The Input-Output Relationship of the Cholinergic Basal Forebrain

Matthew R Gielow, Laszlo Zaborszky, Matthew R Gielow, Laszlo Zaborszky

Abstract

Basal forebrain cholinergic neurons influence cortical state, plasticity, learning, and attention. They collectively innervate the entire cerebral cortex, differentially controlling acetylcholine efflux across different cortical areas and timescales. Such control might be achieved by differential inputs driving separable cholinergic outputs, although no input-output relationship on a brain-wide level has ever been demonstrated. Here, we identify input neurons to cholinergic cells projecting to specific cortical regions by infecting cholinergic axon terminals with a monosynaptically restricted viral tracer. This approach revealed several circuit motifs, such as central amygdala neurons synapsing onto basolateral amygdala-projecting cholinergic neurons or strong somatosensory cortical input to motor cortex-projecting cholinergic neurons. The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux. This dataset enables future circuit-level experiments to identify drivers of known cortical cholinergic functions.

Keywords: ChAT-cre; acetylcholine; basal forebrain; basalocortical; cholinergic; connectome; monosynaptic; rabies; rat; transgenic.

Conflict of interest statement

The authors declare no conflict of interest.

Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Figure 1. Monosynaptic viral tracing
Figure 1. Monosynaptic viral tracing
(A) Cre-dependent helper viruses limit starter cells to the cholinergic cell type. Virus placed at cortical terminals retrogradely labels a subset of cholinergic cells that project to the cortical injection site (figure based on Wall et al., 2010). (B) 12 subjects received helper virus across 5 basal forebrain sites, and (C) received retrograde virus in a single BF projection target, whether in motor cortex (red), medial prefrontal cortex (green), orbitofrontal cortex (blue) or amygdala (yellow)(figure based on Paxinos and Watson, 2007). (D) Cells are visualized by the presence of mCherry (helper virus in cholinergic cells), GFP (afferent cells, monosynaptic inputs to starter cells) or both fluorophores (cholinergic starter cells).
Figure 2. Topography of starter cells
Figure 2. Topography of starter cells
Cholinergic cells capable of spreading virus monosynaptically (mCherry + / GFP +) in 12 subjects following retrograde viral injection in M1/M2 (red), mPFC (green), VO/LO (blue), or amygdala (yellow). Starter cells from individual cases (labeled with differently shaped symbols) were warped into a common template brain. ac, anterior commissure; BLA, anterior basolateral amygdala; f, fornix; GP, globus pallidus; HDB, horizontal diagonal band; ic, internal capsule; lo, lateral olfactory tract; LV, lateral ventricle; mt, mammillothalamic tract; MS/VDB, medial septum/ vertical diagonal band; opt, optic tract; sm, stria medullaris; SI/EA, substantia innominata/ extended amygdala.
Figure 3. Distribution of inputs across all…
Figure 3. Distribution of inputs across all brain regions
Percent of labeled inputs to cholinergic starter cells across all brain regions is shown per subject (individual bars clustered in groups of three). Regions of sparse input (where no injection group averaged > 0.5%) are not shown. See also Figures S3-S4 and Table S2. M1/M2, motor cortex; mPFC, medial prefrontal cortex; VO/LO, ventral/lateral orbitofrontal cortices.
Figure 4. Distribution of striatal input cells
Figure 4. Distribution of striatal input cells
