Impact of simultaneous placement of implant and block bone graft substitute: an in vivo peri-implant defect model

Minh Khai Le Thieu, Amin Homayouni, Lena Ringsby Hæren, Hanna Tiainen, Anders Verket, Jan Eirik Ellingsen, Hans Jacob Rønold, Johan Caspar Wohlfahrt, Antonio Gonzalez Cantalapiedra, Fernando Maria Guzon Muñoz, Maria Permuy Mendaña, Ståle Petter Lyngstadaas, Håvard Jostein Haugen, Minh Khai Le Thieu, Amin Homayouni, Lena Ringsby Hæren, Hanna Tiainen, Anders Verket, Jan Eirik Ellingsen, Hans Jacob Rønold, Johan Caspar Wohlfahrt, Antonio Gonzalez Cantalapiedra, Fernando Maria Guzon Muñoz, Maria Permuy Mendaña, Ståle Petter Lyngstadaas, Håvard Jostein Haugen

Abstract

Background: Insufficient bone volume around an implant is a common obstacle when dental implant treatment is considered. Limited vertical or horizontal bone dimensions may lead to exposed implant threads following placement or a gap between the bone and implant. This is often addressed by bone augmentation procedures prior to or at the time of implant placement. This study evaluated bone healing when a synthetic TiO2 block scaffold was placed in circumferential peri-implant defects with buccal fenestrations.

Methods: The mandibular premolars were extracted and the alveolar bone left to heal for 4 weeks prior to implant placement in six minipigs. Two cylindrical defects were created in each hemi-mandible and were subsequent to implant placement allocated to treatment with either TiO2 scaffold or sham in a split mouth design. After 12 weeks of healing time, the samples were harvested. Microcomputed tomography (MicroCT) was used to investigate defect fill and integrity of the block scaffold. Distances from implant to bone in vertical and horizontal directions, percentage of bone to implant contact and defect fill were analysed by histology.

Results: MicroCT analysis demonstrated no differences between the groups for defect fill. Three of twelve scaffolds were partly fractured. At the buccal sites, histomorphometric analysis demonstrated higher bone fraction, higher percentage bone to implant contact and shorter distance from implant top to bone 0.5 mm lateral to implant surface in sham group as compared to the TiO2 group.

Conclusions: This study demonstrated less bone formation with the use of TiO2 scaffold block in combination with implant placement in cylindrical defects with buccal bone fenestrations, as compared to sham sites.

Keywords: Animal experimentation; Bone ring technique; Bone substitute.

Conflict of interest statement

Haugen, Ellingsen, Tiainen and Lyngstadaas are inventors of the technology behind the production of TiO2 scaffold (WO2014044672, WO2008078164). The commercial rights for the TiO2 scaffold belongs to Corticalis AS. Haugen, Ellingsen, Lyngstadaas, Rønold and Wohlfahrt are shareholder of Corticalis AS.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Clinical photos depicting the experimental model. Circumferential defects were created before implant placement with a block scaffold (TiO2 group) and implant only (sham)
Fig. 2
Fig. 2
3D reconstructions of the microCT scan (a) Illustration of circumferential area evaluated for defect fill in blue. (b) Cross section of the same sample in bucco-lingual direction (buccal left)
Fig. 3
Fig. 3
Histological samples (a) Illustration of defect analysis. Blue box depicting regions of interest in the buccal and lingual sides, yellow = bone, grey = TiO2 scaffold. b Vertical linear measurements from the implant top (green line) to the first bone contact at the implant surface (blue line) and 0.5 mm lateral to the implant (yellow line). c Horizontal linear measurements from implant surface to the first bone contact. Measured from implant top and five consecutive millimetres apically. Lingual side left and buccal side right for all figures
Fig. 4
Fig. 4
Soft tissue measurements in histological samples. Lingual side left and buccal side right for both figures. a Shortest distance from implant shoulder to oral cavity marked in yellow. b Area of soft tissue above the implant measured within the dotted blue lines
Fig. 5
Fig. 5
Histological samples of best (a-b) and worst (c-d) samples from sham (a) and (c) and TiO2 (b) and (d). New bone stained deep purple and irregular in shape. Lingual side left and buccal side right for all figures. a Complete healing of the defect. b Extensive bone growth within the porous scaffold. c Resorption of the lingual bone wall and epithelium in contact with the implant. d Missing scaffold at the buccal side and no bone contact between bone and scaffold lingually. Arrows: mucosal perforations also visible on both sides
Fig. 6
Fig. 6
Defect fill measured by (a) histomorphometry and (b) microCT. *** p < 0.001
Fig. 7
Fig. 7
Bone to implant contact by histomorphometry. a Percentage of bone to implant contact. b First bone to implant contact by vertical measurements at implant surface and 500 μm laterally. c First bone to implant contact by horizontal measurements at the upper most 6 mm increments. * p < 0.05
Fig. 8
Fig. 8
Soft tissue measurements. a Shortest soft tissue distance to oral cavity from implant shoulder. b Area of soft tissue above the implant

