Analysis of Biomechanical Properties of the Lumbar Extensor Myofascia in Elderly Patients with Chronic Low Back Pain and That in Healthy People

Zugui Wu, Yue Zhu, Wu Xu, Junquan Liang, Yingxin Guan, Xuemeng Xu, Zugui Wu, Yue Zhu, Wu Xu, Junquan Liang, Yingxin Guan, Xuemeng Xu

Abstract

There is limited research on the changes of biomechanical characteristics of the lumbar extensor myofascia in elderly patients with chronic low back pain. This study aimed to compare the biomechanical properties of the lumbar extensor myofascia in elderly patients with chronic low back pain and healthy people when resting and to analyze the relationship between the Japanese Orthopedic Association (JOA) score, visual analog scale (VAS) score, Cobb angle, and disease course and the biomechanical characteristics of the lumbar extensor myofascia. This case-control study included 40 elderly patients with chronic low back pain and 40 healthy volunteers. MyotonPRO was used to measure the biomechanical properties of the bilateral lumbar extensor myofascia (at L3/L4 level) in all participants, and the reliability of the MyotonPRO test was measured. Cobb angle was measured from lumbar computed tomography or magnetic resonance imaging data. JOA and VAS scores were used to evaluate lumbar function and pain. We found that muscle tone, stiffness, and elasticity of the left and right lumbar extensor myofascia in patients with chronic low back pain were very reliable among different operators. The average lumbar extensor muscle tone and stiffness were significantly higher in patients with chronic low back pain than those in healthy controls. The average elasticity of the lumbar extensor myofascia of patients with chronic low back pain was significantly lower than that of the healthy controls. The JOA score was negatively correlated, while the VAS score was positively correlated with the mean values of tone, stiffness, and elasticity of the bilateral lumbar extensor myofascia (logarithmic decrement). Disease course had no significant correlation with muscle tone, stiffness, and elasticity of the lumbar extensor myofascia. No significant correlation was found between Cobb angle and muscle tone, stiffness, and elasticity of the lumbar extensor myofascia in either group.

Conflict of interest statement

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Copyright © 2020 Zugui Wu et al.

Figures

Figure 1
Figure 1
Schematic diagram of the measurement of lumbar lordosis (Cobb) angle.

