Current Directions in the Auricular Vagus Nerve Stimulation II - An Engineering Perspective

Eugenijus Kaniusas, Stefan Kampusch, Marc Tittgemeyer, Fivos Panetsos, Raquel Fernandez Gines, Michele Papa, Attila Kiss, Bruno Podesser, Antonino Mario Cassara, Emmeric Tanghe, Amine Mohammed Samoudi, Thomas Tarnaud, Wout Joseph, Vaidotas Marozas, Arunas Lukosevicius, Niko Ištuk, Sarah Lechner, Wlodzimierz Klonowski, Giedrius Varoneckas, Jozsef Constantin Széles, Antonio Šarolić, Eugenijus Kaniusas, Stefan Kampusch, Marc Tittgemeyer, Fivos Panetsos, Raquel Fernandez Gines, Michele Papa, Attila Kiss, Bruno Podesser, Antonino Mario Cassara, Emmeric Tanghe, Amine Mohammed Samoudi, Thomas Tarnaud, Wout Joseph, Vaidotas Marozas, Arunas Lukosevicius, Niko Ištuk, Sarah Lechner, Wlodzimierz Klonowski, Giedrius Varoneckas, Jozsef Constantin Széles, Antonio Šarolić

Abstract

Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging electroceutical technology in the field of bioelectronic medicine with applications in therapy. Artificial modulation of the afferent vagus nerve - a powerful entrance to the brain - affects a large number of physiological processes implicating interactions between the brain and body. Engineering aspects of aVNS determine its efficiency in application. The relevant safety and regulatory issues need to be appropriately addressed. In particular, in silico modeling acts as a tool for aVNS optimization. The evolution of personalized electroceuticals using novel architectures of the closed-loop aVNS paradigms with biofeedback can be expected to optimally meet therapy needs. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the scope of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on engineering aspects - a discussion of physiological aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.

Keywords: auricular nerves; auricular transillumination; in silico modeling; personalized stimulation; stimulation optimization; stimulation patterns; vagus nerve stimulation.

Figures

FIGURE 1
FIGURE 1
Natural sensory innervation of the auricle versus its artificial stimulation. (A) The vagus nerve (VN) connects the brain with most of the organs within the thorax and abdomen. Afferent auricular branches (aVN) leave the cervical VN at the level of the jugular ganglion just outside the cranium and innervate the rather central regions of the pinna of the outer ear (Peuker and Filler, 2002). (B) Electric stimulation of aVN endings with needle electrodes located within these central regions. NTS, nucleus of the solitary tract; NSNT, nucleus spinalis of the trigeminal nerve; NA, nucleus ambiguous; DMN, dorsal motor nucleus.
FIGURE 2
FIGURE 2
Wiring of vessels and nerves in the ear for the percutaneous aVNS. (A–C) High-resolution episcopic images of a volume biopsy in the cymba conchae of one male cadaver ear. Indicated blood vessels (in red) and nerves (green) reside apparently close to each other indicating their joint proliferation in the ear. (D) In order to find local auricular nerve branches, the outer ear is transilluminated to localize and visualize easily discernable auricular vessels which are less transparent than the surrounding tissue for green light. The visualized locations of vessels indicate the most likely regions of nerves, which serve for a personalized placement of stimulation needles.
FIGURE 3
FIGURE 3
CE-related regulatory pathway of aVNS medical devices.
FIGURE 4
FIGURE 4
Numerical modeling of aVNS with three stimulation electrodes. (A) Basic model of the tripolar stimulation with surface current electrodes. A single cathode carries the current i (=1 mA) and the two surrounding anodes i/2 each. The unmyelinated axon lays in parallel to electrodes at the depth of 2 mm. Activating functions f(x) are shown along the axon’s coordinate x, showing the influence of the electrode separation d. With decreasing d, the depolarized segment of the axon narrows [i.e., Δx decreases for f(x) > 0] while the local depolarization strength decreases [i.e., f(x) decreases for f(x) > 0]. (B) Advanced model of the tripolar stimulation with needle voltage electrodes. The spatial distribution of the local electric field E (in dB related to 150 V/m) is shown within the outer ear with the electric potential 1 V for the red electrode, –1 V for the blue, and 0 V for the green. In fact, the gradient of the electric field [proportional to f(x)] determines the potential excitation of straight nerves along x aligned typically along auricular vessels (Figure 2).
FIGURE 5
FIGURE 5
Personalized aVNS. (A) The closed-loop aVNS with the physiological biofeedback (e.g., magnitude of the pulse wave or HRV) which is used to control stimulation parameters of aVNS (e.g., the stimulus strength) in order to adhere to momentary therapeutic needs (e.g., optimal blood perfusion in legs). The biofeedback can also be used for a temporal synchronization of the applied stimuli with inner body rhythms (e.g., respiratory or cardiac cycle) to interfere constructively with the dynamics of the body. (B) aVNS of the afferent VN modulates activity of the efferent VN outflow to the heart, whereas the peripheral pulse wave arriving from the heart can be used as biofeedback to the stimulator of aVNS. (C) Personalized and optimized setting of stimulation needles and their stimulation patterns for the percutaneous aVNS based on an individualized ear model (Figure 4B) as derived from the transilluminated individual ear (Figure 2D). Therapy-relevant re-optimization of the stimulation patterns results when the closed-loop aVNS from the panels (A,B) operates. Here the level of the circle’s filling at each electrode position indicates the local stimulation strength which changes in the course of the closed-loop control.