There is a topography of afferents originating across different levels (rows) in the CPu when comparing three subjects with different rabies injection sites: the amygdala (left column), motor cortex (middle), or ventral orbitofrontal cortex (right column). Various contours delineate cytoarchitectonic areas where cells appear. BFc, basal forebrain cholinergic cells; BMP, posterior basomedial amygdala; M1/M2, primary/secondary motor cortex; VO, ventral orbitofrontal cortex.
Figure 5. Input cells from cortex
Figure 5. Input cells from cortex
In each pair of panels, GFP appears on DAPI (blue, left) and thionin Nissl (violet, right). (A) S1 cells synapsing onto M1/M2-targeted ChAT. (B) Labeled cell in the medial entorhinal cortex (mEC) synapsing onto mPFC-targeted ChAT. (C) Endopiriform cell synapsing onto mPFC-targeted ChAT. (D) Retrosplenial cell synapsing onto mPFC-targeted ChAT. (E, F, I) CA1 cells synapsing onto mPFC-targeted ChAT. (G) vOFC cell synapsing onto vOFC-targeted ChAT. (H) CA3 cell synapsing onto mPFC-targeted ChAT. Scale 100 μM. cc, corpus callosum; cg, cingulate gyrus; CPu, caudate putamen; DG, dentate gyrus; En, endopiriform nucleus; fi, fimbria; or, oriens; PaS, parasubiculum; Pir, piriform cortex; rad, radiatum; S1, primary somatosensory cortex; VO/vOFC, ventral orbitofrontal cortex.
Figure 6. Input cells from amygdala
Figure 6. Input cells from amygdala
In each pair of panels, GFP appears on DAPI (blue, left) and thionin Nissl (violet, right). (A) AA cells synapsing onto mPFC-targeted ChAT. (B) BMP cells synapsing onto mPFC-targeted ChAT. (C) CeC cells synapsing onto BMP-targeted ChAT. (D) ACo cells synapsing onto mPFC-targeted ChAT. (E) CeL cells synapsing onto M1/M2-targeted ChAT. (F) AHiPM cell synapsing onto M1/M2-targeted ChAT. Scale 100 μM. AA, anterior amygdaloid area; ACo, anterior cortical amygdaloid nucleus; AHiPM, posteromedial amygdalohippocampal area; BLA, anterior basolateral amygdala; CA3, hippocampal field CA3; Ce, central nucleus, amygdala; CeC, central nucleus, amygdala, capsular part; CeL, central nucleus, amygdala, lateral part; cp, cerebral peduncle; CPu, caudate putamen; cst, commissural stria terminalis; En, endopiriform nucleus; I, intercalated nucleus, amygdala; La, lateral amygdala; LOT, nucleus of the lateral olfactory tract; LV, lateral ventricle; opt, optic tract.
Figure 7. Input cells from brainstem
Figure 7. Input cells from brainstem
(A) GFP on DAPI background shows inputs in RIP, synapsing onto mPFC-targeted ChAT cells. (A′) The same cells from panel a on thionin Nissl (violet). (B) GFP on DAPI background shows inputs in dorsal raphe, synapsing onto M1/M2-targeted ChAT cells. (B′) The same cells from panel b on thionin Nissl (violet). (C, D) GFP inputs in VTA on Nissl (violet) background synapsing onto mPFC-targeted or M1/M2-targeted ChAT cells, respectively. (E) GFP inputs in nucleus Darkschewitsch (Dk) projecting to mPFC-targeted ChAT cells. (E′) The same cells from panel e on thionin Nissl (violet). (F) Macro view of GFP inputs in PAG and PPT synapsing onto M1/M2-targeted ChAT cells. Scale 200 μM. 3N, oculomotor nucleus; 7, facial nucleus; g7, facial nerve; Gi, gigantocellular reticular nucleus; IP, interpeduncular nucleus; isRt, isthmic reticular formation; MB, mammillary body; MG, medial geniculate nucleus; ml, medial lemniscus; mRt, mesencephalic reticular formation; PAG, periaqueductal gray; Po, posterior thalamic nuclei; PPT, pedunculopontine tegmentum; PT, pretectal nucleus; RIP, raphe interpositus; SNC, substantia nigra pars compacta; SNR, substantia nigra pars reticulata; VTA, ventral tegmental area.