References

    1. Hoy D., Bain C., Williams G., et al. A systematic review of the global prevalence of low back pain. Arthritis & Rheumatism. 2012;64(6):2028–2037. doi: 10.1002/art.34347.
    1. Biering-Sorensen F. A prospective study of low back pain in a general population. I. Occurrence, recurrence and aetiology. Scandinavian Journal of Rehabilitation Medicine. 1983;15(2):71–79.
    1. Rapoport J., Jacobs P., Bell N. R., Klarenbach S. Refining the measurement of the economic burden of chronic diseases in Canada. Chronic Diseases in Canada. 2004;25(25):13–21.
    1. Jung D.-e., Kim K., Lee S.-k. Comparison of muscle activities using a pressure biofeedback unit during abdominal muscle training performed by normal adults in the standing and supine positions. Journal of Physical Therapy Science. 2014;26(2):191–193. doi: 10.1589/jpts.26.191.
    1. Ko K.-J., Ha G.-C., Yook Y.-S., Kang S.-J. Effects of 12-week lumbar stabilization exercise and sling exercise on lumbosacral region angle, lumbar muscle strength, and pain scale of patients with chronic low back pain. Journal of Physical Therapy Science. 2018;30(1):18–22. doi: 10.1589/jpts.30.18.
    1. Bayramoğlu M., Akman M. N., Kilinç S., et al. Isokinetic measurement of trunk muscle strength in women with chronic low-back pain. American Journal of Physical Medicine and Rehabilitation. 2001;80(9):650–655. doi: 10.1097/00002060-200109000-00004.
    1. Sullivan M. S. The relationship between anthropometric, postural, muscular, and mobility characteristics of males ages 18-55. Spine. 1986;11(9):p. 973.
    1. Chaléat-Valayer E., Mac-Thiong J.-M., Paquet J., Berthonnaud E., Siani F., Roussouly P. Sagittal spino-pelvic alignment in chronic low back pain. European Spine Journal. 2011;20(5):634–640. doi: 10.1007/s00586-011-1931-2.
    1. Barrey C., Jund J., Noseda O., Roussouly P. Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. European Spine Journal. 2007;16(9):1459–1467. doi: 10.1007/s00586-006-0294-6.
    1. Ergun T., Lakadamyalı H., Sahin M. S. The relation between sagittal morphology of the lumbosacral spine and the degree of lumbar intervertebral disc degeneration. Acta orthopaedica et Traumatologica Turcica. 2010;44(4):293–299. doi: 10.3944/aott.2010.2375.
    1. Youdas J. W., Garrett T. R., Egan K. S., Therneau T. M. Lumbar lordosis and pelvic inclination in adults with chronic low back pain. Physical Therapy. 2000;80(3):261–275. doi: 10.1093/ptj/80.3.261.
    1. Kang C. H., Shin M. J., Kim S. M., et al. MRI of paraspinal muscles in lumbar degenerative kyphosis patients and control patients with chronic low back pain. Clinical Radiology. 2007;62(5):479–486. doi: 10.1016/j.crad.2006.12.002.
    1. Masi A. T., Hannon J. C. Human resting muscle tone (HRMT): narrative introduction and modern concepts. Journal of Bodywork and Movement Therapies. 2009;12(4):320–332. doi: 10.1016/j.jbmt.2008.05.007.
    1. White A., Abbott H., Masi A. T., Henderson J., Nair K. Biomechanical properties of low back myofascial tissue in younger adult ankylosing spondylitis patients and matched healthy control subjects. Clinical Biomechanics. 2018;57:67–73. doi: 10.1016/j.clinbiomech.2018.06.006.
    1. Andonian B. J., Masi A. T., Aldag J. C., et al. Greater resting lumbar extensor myofascial stiffness in younger ankylosing spondylitis patients than age-comparable healthy volunteers quantified by myotonometry. Archives of Physical Medicine and Rehabilitation. 2015;96(11):2041–2047. doi: 10.1016/j.apmr.2015.07.014.
    1. Hu X., Lei D., Li L., et al. Quantifying paraspinal muscle tone and stiffness in young adults with chronic low back pain: a reliability study. Scientific Reports. 2018;8(1) doi: 10.1038/s41598-018-32418-x.
    1. Nair K., Masi A. T., Andonian B. J., et al. Stiffness of resting lumbar myofascia in healthy young subjects quantified using a handheld myotonometer and concurrently with surface electromyography monitoring. Journal of Bodywork and Movement Therapies. 2016;20(2):388–396. doi: 10.1016/j.jbmt.2015.12.005.
    1. Masaki M., Aoyama T., Murakami T., et al. Association of low back pain with muscle stiffness and muscle mass of the lumbar back muscles, and sagittal spinal alignment in young and middle-aged medical workers. Clinical Biomechanics (Bristol, Avon) 2017;49(49):128–133. doi: 10.1016/j.clinbiomech.2017.09.008.
    1. Abbott J. H., Flynn T. W., Fritz J. M., Hing W. A., Reid D., Whitman J. M. Manual physical assessment of spinal segmental motion: intent and validity. Manual Therapy. 2009;14(1):36–44. doi: 10.1016/j.math.2007.09.011.