References

    1. Alvord L. S., Farmer B. L. (1998). Anatomy and orientation of the human external ear. J. Am. Acad. Audiol. 8 383–390.
    1. Badran B. W., Brown J. C., Dowdle L. T., Mithoefer O. J., LaBate N. T., Coatsworth J., et al. (2018a). Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul. 11 947–948. 10.1016/j.brs.2018.06.003
    1. Badran B. W., Mithoefer O. J., Summer C. E., LaBate N. T., Glusman C. E., Badran A. W., et al. (2018b). Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 11 699–708. 10.1016/j.brs.2018.04.004
    1. Bald K. (2010). Systematic Evaluation of Parameters Of Electrical Stimulation of Auricular Nerve Endings. Diploma thesis, Vienna University of Technology; Vienna
    1. Barbanti P., Grazzi L., Egeo G., Padovan A. M., Liebler E., Bussone G. (2015). Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study. J. Headache Pain 16:61. 10.1186/s10194-015-0542-4
    1. Beekwilder J. P., Beems T. (2010). Overview of the clinical applications of vagus nerve stimulation. J. Clin. Neurophysiol. 27 130–138. 10.1097/WNP.0b013e3181d64d8a
    1. Ben-Menachem E., Revesz D., Simon B. J., Silberstein S. (2015). Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur. J. Neurol. 22 1260–1268. 10.1111/ene.12629
    1. Bermejo P., Lopez M., Larraya I., Chamorro J., Cobo J. L., Ordonez S., et al. (2017). Innervation of the human cavum conchae and auditory canal: anatomical basis for transcutaneous auricular nerve stimulation. Biomed. Res. Int. 2017:7830919. 10.1155/2017/7830919
    1. Berthoud H. R., Neuhuber W. L. (2001). Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85 1–17. 10.1016/S1566-0702(00)00215-0
    1. Bilgutay A. M., Bilgutay I. M., Merkel F. K., Lillehei C. W. (1968). Vagal tuning. A new concept in the treatment of supraventricular arrhythmias, angina pectoris, and heart failure. J. Thorac. Cardiovasc. Surg. 56 71–82.
    1. Boon K. H., Khalil-Hani M., Malarvili M. B., Sia C. W. (2016). Paroxysmal atrial fibrillation prediction method with shorter HRV sequences. Comput. Methods Programs Biomed. 134 187–196. 10.1016/j.cmpb.2016.07.016
    1. Boon P., Vonck K., van Rijckevorsel K., Tahry E. R., Elger C. E., Mullatti N., et al. (2015). A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure 32 52–61. 10.1016/j.seizure.2015.08.011
    1. Brown G. L., Eccles J. C. (1934). The action of a single vagal volley on the rhythm of the heart beat. J. Physiol. 82 211–241. 10.1113/jphysiol.1934.sp003176
    1. Buchholz B., Donato M., Perez V., Deutsch A. C. R., Hocht C., Del Mauro J. S., et al. (2014). Changes in the loading conditions induced by vagal stimulation modify the myocardial infarct size through sympathetic-parasympathetic interactions. Pflugers Arch 467 1509–1522. 10.1007/s00424-014-1591-2