References

    1. Adler A, Katabi S, Finkes I, Prut Y, Bergman H. Different correlation patterns of cholinergic and GABAergic interneurons with striatal projection neurons. Front Syst Neurosci. 2013;7:47.
    1. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, Gao XJ, Kremer EJ, Malenka RC, Luo L. Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell. 2015;162:622–634.
    1. Bennett C, Arroyo S, Hestrin S. Controlling brain states. Neuron. 2014;83:260–261.
    1. Botly LCP, De Rosa E. Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention. Cereb Cortex. 2012;22:2441–2453.
    1. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of Sleep and Wakefulness. Physiol Rev. 2012;92:1087–1187.
    1. Buzsáki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci. 1988;8:4007–4026.
    1. Callaway EM, Luo L. Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses. J Neurosci. 2015;35:8979–8985.
    1. Chan-Palay V, Zaborszky L, Köhler C, Goldstein M, Palay SL. Distribution of tyrosine-hydroxylase-immunoreactive neurons in the hypothalamus of rats. J Comp Neurol. 1984;227:467–496.
    1. Chavez C, Zaborszky L. Basal Forebrain Cholinergic-Auditory Cortical Network: Primary Versus Nonprimary Auditory Cortical Areas. Cereb Cortex 2016
    1. Ciocchi S, Herry C, Grenier F, Wolff SBE, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature. 2010;468:277–282.
    1. Croxson PL, Kyriazis DA, Baxter MG. Cholinergic modulation of a specific memory function of prefrontal cortex. Nat Neurosci. 2011;14:1510–1512.
    1. Dalley JW, Theobald DE, Bouger P, Chudasama Y, Cardinal RN, Robbins TW. Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex. Cereb Cortex. 2004;14:922–932.
    1. Disterhoft JF, Stuart DK. Trial sequence of changed unit activity in auditory system of alert rat during conditioned response acquisition and extinction. J Neurophysiol. 1976;39:266–281.
    1. Do JP, Xu M, Lee SH, Chang WC, Zhang S, Chung S, Yung TJ, Fan JL, Miyamichi K, Luo L, et al. Cell type-specific long-range connections of basal forebrain circuit. Elife. 2016;5:1–17.
    1. Edeline JM. Frequency-specific plasticity of single unit discharges in the rat medial geniculate body. Brain Res. 1990;529:109–119.
    1. Faget L, Osakada F, Duan J, Ressler R, Johnson AB, Proudfoot JA, Yoo JH, Callaway EM, Hnasko TS. Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area. Cell Rep. 2016;15:2796–2808.
    1. Fournier GN, Semba K, Rasmusson DD. Modality- and region-specific acetylcholine release in the rat neocortex. Neuroscience. 2004;126:257–262.
    1. Gabriel M, Saltwick SE, Miller JD. Conditioning and reversal of short-latency multiple-unit responses in the rabbit medial geniculate nucleus. Science. 1975;189:1108–1109.
    1. Gaykema RP, Zaborszky L. Parvalbumin-containing neurons in the basal forebrain receive direct input from the substantia nigra-ventral tegmental area. Brain Res. 1997;747:173–179.
    1. Ginger M, Haberl M, Conzelmann KK, Schwarz MK, Frick A. Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Front Neural Circuits. 2013;7:2.
    1. Golmayo L, Nunez A, Zaborszky L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience. 2003;119:597–609.
    1. Gritton HJ, Howe WM, Mallory CS, Hetrick VL, Berke JD, Sarter M. Cortical cholinergic signaling controls the detection of cues. Proc Natl Acad Sci U S A. 2016:1–9.
    1. Hajszan T, Zaborszky L. A Serotonin Club/Brain Research Bulletin Conference. Elsevier Science; 2000. Serotoninergic innervation of basal forebrain neurons in the rat In Serotonin: From the Molecule to the Clinic; p. 97.
    1. Hangya B, Ranade SP, Lorenc M, Kepecs A. Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback. Cell. 2015;162:1155–1168.
    1. Harris KD, Thiele A. Cortical state and attention. Nat Rev Neurosci. 2011;12:509–523.
    1. Harrison TC, Pinto L, Brock JR, Dan Y. Calcium Imaging of Basal Forebrain Activity during Innate and Learned Behaviors. Front Neural Circuits. 2016;10:36.
    1. Hu R, Jin S, He X, Xu F, Hu J. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System. Front Neuroanat. 2016;10:1–10.
    1. Hur EE, Zaborszky L. Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study [corrected] J Comp Neurol. 2005;483:351–373.
    1. Jasper HH, Tessier J. Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science. 1971;172:601–602.
    1. Jiang L, Kundu S, Lederman JD, López-Hernández GY, Ballinger EC, Wang S, Talmage DA, Role LW. Cholinergic Signaling Controls Conditioned Fear Behaviors and Enhances Plasticity of Cortical-Amygdala Circuits. Neuron. 2016;90:1057–1070.
    1. Jones BE. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci. 2005;26:578–586.