    1. Seffinger M. A., Najm W. I., Mishra S. I., et al. Reliability of spinal palpation for diagnosis of back and neck pain. Spine. 2004;29(19):413–425. doi: 10.1097/01.brs.0000141178.98157.8e.
    1. Jonsson A., Rasmussen-Barr E. Intra- and interrater reliability of movement and pain in patients with neck pain: a systematic review. Physiotherapy Theory and Practice. 2017;34(3):1–16. doi: 10.1080/09593985.2017.1390806.
    1. Dresner M. A., Rose G. H., Rossman P. J., Muthupillai R., Manduca A., Ehman R. L. Magnetic resonance elastography of skeletal muscle. Journal of Magnetic Resonance Imaging. 2001;13(2):269–276. doi: 10.1002/1522-2586(200102)13:2<269::aid-jmri1039>;2-1.
    1. Qiu W., Wang C., Xiao Y., et al. A new shear wave imaging system for ultrasound elastography. Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; October 2015; Taipei, Taiwan. pp. 3847–3850.
    1. Aird L., Samuel D., Stokes M. Quadriceps muscle tone, elasticity and stiffness in older males: reliability and symmetry using the MyotonPRO. Archives of Gerontology and Geriatrics. 2012;55(2):e31–e39. doi: 10.1016/j.archger.2012.03.005.
    1. Lo W. L. A., Zhao J. L., Li L., et al. Relative and absolute interrater reliabilities of a hand-held myotonometer to quantify mechanical muscle properties in patients with acute stroke in an inpatient ward. BioMed Research International. 2017;2017:12. doi: 10.1155/2017/4294028.4294028
    1. Liu Y., Pan A., Hai Y., Li W., Yin L., Guo R. Asymmetric biomechanical characteristics of the paravertebral muscle in adolescent idiopathic scoliosis. Clinical Biomechanics. 2019;65:81–86. doi: 10.1016/j.clinbiomech.2019.03.013.
    1. Okpala F. O. Comparison of four radiographic angular measures of lumbar lordosis. Journal of Neurosciences in Rural Practice. 2018;9(3):298–304. doi: 10.4103/jnrp.jnrp_508_17.
    1. Harrison D. E., Harrison D. D., Cailliet R., et al. Radiographic analysis of lumbar lordosis: centroid, Cobb, TRALL, and Harrison posterior tangent methods. Spine. 2001;26(11):235–242. doi: 10.1097/00007632-200106010-00003.
    1. Drzał-Grabiec J., Truszczyńska A., Tarnowski A., Płaszewski M. Comparison of parameters characterizing lumbar lordosis in radiograph and photogrammetric examination of adults. Journal of Manipulative and Physiological Therapeutics. 2015;38(3):225–231. doi: 10.1016/j.jmpt.2015.01.001.
    1. Andreasen M. L., Langhoff L., Jensen T. S., et al. Reproduction of the lumbar lordosis: a comparison of standing radiographs versus supine magnetic resonance imaging obtained with straightened lower extremities. Journal of Manipulative & Physiological Therapeutics. 2007;30(1):0–30. doi: 10.1016/j.jmpt.2006.11.009.
    1. Gavronski G., Veraksitš A., Vasar E., Maaroos J. Evaluation of viscoelastic parameters of the skeletal muscles in junior triathletes. Physiological Measurement. 2007;28(6):625–637. doi: 10.1088/0967-3334/28/6/002.
    1. Van Deun B., Hobbelen J. S. M., Cagnie B., Van Eetvelde B., Van Den Noortgate N., Cambier D. Reproducible measurements of muscle characteristics using the MyotonPRO device. Journal of Geriatric Physical Therapy. 2018;41(4):194–203. doi: 10.1519/jpt.0000000000000119.
    1. Schneider S., Peipsi A., Stokes M., Knicker A., Abeln V. Feasibility of monitoring muscle health in microgravity environments using Myoton technology. Medical & Biological Engineering & Computing. 2015;53(1):57–66. doi: 10.1007/s11517-014-1211-5.
    1. Hicks G. E., George S. Z., Nevitt M. A., Cauley J. A., Vogt M. T. Measurement of Lumbar lordosis: inter-rater reliability, minimum detectable change and longitudinal variation. Journal of Spinal Disorders & Techniques. 2006;19(7):501–506. doi: 10.1097/.
    1. Koo T. K., Li M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine. 2016;15(2):155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. Chuang L. L., Wu C. Y., Lin K. C. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Archives of Physical Medicine and Rehabilitation. 2012;93(3):532–540. doi: 10.1016/j.apmr.2011.09.014.
    1. Lohr C., Braumann K.-M., Reer R., Schroeder J., Schmidt T. Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers. European Journal of Applied Physiology. 2018;118(7):1349–1359. doi: 10.1007/s00421-018-3867-2.
    1. Marusiak J., Kisiel-Sajewicz K., Anna J., et al. Higher muscle passive stiffness in Parkinson’s disease patients than in controls measured by myotonometry. Archives of Physical Medicine & Rehabilitation. 2010;91(5):0–802. doi: 10.1016/j.apmr.2010.01.012.
