Effects of Cisatracurium in Sevoflurane and Propofol Requirements in Dog-Undergoing-Mastectomy Surgery

Claudia Interlandi, Simona Di Pietro, Giovanna L Costa, Filippo Spadola, Nicola M Iannelli, Daniele Macrì, Vincenzo Ferrantelli, Francesco Macrì, Claudia Interlandi, Simona Di Pietro, Giovanna L Costa, Filippo Spadola, Nicola M Iannelli, Daniele Macrì, Vincenzo Ferrantelli, Francesco Macrì

Abstract

The purpose of the present study was to test whether the addition of cisatracurium in combination with propofol and sevoflurane would result in a change in doses of used anesthetic drugs. Ten dogs (Group A) undergoing elective unilateral mastectomy surgery were included in the study. To induce and maintain anesthesia, subjects received propofol and sevoflurane at varying doses; analgesia was performed with remifentanil. After three months, the same subjects (Group B) underwent contralateral mastectomy and received the same anesthetic protocol with the addition of cisatracurium at a dosage of 0.2 mg/kg−1. The following parameters were monitored during anesthesia: heart rate, systolic blood pressure, end-tidal CO2, oxygen saturation, halogenate requirement, and rectal temperature at baseline (T0), induction (T1), 5 (T5), 10 (T10), 15 (T15), 20 (T20), 25 (T25), 30 (T30), and 35 (T35) time points. In Group A, halogenate requirement was reduced at all the time points other than T1 (p < 0.001); in Group B, the percentage of halogenate requirement was already reduced at T1 and remained constant during the experimental period, showing no significant intragroup differences. The dose requirements of sevoflurane and propofol varied significantly between the two groups, with significantly lower dosages in the Group B (the cisatracurium-treated group). Moreover, patients treated with cisatracurium showed a stable anesthetic plan. The nondepolarizing-muscle-relaxant cisatracurium besylate could be considered a useful adjunct to anesthetic protocols.