    1. Jones EG, Burton H, Saper CB, Swanson LW. Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J Comp Neurol. 1976;167:385–419.
    1. Kaur S, Pedersen NP, Yokota S, Hur EE, Fuller PM, Lazarus M, Chamberlin NL, Saper CB. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J Neurosci. 2013;33:7627–7640.
    1. Kim JH, Jung AH, Jeong D, Choi I, Kim K, Shin S, Kim SJ, Lee SH. Selectivity of Neuromodulatory Projections from the Basal Forebrain and Locus Ceruleus to Primary Sensory Cortices. J Neurosci. 2016;36:5314–5327.
    1. Kita H, Kitai ST. Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res. 1988;447:346–352.
    1. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron. 2012;73:553–566.
    1. Leach ND, Nodal FR, Cordery PM, King AJ, Bajo VM. Cortical cholinergic input is required for normal auditory perception and experience-dependent plasticity in adult ferrets. J Neurosci. 2013;33:6659–6671.
    1. Ledbetter NM, Chen CD, Monosov IE. Multiple Mechanisms for Processing Reward Uncertainty in the Primate Basal Forebrain. J Neurosci. 2016;36:7852–7864.
    1. Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM. Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron. 2014;83:455–466.
    1. Lennartz RC, Weinberger NM. Frequency-specific receptive field plasticity in the medial geniculate body induced by pavlovian fear conditioning is expressed in the anesthetized brain. Behav Neurosci. 1992;106:484–497.
    1. Leranth C, Vertes RP. Median raphe serotonergic innervation of medial septum/diagonal band of broca (MSDB) parvalbumin-containing neurons: possible involvement of the MSDB in the desynchronization of the hippocampal EEG. J Comp Neurol. 1999;410:586–598.
    1. Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT, Zalocusky KA, Crow AK, Malenka RC, Luo L, Tomer R, et al. Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. Cell. 2015;162:635–647.
    1. Luppi PH, Clément O, Fort P. Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control. Curr Opin Neurobiol. 2013;23:786–792.
    1. Lutkenhoff ES, Chiang J, Tshibanda L, Kamau E, Kirsch M, Pickard JD, Laureys S, Owen AM, Monti MM. Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Ann Neurol. 2015;78:68–76.
    1. Maalouf M, Miasnikov AA, Dykes RW. Blockade of cholinergic receptors in rat barrel cortex prevents long-term changes in the evoked potential during sensory preconditioning. J Neurophysiol. 1998;80:529–545.
    1. McCormick DA, McGinley MJ, Salkoff DB. Brain state dependent activity in the cortex and thalamus. Curr Opin Neurobiol. 2015;31:133–140.
    1. McEchron MD, McCabe PM, Green EJ, Llabre MM, Schneiderman N. Simultaneous single unit recording in the medial nucleus of the medial geniculate nucleus and amygdaloid central nucleus throughout habituation, acquisition, and extinction of the rabbit's classically conditioned heart rate. Brain Res. 1995;682:157–166.
    1. McGeorge AJ, Faull RL. The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience. 1989;29:503–537.
    1. McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E, Cadwell CR, Tolias AS, Cardin JA, McCormick DA. Waking state: rapid variations modulate neural and behavioral responses. Neuron. 2015;87:1143–1161.
    1. Metherate R, Weinberger NM. Cholinergic modulation of responses to single tones produces tone-specific receptive field alterations in cat auditory cortex. Synapse. 1990;6:133–145.
    1. Monosov IE, Hikosaka O. Selective and graded coding of reward uncertainty by neurons in the primate anterodorsal septal region. Nat Neurosci. 2013;16:756–762.
    1. Morales M, Root DH. Glutamate neurons within the midbrain dopamine regions. Neuroscience. 2014;282:60–68.
    1. Muñoz W, Rudy B. Spatiotemporal specificity in cholinergic control of neocortical function. Curr Opin Neurobiol. 2014;26C:149–160.
    1. Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience. 2008;152:1024–1031.
    1. Nelson A, Mooney R. The Basal Forebrain and Motor Cortex Provide Convergent yet Distinct Movement-Related Inputs to the Auditory Cortex. Neuron. 2016;90:635–648.
    1. O'Connor KN, Allison TL, Rosenfield ME, Moore JW. Neural activity in the medial geniculate nucleus during auditory trace conditioning. Exp Brain Res. 1997;113:534–556.
    1. Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe-Uchida M. Organization of Monosynaptic Inputs to the Serotonin and Dopamine Neuromodulatory Systems. Cell Rep. 2014;8:1105–1118.
    1. Parikh V, Kozak R, Martinez V, Sarter M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron. 2007;56:141–154.
    1. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press; 2007.
