formulas were tested. During the second phase, four height estimates were performed on 60 consecutive ICU patients under mechanical ventilation.

Results: In the 60 healthy volunteers, actual height was well correlated with the gold standard, measured height in the erect position. Correlation was low between actual and calculated height, using the hand's length and width, the index, or the foot equations. The Chumlea method and its simplified version, performed in the supine position, provided adequate estimates. In the 60 ICU patients, calculated height using the simplified Chumlea method was well correlated with measured height (r = 0.78; ∂ < 1 %). Ulna and tibia estimates also provided valuable estimates. All these height estimates allowed calculating IBW or PBW that were significantly different from the patients' actual weight on admission. In most cases, tidal volume set according to these estimates was lower than what would have been set using the actual weight.

Conclusion: When actual height is unavailable in ICU patients undergoing mechanical ventilation, alternative anthropometric methods to obtain patient's height based on lower leg and on forearm measurements could be useful to facilitate the application of protective mechanical ventilation in a Caucasian ICU population. The simplified Chumlea method is easy to achieve in a bed-ridden patient and provides accurate height estimates, with a low bias.

Keywords: Height estimation; ICU; Mechanical ventilation.

Figures

Fig. 1
Fig. 1
Limb segment measurements. All measurements were performed using precision callipers on the right limbs. 1 index distal phalange; 2 hand length, from the IIIrd finger extremity to the wrist; 3 hand maximal width; 4 ulna, from the olecranon to the styloïd process; 5 tibia length, from the upper articular line to the extremity of the medial malleolus; 6 standard Chumlea measurement, the patient is positioned recumbent, knee raised vertically with a 90° angle between femur and tibia, and the caliper is positioned under heel and over femoral condyle of the leg; 7 simplified Chumlea measurement, the patient stays supine and the caliper is positioned under heel and over patella’s upper line; 8: foot length, from the extremity of the Ist toe to the posterior part of the heel
Fig. 2
Fig. 2
Comparison of different methods for height evaluation in healthy volunteers. The left column represents the regression diagram of the two tested methods. The independent variable (reference value = measured height in the erect position) defines the vertical axis, and the dependent variable (tested method) defines the horizontal axis. Dark line represents the regression line; r = correlation coefficient; P value ≤0.05 was considered significant. The right column displays the scatter diagram of the differences of the two methods (Bland and Altman plot). Dark line represents the mean difference (estimation bias = ) between the two methods; dotted line represents the limit of agreement (plus and minus 1.96 SD) of the differences. For healthy volunteers, measured height in the upright position (reference) was well correlated with measured height in the supine position. This measured height may induce errors of 9.2 cm (2/60 volunteers with an error >10 cm). Chumlea height estimation, using either the standard or the simplified method in the supine position, was well correlated with actual height, with a low estimation bias. It may, however, induce errors from 8.9 to 11.8 cm
Fig. 3
Fig. 3
Bland and Altman plot for tidal volume in ICU patients, using various measures and estimates. VT tidal volume, PBW predicted body weight, ABW actual body weight, VT Measured tidal volume set using the measured height, VT Chumlea S tidal volume set using the Simplified Chumlea height estimate. Tidal volume setting grandly vary while using either PBW or ABW, with as much as a 3.7 mL/kg range, whereas the mean bias remains low (−0.9 mL/kg). VT settings using either the measured PBW or its estimate (visual height estimation) are consistent. The simplified Chumlea method is consistent with the one using the measured value, generally providing a 1.1 mL/kg lower value