    1. Piotr K., Maciej W., Jacek L., et al. Female office workers with moderate neck pain have increased anterior positioning of the cervical spine and stiffness of upper trapezius myofascial tissue in sitting posture. PM&R. 2018;11(5):482. doi: 10.1016/j.pmrj.2018.07.002.
    1. Gjelsvik B. E. The Bobath Concept in Adult Neurology. New York, NY, USA: Thieme Medical Publishers; 2008.
    1. Kim D. H., Kim S. K., Jung Y. J. Measurement of low back muscle characteristic change using MyotonPRO in a long-term driving; pilot study. The Korean Society of Human Engineers. 2015;4:592–598.
    1. Lisiński P. Surface EMG in chronic low back pain. European Spine Journal. 2000;9(6):559–562. doi: 10.1007/s005860000131.
    1. van Dieën J. H., Selen L. P. J., Cholewicki J. Trunk muscle activation in low-back pain patients, an analysis of the literature. Journal of Electromyography and Kinesiology. 2003;13(4):333–351. doi: 10.1016/s1050-6411(03)00041-5.
    1. Schilder A., Hoheisel U., Magerl W., Benrath J., Klein T., Treede R.-D. Sensory findings after stimulation of the thoracolumbar fascia with hypertonic saline suggest its contribution to low back pain. Pain. 2014;155(2):222–231. doi: 10.1016/j.pain.2013.09.025.
    1. Haładaj R., Topol M. Multiple impulse therapy in the assessment of paraspinal muscle tone in patients with low back pain. Ortopedia Traumatologia Rehabilitacja. 2016;18(6):537–547. doi: 10.5604/15093492.1230520.
    1. Kawchuk G. N., Kaigle A. M., Holm S. H., Rod Fauvel O., Ekström L., Hansson T. The diagnostic performance of vertebral displacement measurements derived from ultrasonic indentation in an in vivo model of degenerative disc disease. Spine. 2001;26(12):1348–1355. doi: 10.1097/00007632-200106150-00018.
    1. Bailey L., Samuel D., Warner M., et al. Parameters representing muscle tone, elasticity and stiffness of biceps brachii in healthy older males. Journal of Neurological Disorders. 2013;1:p. 116.
    1. Park S. K., Yang D. J., Kim J. H., Heo J. W., Uhm Y. H., Yoon J. H. Analysis of mechanical properties of cervical muscles in patients with cervicogenic headache. Journal of Physical Therapy Science. 2017;29(2):332–335. doi: 10.1589/jpts.29.332.
    1. Carr J. H., Shepherd R. B. Stroke Rehabilitation: Guidelines for Exercise and Training to Optimize Motor Skill. Oxford, UK: Elsevier; 2004.
    1. Watts R. L., Wiegner A. W., Young R. R. Elastic properties of muscles measured at the elbow in man: II. Patients with parkinsonian rigidity. Journal of Neurology, Neurosurgery & Psychiatry. 1986;49(10):1177–1181. doi: 10.1136/jnnp.49.10.1177.
    1. Dietz V., Trippel M., Berger W. Reflex activity and muscle tone during elbow movements in patients with spastic paresis. Annals of Neurology. 1991;30(6):767–779. doi: 10.1002/ana.410300605.
    1. Orizio C., Esposito F., Sansone V., et al. Muscle surface mechanical and electrical activities in myotonic dystrophy. Electromyography & Clinical Neurophysiology. 1997;37(4):p. 231.
    1. Solomonow M., Hatipkarasulu S., Zhou B., Baratta R., Aghazadeh F. Biomechanics and electromyography of a common idiopathic low back disorder. Spine. 2003;28(12):1235–1248. doi: 10.1097/00007632-200306150-00006.
    1. Murrie V. L., Dixon A. K., Hollingworth W., et al. Lumbar lordosis: study of patients with and without low back pain. Clinical Anatomy. 2010;16(2):144–147. doi: 10.1002/ca.10114.
    1. Shortz S. K., Haas M. Relationship between radiographic lumbosacral spine mensuration and chronic low back pain intensity: a cross-sectional study. Journal of Chiropractic Medicine. 2018;17(1):1–6. doi: 10.1016/j.jcm.2017.10.005.
    1. Hansen B. B., Bendix T., Grindsted J., et al. Effect of lumbar disc degeneration and low-back pain on the lumbar lordosis in supine and standing. Spine. 2015;40(21):1690–1696. doi: 10.1097/brs.0000000000001120.
    1. Masi A., Benjamin M., Vleeming A. Movement, Stability & Lumbopelvic Pain. London, UK: Churchill Livingstone; 2007. Anatomical, biomechanical, and clinical perspectives on sacroiliac joints: an integrative synthesis of biodynamic mechanisms related to ankylosing spondylitis; pp. 205–227.
    1. Vleeming A., Schuenke M. D., Masi A. T., Carreiro J. E., Danneels L., Willard F. H. The sacroiliac joint: an overview of its anatomy, function and potential clinical implications. Journal of Anatomy. 2012;221(6):537–567. doi: 10.1111/j.1469-7580.2012.01564.x.

Source: PubMed

3
Subscribe