    1. Phillis JW. Acetylcholine release from the cerebral cortex: its role in cortical arousal. Brain Res. 1968;7:378–389.
    1. Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC, Lee SH, Harrison TC, Feng G, Dan Y. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat Neurosci. 2013;16:1857–1863.
    1. Pollak Dorocic I, Fürth D, Xuan Y, Johansson Y, Pozzi L, Silberberg G, Carlén M, Meletis K. A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron. 2014;83:663–678.
    1. Power AE, McGaugh JL. Cholinergic activation of the basolateral amygdala regulates unlearned freezing behavior in rats. Behav Brain Res. 2002;134:307–315.
    1. Price JL, Stern R. Individual cells in the nucleus basalis--diagonal band complex have restricted axonal projections to the cerebral cortex in the rat. Brain Res. 1983;269:352–356.
    1. Rasmusson DD. Cholinergic modulation of sensory information. Prog Brain Res. 1993;98:357–364.
    1. Rasmusson DD, Smith SA, Semba K. Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat. Neuroscience. 2007;149:232–241.
    1. Ryugo DK, Weinberger NM. Differential plasticity of morphologically distinct neuron populations in the medical geniculate body of the cat during classical conditioning. Behav Biol. 1978;22:275–301.
    1. Sarter M, Bruno JP. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: Differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience. 2000;95:933–952.
    1. Saunders A, Oldenburg IA, Berezovskii VK, Johnson CA, Kingery ND, Elliott HL, Xie T, Gerfen CR, Sabatini BL. A direct GABAergic output from the basal ganglia to frontal cortex. Nature. 2015;5 In Press.
    1. Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, Ren J, Ibanes S, Malenka RC, Kremer EJ, et al. Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature. 2015 in press.
    1. Tingley D, Alexander AS, Kolbu S, de Sa VR, Chiba AA, Nitz DA. Task-phase-specific dynamics of basal forebrain neuronal ensembles. Front Syst Neurosci. 2014;8:174.
    1. Tritsch NX, Ding JB, Sabatini BL. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature. 2012;490:262–266.
    1. Unal CT, Paré D, Zaborszky L. Impact of Basal Forebrain Cholinergic Inputs on Basolateral Amygdala Neurons. J Neurosci. 2015;35:853–863.
    1. Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G. Local sleep in awake rats. Nature. 2011;472:443–447.
    1. Wall NR, Wickersham IR, Cetin A, De La Parra M, Callaway EM. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc Natl Acad Sci U S A. 2010;107:21848–21853.
    1. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron. 2012;74:858–873.
    1. Weissbourd B, Ren J, DeLoach KE, Guenthner CJ, Miyamichi K, Luo L. Presynaptic Partners of Dorsal Raphe Serotonergic and GABAergic Neurons. Neuron. 2014;83:645–662.
    1. Wickersham IR, Lyon DC, Barnard RJO, Mori T, Finke S, Conzelmann KK, Young JAT, Callaway EM. Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons. Neuron. 2007;53:639–647.
    1. Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron. 2011;72:721–733.
    1. Woolf NJ. Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol. 1991;37:475–524.
    1. Wu M, Zaborszky L, Hajszan T, van den Pol AN, Alreja M. Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons. J Neurosci. 2004;24:3527–3536.
    1. Xu M, Chung S, Zhang S, Zhong P, Ma C, Chang WC, Weissbourd B, Sakai N, Luo L, Nishino S, et al. Basal forebrain circuit for sleep-wake control. Nat Neurosci. 2015;18:1641–1647.
    1. Zaborszky L, Cullinan WE. Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res. 1992;570:92–101.
    1. Zaborszky L, Cullinan WE. Direct catecholaminergic-cholinergic interactions in the basal forebrain. I. Dopamine-beta-hydroxylase- and tyrosine hydroxylase input to cholinergic neurons. J Comp Neurol. 1996;374:535–554.
    1. Zaborszky L, Duque A. Local synaptic connections of basal forebrain neurons. Behav Brain Res. 2000;115:143–158.
    1. Zaborszky L, Wouterlood FG, Lanciego JL. Neuroanatomical Tract-Tracing. New York: Springer US; 2006. p. 3.
    1. Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage. 2008;42:1127–1141.
    1. Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, Nadasdy Z. Neurons in the Basal Forebrain Project to the Cortex in a Complex Topographic Organization that Reflects Corticocortical Connectivity Patterns: An Experimental Study Based on Retrograde Tracing and 3D Reconstruction. Cereb Cortex. 2015a;25:118–137.
    1. Zaborszky L, Duque A, Gielow M, Gombkötő P, Nádasdy Z, Somogyi J. The Rat Nervous System. Elsevier Inc; 2015b. Organization of the Basal Forebrain Cholinergic Projection System : Specific or Diffuse? pp. 489–505.

Source: PubMed

3
Subscribe