References

    1. Schropp L, Wenzel A, Kostopoulos L, Karring T. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dentistry. 2003;23(4):313–323.
    1. Botticelli D, Berglundh T, Lindhe J. Resolution of bone defects of varying dimension and configuration in the marginal portion of the peri-implant bone. J Clin Periodontol. 2004;31(4):309–317. doi: 10.1111/j.1600-051X.2004.00502.x.
    1. Paolantonio M, Dolci M, Scarano A, D'Archivio D, Di Placido G, Tumini V, et al. Immediate implantation in fresh extraction sockets. A controlled clinical and histological study in Man. J Periodontol. 2001;72(11):1560–1571. doi: 10.1902/jop.2001.72.11.1560.
    1. Ortega-Martínez J, Pérez-Pascual T, Mareque-Bueno S, Hernández-Alfaro F, Ferrés-Padró E. Immediate implants following tooth extraction. A systematic review. Med Oral Patol Oral Cir Bucal. 2012;17(2):e251–ee61. doi: 10.4317/medoral.17469.
    1. Nkenke E, Schultze-Mosgau S, Kloss F, Neukam FW, Radespiel-Tröger M. Morbidity of harvesting of chin grafts: a prospective study. Clin Oral Implants Res. 2001;12(5):495–502. doi: 10.1034/j.1600-0501.2001.120510.x.
    1. Nkenke E, Neukam FW. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. Eur J Oral Implantol. 2014;7(Suppl 2):S203–S217.
    1. Araújo MG, Lindhe J. Socket grafting with the use of autologous bone: an experimental study in the dog. Clin Oral Implants Res. 2011;22(1):9–13. doi: 10.1111/j.1600-0501.2010.01937.x.
    1. Sanz-Sánchez I, Ortiz-Vigón A, Sanz-Martín I, Figuero E, Sanz M. Effectiveness of lateral bone augmentation on the alveolar crest dimension: a systematic review and Meta-analysis. J Dent Res. 2015;94(9 Suppl):128s–142s. doi: 10.1177/0022034515594780.
    1. Sogal A, Tofe AJ. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone used for dental applications. J Periodontol. 1999;70(9):1053–1063. doi: 10.1902/jop.1999.70.9.1053.
    1. Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial? J Clin Periodontol. 2019;46(S21):92–102. doi: 10.1111/jcpe.13058.
    1. Giesenhagen B, Martin N, Donkiewicz P, Perić Kačarević Ž, Smeets R, Jung O, et al. Vertical bone augmentation in a single-tooth gap with an allogenic bone ring: clinical considerations. J Esthet Restor Dent. 2018;30(6):480–483. doi: 10.1111/jerd.12392.
    1. Miller RJ, Korn RJ, Miller RJ. Indications for simultaneous implantation and bone augmentation using the allograft bone ring technique. Int J Perio Res Dent. 2020;40:345–352.
    1. Sáez-Alcaide LM, Brinkmann JC-B, Sánchez-Labrador L, Pérez-González F, Molinero-Mourelle P, López-Quiles J. Effectiveness of the bone ring technique and simultaneous implant placement for vertical ridge augmentation: a systematic review. Int. J Implant Dent. 2020;6(1):82. doi: 10.1186/s40729-020-00280-0.
    1. Gaikwad AM, Joshi AA, Padhye AM, Nadgere JB. Autogenous bone ring for vertical bone augmentation procedure with simultaneous implant placement: a systematic review of histologic and histomorphometric outcomes in animal studies. J Prosthet Dent. 2021;126(5):626–35. 10.1016/j.prosdent.2020.09.001.