Keywords: cisatracurium besylate; dog; propofol; sevoflurane; surgery.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Hauber E., Alef M. Study on preanesthetic risk evaluation in dogs using the ASA-classification system in Germany. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2020;48:157–162. doi: 10.1055/a-1115-7999.
    1. Ilkiw J.E. Balanced anesthetic techniques in dogs and cats. Clin. Tech. Small Anim. Pr. 1999;14:27–37. doi: 10.1016/S1096-2867(99)80024-3.
    1. Adams W.A., Senior J.M., Jones R.S., Williams J.M., Gleed R.D. cis-Atracurium in dogs with and without porto-systemic shunts. Veter. Anaesth. Analg. 2006;33:17–23. doi: 10.1111/j.1467-2995.2005.00231.x.
    1. Bayley K.D., Read R.A. Sub-Tenon’s anesthesia for canine cataract surgery. Veter. Ophthalmol. 2018;21:601–611. doi: 10.1111/vop.12554.
    1. Ida K.K., Van-Wijnsberghe A.S., Tutunaru A., Limpens V., Sauvage A., Serteyn D., Sandersen C. Onset and duration of cis-atracurium neuromuscular block during fentanyl and lidocaine infusions in isoflurane-anaesthetised dogs. Veter. Rec. 2020;187:e33. doi: 10.1136/vr.105522.
    1. Nagahama S., Nishimura R., Mochizuki M., Sasaki N. The effects of propofol, isoflurane and sevoflurane on vecuronium infusion rates for surgical muscle relaxation in dogs. Veter. Anaesth. Analg. 2006;33:169–174. doi: 10.1111/j.1467-2995.2005.00252.x.
    1. Kastrup M.R., Marsico F.F., Ascoli F.O., Becker T., Soares J.H.N., Segura I.A.G.D. Neuromuscular blocking properties of atracurium during sevoflurane or propofol anaesthesia in dogs. Veter. Anaesth. Analg. 2005;32:222–227. doi: 10.1111/j.1467-2995.2005.00240.x.
    1. Chen I.-Y., Liang Y.-Y., Chen K.-S., Lee W.-M., Wang H.-C. Comparison of the neuromuscular blocking effects of cisatracurium during isoflurane or propofol anesthesia in dogs. Veter. Anaesth. Analg. 2020;47:454–462. doi: 10.1016/j.vaa.2020.03.002.
    1. Muir A.W., Anderson K.A., Pow E. Interaction between rocuronium bromide and some drugs used during anaesthesia. Eur. J. Anaesthesiol. 1994;9:93–98.
    1. Braga A.D.F.D.A., Braga F.S.D.S., Potério G.M.B., Frias J.A.F., Pedro F.M.S., Munhoz D.C. Influence of Hypnotics on Cisatracurium-induced Neuromuscular Block. Use of Acceleromyograhpy. Braz. J. Anesthesiol. 2013;63:249–253. doi: 10.1016/S0034-7094(13)70225-3.
    1. Chen I.-Y., Tamogi H., Wei Y., Kato K., Itami T., Sano T., Yamashita K. Effects of sevoflurane, propofol or alfaxalone on neuromuscular blockade produced by a single intravenous bolus of rocuronium in dogs. Veter. Anaesth. Analg. 2021;49:36–44. doi: 10.1016/j.vaa.2021.10.002.
    1. Adams W.A., Robinson K.J., Senior J.M., Jones R.S. The use of the nondepolarizing neuromuscular blocking drug cis-atracurium in dogs. Veter. Anaesth. Analg. 2001;28:156–160. doi: 10.1046/j.1467-2987.2001.00045.x.
    1. Wastila W.B., Maehr R.B., Turner G.L., Hill D.A., Phil M., Savarese J.J. Comparative Pharmacology of Cisatracurium (51W89), Atracurium, and Five Isomers in Cats. Anesthesiology. 1996;85:169–177. doi: 10.1097/00000542-199607000-00023.
    1. Kariman A., Shahabeddin M. Xylazine Premedication does not Modify the Onset and Duration of Cisatracurium Blockade in Anaesthetized Dogs. J. Veter. Med. Ser. A. 2007;54:254–256. doi: 10.1111/j.1439-0442.2007.00888.x.
    1. Deneuche A.J., Dufayet C., Goby L., Fayolle P., Desbois C. Analgesic Comparison of Meloxicam or Ketoprofen for Orthopedic Surgery in Dogs. Vet. Surg. 2004;33:650–660. doi: 10.1111/j.1532-950X.2004.04088.x.
    1. Hernandez-Avalos I., Mota-Rojas D., Mora-Medina P., Martínez-Burnes J., Alvarado A.C., Verduzco-Mendoza A., Lezama-García K., Olmos-Hernandez A. Review of different methods used for clinical recognition and assessment of pain in dogs and cats. Int. J. Vet. Sci. Med. 2019;7:43–54. doi: 10.1080/23144599.2019.1680044.
    1. Costa G.L., Nastasi B., Spadola F., Leonardi F., Interlandi C. Effect of levobupivacaine, administered intraperitoneally, on physiological variables and on intrasurgery and postsurgery pain in dogs undergoing ovariohysterectomy. J. Vet. Behav. 2018;30:33–36. doi: 10.1016/j.jveb.2018.11.003.
    1. Interlandi C., Leonardi F., Spadola F., Costa G.L. Evaluation of the paw withdrawal latency for the comparison between tramadol and butorphanol administered locally, in the plantar surface of rat, preliminary study. PLoS ONE. 2021;16:e0254497. doi: 10.1371/journal.pone.0254497.
    1. Morita T., Tsukagoshi H., Sugaya T., Yoshikawa D., Fujita T. The effects of sevoflurane are similar to those of isoflurane on the neuromuscular block produced by vecuronium. Br. J. Anaesth. 1994;72:465–467. doi: 10.1093/bja/72.4.465.