References

    1. Martin JH, Fay MF, Udy A, Roberts J, Kirkpatrick C, Ungerer J, Lipman J. Pitfalls of using estimations of glomerular filtration rate in an intensive care population. Intern Med J. 2011;41:537–543. doi: 10.1111/j.1445-5994.2009.02160.x.
    1. Diacon AH, Koegelenberg CFN, Klüsmann KJC, Bolliger CT. Challenges in the estimation of tidal volume settings in critical care units. Intensive Care Med. 2006;32:1670–1671. doi: 10.1007/s00134-006-0325-0.
    1. Hepper NG, Fowler WS, Helmholz HF., Jr Relationship of height to lung volume in healthy men. Dis Chest. 1960;37:314–320. doi: 10.1378/chest.37.3.314.
    1. Neto AS, Cardoso SO, Manetta JA, Pereira VGM, Espósito DC, Pasqualucci MDO, Damasceno MC, Schultz MJ. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–1659. doi: 10.1001/jama.2012.13730.
    1. Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM, Rana R, St Sauver JL, Lymp JF, Afessa B, Hubmayr RD. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–1824. doi: 10.1097/01.CCM.0000133019.52531.30.
    1. Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med. 2005;31:922–926. doi: 10.1007/s00134-005-2625-1.
    1. Lellouche F, Dionne S, Simard S, Bussières J, Dagenais F. High tidal volumes in mechanically ventilated patients increase organ dysfunction after cardiac surgery. Anesthesiology. 2012;16:1072–1082. doi: 10.1097/ALN.0b013e3182522df5.
    1. Deane AM, Reid DA, Tobin AE. Predicted body weight during mechanical ventilation: using arm demispan to aid clinical assessment. Crit Care Resusc. 2008;10:14.
    1. Leary TS, Milner QJ, Niblett DJ. The accuracy of the estimation of body weight and height in the intensive care unit. Eur J Anaesthesiol. 2000;17:698–703. doi: 10.1097/00003643-200011000-00008.
    1. Tremblay A, Bandi V. Impact of body mass index on outcomes following critical care. Chest. 2003;123:1202–1207. doi: 10.1378/chest.123.4.1202.
    1. Schultz MJ, Wolthuis EK. Excess body weight in critically ill patients. Ann Intern Med. 2004;141:485. doi: 10.7326/0003-4819-141-6-200409210-00026.
    1. Determann RM, Wolthuis EK, Spronk PE, Kuiper MA, Korevaar JC, Vroom MB, Schultz MJ. Reliability of height and weight estimates in patients acutely admitted to intensive care units. Crit Care Nurse. 2007;27:48–55.
    1. Anzueto A, Frutos-Vivar F, Esteban A, Bensalami N, Marks D, Raymondos K, Apezteguía C, Arabi Y, Hurtado J, González M, Tomicic V, Abroug F, Elizalde J, Cakar N, Pelosi P, Ferguson ND. Ventila group: influence of body mass index on outcome of the mechanically ventilated patients. Thorax. 2011;66:66–73. doi: 10.1136/thx.2010.145086.
    1. Kam EPY, Eslick GD, James A, Benson JP. Acute respiratory distress syndrome (ARDS) and low tidal volume ventilation: the debate about weight. Intensive Care Med. 2004;30:1502. doi: 10.1007/s00134-004-2277-6.
    1. Jaber S, Coisel Y, Chanques G, Futier E, Constantin J-M, Michelet P, Beaussier M, Lefrant JY, Allaouchiche B, Capdevila X, Marret E. A multicentre observational study of intra-operative ventilatory management during general anaesthesia: tidal volumes and relation to body weight. Anaesthesia. 2012;67:999–1008. doi: 10.1111/j.1365-2044.2012.07218.x.
    1. O’Brien JM, Phillips GS, Ali NA, Lucarelli M, Marsh CB, Lemeshow S. Body mass index is independently associated with hospital mortality in mechanically ventilated adults with acute lung injury. Crit Care Med. 2006;34:738–744. doi: 10.1097/01.CCM.0000202207.87891.FC.
    1. Bloomfield R, Steel E, MacLennan G, Noble DW. Accuracy of weight and height estimation in an intensive care unit: Implications for clinical practice and research. Crit Care Med. 2006;34:2153–2157. doi: 10.1097/01.CCM.0000229145.04482.93.
    1. Tallach R, Jefferson P, Ball DR. Mechanical ventilation for patients with ARDS: a UK survey on calculation of tidal volume. Intensive Care Med. 2006;32:176. doi: 10.1007/s00134-005-2851-6.
    1. García del Moral Martín R, Morales Laborías ME, Fernández López I, Rodríguez Delgado E, Díaz Castellanos MA. Estimación subjetiva del peso y talla de los pacientes de UCI. Medidas poco aconsejables. Med Intensiva. 2013;37:50–52. doi: 10.1016/j.medin.2012.03.016.
    1. Hendershot KM, Robinson L, Roland J, Vaziri K, Rizzo AG, Fakhry SM. Estimated height, weight, and body mass index: implications for research and patient safety. J Am Coll Surg. 2006;203:887–893. doi: 10.1016/j.jamcollsurg.2006.08.018.
    1. Maskin LP, Attie S, Setten M, Rodriguez PO, Bonelli I, Stryjewski ME, Valentini R. Accuracy of weight and height estimation in an intensive care unit. Anaesth Intensive Care. 2010;38:930–934.
    1. Habib SR, Kamal NN. Stature estimation from hand and phalanges lengths of Egyptians. J Forensic Leg Med. 2010;17:156–160. doi: 10.1016/j.jflm.2009.12.004.