    1. Sabetrasekh R, Tiainen H, Lyngstadaas SP, Reseland J, Haugen H. A novel ultra-porous titanium dioxide ceramic with excellent biocompatibility. J Biomater Appl. 2010;25(6):559–580. doi: 10.1177/0885328209354925.
    1. Tiainen H, Wiedmer D, Haugen HJ. Processing of highly porous TiO2 bone scaffolds with improved compressive strength. J Eur Ceram Soc. 2013;33(1):15–24. doi: 10.1016/j.jeurceramsoc.2012.08.016.
    1. Tiainen H, Lyngstadaas SP, Ellingsen JE, Haugen HJ. Ultra-porous titanium oxide scaffold with high compressive strength. J Mater Sci Mater Med. 2010;21(10):2783–2792. doi: 10.1007/s10856-010-4142-1.
    1. Tiainen H, Wohlfahrt JC, Verket A, Lyngstadaas SP, Haugen HJ. Bone formation in TiO2 bone scaffolds in extraction sockets of minipigs. Acta Biomater. 2012;8(6):2384–2391. doi: 10.1016/j.actbio.2012.02.020.
    1. Verket A, Müller B, Wohlfahrt JC, Lyngstadaas SP, Ellingsen JE, Jostein Haugen H, et al. TiO2 scaffolds in peri-implant dehiscence defects: an experimental pilot study. Clin Oral Implants Res. 2016;27(10):1200–1206. doi: 10.1111/clr.12725.
    1. Botticelli D, Berglundh T, Lindhe J. The influence of a biomaterial on the closure of a marginal hard tissue defect adjacent to implants. Clin Oral Implants Res. 2004;15(3):285–292. doi: 10.1046/j.1600-0501.2003.01008.x.
    1. Botticelli D, Berglundh T, Buser D, Lindhe J. Appositional bone formation in marginal defects at implants. Clin Oral Implants Res. 2003;14(1):1–9. doi: 10.1034/j.1600-0501.2003.140101.x.
    1. Hämmerle CH, Karring T. Guided bone regeneration at oral implant sites. Periodontology 2000. 1998;17(1):151–175. doi: 10.1111/j.1600-0757.1998.tb00132.x.
    1. Buser D, Dula K, Belser UC, Hirt H-P, Berthold H. Localized ridge augmentation using guided bone regeneration. II. Surgical procedure in the mandible. Int J Periodontics Restorative Dentistry. 1995;15(1):10–29.
    1. Omar O, Elgali I, Dahlin C, Thomsen P. Barrier membranes: more than the barrier effect? J Clin Periodontol. 2019;46(S21):103–123. doi: 10.1111/jcpe.13068.
    1. Hu C, Gong T, Lin W, Yuan Q, Man Y. Immediate implant placement into posterior sockets with or without buccal bone dehiscence defects: a retrospective cohort study. J Dent. 2017;65:95–100. doi: 10.1016/j.jdent.2017.07.010.
    1. Chen ST, Darby IB, Reynolds EC. A prospective clinical study of non-submerged immediate implants: clinical outcomes and esthetic results. Clin Oral Implants Res. 2007;18(5):552–562. doi: 10.1111/j.1600-0501.2007.01388.x.
    1. Covani U, Cornelini R, Barone A. Bucco-lingual bone remodeling around implants placed into immediate extraction sockets: a case series. J Periodontol. 2003;74(2):268–273. doi: 10.1902/jop.2003.74.2.268.
    1. Botticelli D, Berglundh T, Buser D, Lindhe J. The jumping distance revisited. Clin Oral Implants Res. 2003;14(1):35–42. doi: 10.1034/j.1600-0501.2003.140105.x.