    1. Caniglia A.M., Driessen B., Puerto D.A., Bretz B., Boston R.C., Larenza M.P. Intraoperative antinociception and postoperative analgesia following epidural anesthesia versus femoral and sciatic nerve blockade in dogs undergoing stifle joint surgery. J. Am. Vet. Med. Assoc. 2012;241:1605–1612. doi: 10.2460/javma.241.12.1605.
    1. Steagall P.V., Ruel H.L.M., Yasuda T., Monteiro B.P., Watanabe R., Evangelista M.C., Beaudry F. Pharmacokinetics and analgesic effects of intravenous, intramuscular or subcutaneous buprenorphine in dogs undergoing ovariohysterectomy: A randomized, prospective, masked, clinical trial. BMC Vet. Res. 2020;16:154. doi: 10.1186/s12917-020-02364-w.
    1. Motamed C., Donati F. Sevoflurane and isoflurane, but not propofol, decrease mivacurium requirements over time. Can. J. Anaesth. 2002;49:907–912. doi: 10.1007/BF03016872.
    1. Kropf J., Hughes J.L. Effects of midazolam on cardiovascular responses and isoflurane requirement during elective ovariohysterectomy in dogs. Ir. Vet. J. 2018;71:26. doi: 10.1186/s13620-018-0136-y.
    1. Posner L.P., Burns P. Sedative Agents: Tranquilizers, Alpha-2 Agonists, and Related Agents. In: Riviere J.E., Papich M.G., editors. Veterinary Pharmacology and Therapeutics. Wiley; Hoboken, NJ, USA: 2009. pp. 337–380.
    1. Court M.H., Greenblatt D.J. Pharmacokinetics and preliminary observations of behavioural changes following administration of midazolam to dogs. J. Vet. Pharmacol. Ther. 1992;15:343–350. doi: 10.1111/j.1365-2885.1992.tb01026.x.
    1. Stegmann G., Bester L. Some clinical effects of midazolam premedication in propofol-induced and isoflurane-maintained anaesthesia in dogs during ovariohysterectomy. J. S. Afr. Veter. Assoc. 2001;72:214–216. doi: 10.4102/jsava.v72i4.655.
    1. Murrell J.C., van Notten R.W., Hellebrekers L.J. Clinical investigation of remifentanil and propofol for the total intravenous anaesthesia of dogs. Veter. Rec. 2005;156:804–808. doi: 10.1136/vr.156.25.804.
    1. Akashi N., Murahata Y., Hosokawa M., Hikasa Y., Okamoto Y., Imagawa T. Cardiovascular and renal effects of constant rate infusions of remifentanil, dexmedetomidine and their combination in dogs anesthetized with sevoflurane. J. Vet. Med. Sci. 2021;83:285–296. doi: 10.1292/jvms.20-0457.
    1. Akashi N., Murahata Y., Kishida H., Hikasa Y., Azuma K., Imagawa T. Effects of constant rate infusions of dexmedetomidine, remifentanil and their combination on minimum alveolar concentration of sevoflurane in dogs. Vet. Anaesth. Analg. 2020;47:490–498. doi: 10.1016/j.vaa.2020.04.002.
    1. Mama K.R., Gaynor J.S., Harvey R.C., Robertson S.A., Koenig R.L., Cozzi E.M. Multicenter clinical evaluation of a multi-dose formulation of propofol in the dog. BMC Vet. Res. 2013;9:261. doi: 10.1186/1746-6148-9-261.
    1. Bolaji-Alabi F.B., Solanke O.I., Adetunji A. Effect of oxygen supplementation on propofol anesthesia in acepromazine/tramadol premedicated dogs. Int. J. Vet. Sci. Med. 2018;6:239–242. doi: 10.1016/j.ijvsm.2018.08.005.
    1. Sano T., Nishimura R., Mochizuki M., Hara Y., Tagawa M., Sasaki N. Clinical usefulness of propofol as an anestetic induction agentin dogs and cats. J. Vet. Med. Sci. 2003;65:5. doi: 10.1292/jvms.65.641.
    1. García J.I.R. Clinical evaluation of a new formulation of propofol in a medium-chain and long-chain triglycerides emulsion in dogs. J. Vet. Pharmacol. Ther. 2007;30:288–294. doi: 10.1111/j.1365-2885.2007.00859.x.
    1. Liao P., Sinclair M., Valverde A., Mosley C., Chalmers H., Mackenzie S., Hanna B. Induction dose and recovery quality of propofol and alfaxalone with or without midazolam coinduction followed by total intravenous anesthesia in dogs. Veter. Anaesth. Analg. 2017;44:1016–1026. doi: 10.1016/j.vaa.2017.02.011.
    1. Ye L., Zuo Y., Zhang P., Yang P. Sevoflurane enhances neuromuscular blockade by increasing the sensitivity of skeletal muscle to neuromuscular blockers. Int. J. Physiol. Pathophysiol. Pharmacol. 2015;7:172–177.
    1. Hedenstierna G., Tokics L., Scaramuzzo G., Rothen H.U., Edmark L., Öhrvik J. Oxygenation Impairment during Anesthesia: Influence of Age and Body Weight. Anesthesiology. 2019;131:46–57. doi: 10.1097/ALN.0000000000002693.
    1. Gadani H., Vyas A. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia. Anesth. Essays Res. 2011;5:5–10. doi: 10.4103/0259-1162.84171.
    1. Ryan S.M., Nielsen C.J. Global Warming Potential of Inhaled Anesthetics. Anesthesia Analg. 2010;111:92–98. doi: 10.1213/ANE.0b013e3181e058d7.
    1. Caycedo-Marulanda A., Mathur S. Suggested strategies to reduce the carbon footprint of anesthetic gases in the operating room. Can. J. Anaesth. 2021;69:269–270. doi: 10.1007/s12630-021-02120-0.
    1. Lachowska S., Antończyk A., Tunikowska J., Godniak M., Kiełbowicz Z. Reduction of greenhouse gases emission through the use of tiletamine and zolazepam. Sci. Rep. 2022;12:9508. doi: 10.1038/s41598-022-13520-7.

Source: PubMed

3
Subscribe