    1. Agnihotri AK, Agnihotri S, Jeebun N, Googoolye K. Prediction of stature using hand dimensions. J Forensic Leg Med. 2008;15:479–482. doi: 10.1016/j.jflm.2008.03.002.
    1. Krishan K, Sharma A. Estimation of stature from dimensions of hands and feet in a North Indian population. J Forensic Leg Med. 2007;14:327–332. doi: 10.1016/j.jcfm.2006.10.008.
    1. El Najjar M, McWilliams K. Forensic anthropology: the structure, morphology, and variation of human bone and dentition. Springfield: Charles C Thomas; 1978.
    1. Cleuvenot E, Houët F. Proposition de nouvelles équations d’estimation de la stature applicables pour un sexe indéterminé et basées sur les échantillons de Trotter et Gleser. Bull Mém Soc Anthrop Paris. 1993;5:245–255. doi: 10.3406/bmsap.1993.2354.
    1. Allbrook D. The estimation of stature in British and East African males. Based on tibial and ulnar bone lengths. J Forensic Med. 1961;8:15–28.
    1. Raxter MH, Auerbach BM, Ruff CB. Revision of the fully technique for estimating statures. Am J Phys Anthropol. 2006;130:374–384. doi: 10.1002/ajpa.20361.
    1. Chumlea WC, Roche AF, Steinbaugh ML. Estimating stature from knee height for persons 60 to 90 years of age. J Am Geriatr Soc. 1985;33:116–120. doi: 10.1111/j.1532-5415.1985.tb02276.x.
    1. Lorentz F. Ein neuer constitutions index. Klinische Wochenschrift. 1929;8:348–351. doi: 10.1007/BF01721823.
    1. Knoben JE, Anderson PO. Handbook of clinical drug data. Hamilton: Drug Intelligence Publications; 1993.
    1. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–160. doi: 10.1191/096228099673819272.
    1. Umoh NJ, Fan E, Mendez-Tellez PA, Sevransky JE, Dennison CR, Shanholtz C, Pronovost PJ, Needham DM. Patient and intensive care unit organizational factors associated with low tidal volume ventilation in acute lung injury. Crit Care Med. 2008;36:1463–1468. doi: 10.1097/CCM.0b013e31816fc3d0.
    1. Young MP, Manning HL, Wilson DL, Mette SA, Riker RR, Leiter JC, Liu SK, Bates JT, Parsons PE. Ventilation of patients with acute lung injury and acute respiratory distress syndrome: has new evidence changed clinical practice? Crit Care Med. 2004;32:1260–1265. doi: 10.1097/01.CCM.0000127784.54727.56.
    1. Villar J, Kacmarek RM, Hedenstierna G. From ventilator-induced lung injury to physician-induced lung injury: why the reluctance to use small tidal volumes? Acta Anaesthesiol Scand. 2004;48:267–271. doi: 10.1111/j.0001-5172.2004.0340.x.
    1. Jia X, Malhotra A, Saeed M, Mark RG, Talmor D. Risk factors for ARDS in patients receiving mechanical ventilation for >48 h. Chest. 2008;133:853–861. doi: 10.1378/chest.07-1121.
    1. Coe TR, Halkes M, Houghton K, Jefferson D. The accuracy of visual estimation of weight and height in pre-operative supine patients. Anaesthesia. 1999;54:582–586. doi: 10.1046/j.1365-2044.1999.00838.x.
    1. Uesugi T, Okada N, Sakai K, Nishina K, Mikawa K, Shiga M. Accuracy of visual estimation of body height and weight in supine paediatric patients. Paediatr Anaesth. 2002;12:489–494. doi: 10.1046/j.1460-9592.2002.00911.x.
    1. Hall WL, 2nd, Larkin GL, Trujillo MJ, Hinds JL, Delaney KA. Errors in weight estimation in the emergency department: comparing performance by providers and patients. J Emerg Med. 2004;27:219–224. doi: 10.1016/j.jemermed.2004.04.008.
    1. Berger MM, Cayeux M-C, Schaller M-D, Soguel L, Piazza G, Chioléro RL. Stature estimation using the knee height determination in critically ill patients. E Spen Eur E J Clin Nutr Metab. 2008;3:e84–e88. doi: 10.1016/j.eclnm.2008.01.004.
    1. Hickson M, Frost G. A comparison of three methods for estimating height in the acutely ill elderly population. J Hum Nutr Diet. 2003;16:13–20. doi: 10.1046/j.1365-277X.2003.00416.x.
    1. Beghetto MG, Fink J, Luft VC, de Mello ED. Estimates of body height in adult inpatients. Clin Nutr. 2006;25:438–443. doi: 10.1016/j.clnu.2005.11.005.
    1. Han S, Martin GS, Maloney JP, Shanholtz C, Barnes KC, Murray S, Sevransky JE. Short women with severe sepsis-related acute lung injury receive lung protective ventilation less frequently: an observational cohort study. Crit Care. 2011;15:R262. doi: 10.1186/cc10524.
    1. Walkey AJ, Wiener RS. Risk factors for underuse of lung-protective ventilation in acute lung injury. J Crit Care. 2012;27(323):e1–e9. doi: 10.1097/01.ccm.0000425429.38916.50.
    1. Hwang IC, Kim KK, Kang HC, Kang DR. Validity of stature-predicted equations using knee height for elderly and mobility impaired persons in Koreans. Epidemiol Health. 2009;31:e2009004. doi: 10.4178/epih/e2009004.
    1. Shahar S, Pooy NS. Predictive equations for estimation of stature in Malaysian elderly people. Asia Pac J Clin Nutr. 2003;12:80–84.

Source: PubMed

3
Subscribe