    1. Haga-Tsujimura M, Nakahara K, Kobayashi E, Igarashi K, Schaller B, Saulacic N. Single-staged implant placement using bone ring technique with and without membrane placement: an experimental study in the beagle dog. Clin Oral Implants Res. 2018;29(3):263–276. doi: 10.1111/clr.13111.
    1. Nakahara K, Haga-Tsujimura M, Igarashi K, Kobayashi E, Schaller B, Lang NP, et al. Single-staged implant placement using the bone ring technique with and without membrane placement: Micro-CT analysis in a preclinical in vivo study. Clin Oral Implants Res. 2020;31(1):29–36. doi: 10.1111/clr.13543.
    1. Thieu MKL, Haugen HJ, Sanz-Esporrin J, Sanz M, Lyngstadaas SP, Verket A. Guided bone regeneration of chronic non-contained bone defects using a volume stable porous block TiO2 scaffold: an experimental in vivo study. Clin Oral Implants Res. 2021;32(3):369–381. doi: 10.1111/clr.13708.
    1. Xie Y, Li S, Zhang T, Wang C, Cai X. Titanium mesh for bone augmentation in oral implantology: current application and progress. Int J Oral Sci. 2020;12(1):37. doi: 10.1038/s41368-020-00107-z.
    1. Buser D, Chappuis V, Belser UC, Chen S. Implant placement post extraction in esthetic single tooth sites: when immediate, when early, when late? Periodontology 2000. 2017;73(1):84–102. doi: 10.1111/prd.12170.
    1. Yamada M, Egusa H. Current bone substitutes for implant dentistry. J Prosthodont Res. 2018;62(2):152–161. doi: 10.1016/j.jpor.2017.08.010.
    1. Verket A, Tiainen H, Haugen HJ, Lyngstadaas SP, Nilsen O, Reseland JE. Enhanced osteoblast differentiation on scaffolds coated with TiO2 compared to SiO2 and CaP coatings. Biointerphases. 2012;7(1-4):36. doi: 10.1007/s13758-012-0036-8.
    1. Pullisaar H, Reseland JE, Haugen HJ, Brinchmann JE, Ostrup E. Simvastatin coating of TiO2 scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2014;447(1):139–144. doi: 10.1016/j.bbrc.2014.03.133.
    1. Rubert M, Pullisaar H, Gómez-Florit M, Ramis JM, Tiainen H, Haugen HJ, et al. Effect of TiO2 scaffolds coated with alginate hydrogel containing a proline-rich peptide on osteoblast growth and differentiation in vitro. J Biomed Mater Res A. 2013;101A(6):1768–1777. doi: 10.1002/jbm.a.34458.
    1. Klemm A, Gomez-Florit M, Carvalho PA, Wachendörfer M, Gomes ME, Haugen HJ, et al. Grain boundary corrosion in TiO2 bone scaffolds doped with group II cations. J Eur Ceram Soc. 2019;39(4):1577–1585. doi: 10.1016/j.jeurceramsoc.2018.12.055.
    1. Yoshizawa S, Brown A, Barchowsky A, Sfeir C. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 2014;10(6):2834–2842. doi: 10.1016/j.actbio.2014.02.002.
    1. Pors NS. The biological role of strontium. Bone. 2004;35(3):583–588. doi: 10.1016/j.bone.2004.04.026.
    1. Blair HC, Robinson LJ, Huang CL-H, Sun L, Friedman PA, Schlesinger PH, et al. Calcium and bone disease. BioFactors. 2011;37(3):159–167. doi: 10.1002/biof.143.

Source: PubMed

3
Subscribe