    1. Burger A. M., Verkuil B. (2018). Transcutaneous nerve stimulation via the tragus: are we really stimulating the vagus nerve? Brain Stimul. 11 945–946. 10.1016/j.brs.2018.03.018
    1. Busch V., Zeman F., Heckel A., Menne F., Ellrich J., Eichhammer P. (2012). The effect of transcutaneous vagus nerve stimulation on pain perception–an experimental study. Brain Stimul. 6 202–209. 10.1016/j.brs.2012.04.006
    1. Carmeliet P., Tessier-Lavigne M. (2005). Common mechanisms of nerve and blood vessel wiring. Nature 436 193–200. 10.1038/nature03875
    1. Chen M., Yu L., Ouyang F., Liu Q., Wang Z., Wang S., et al. (2015). The right side or left side of noninvasive transcutaneous vagus nerve stimulation: Based on conventional wisdom or scientific evidence? Int. J. Cardiol. 187 44–45. 10.1016/j.ijcard.2015.03.351
    1. Dawson J., Pierce D., Dixit A., Kimberley T. J., Robertson M., Tarver B., et al. (2015). Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke 47 143–150. 10.1161/STROKEAHA.115.010477
    1. De Ridder D., Vanneste S., Engineer N. D., Kilgard M. P. (2013). Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation 17 170–179. 10.1111/ner.12127
    1. De Taeye L., Vonck K., van Bochove M., Boon P., Van Roost D., Mollet L., et al. (2014). The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy. Neurotherapeutics 11 612–622. 10.1007/s13311-014-0272-3
    1. Deuchars S. A., Lall V. K., Clancy J., Mahadi M., Murray A., Peers L., et al. (2017). Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation. Exp. Physiol. 103 326–331. 10.1113/EP086433
    1. Dietrich S., Smith J., Scherzinger C., Hofmann-Preiss K., Freitag T., Eisenkolb A., et al. (2008). [A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI]. Biomed. Tech. 53 104–111. 10.1515/BMT.2008.022
    1. Eggleston K. S., Olin B. D., Fisher R. S. (2014). Ictal tachycardia: the head-heart connection. Seizure 23 496–505. 10.1016/j.seizure.2014.02.012
    1. Ellrich J. (2011). Transcutaneous vagus nerve stimulation. Eur. Neurol. Rev. 6 254–256.
    1. Ellrich J., Lamp S. (2005). Peripheral nerve stimulation inhibits nociceptive processing: an electrophysiological study in healthy volunteers. Neuromodulation 8 225–232. 10.1111/j.1525-1403.2005.00029.x
    1. Fallen E. L., Kamath M. V., Tougas G., Upton A. (2001). Afferent vagal modulation. Clinical studies of visceral sensory input. Auton. Neurosci. 90 35–40. 10.1016/S1566-0702(01)00265-X
    1. Frei M. G., Osorio I. (2001). Left vagus nerve stimulation with the neurocybernetic prosthesis has complex effects on heart rate and on its variability in humans. Epilepsia 42 1007–1016. 10.1046/j.1528-1157.2001.0420081007.x
    1. Garcia R. G., Lin R. L., Lee J., Kim J., Barbieri R., Sclocco R., et al. (2017). Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients. Pain 158 1461–1472. 10.1097/j.pain.0000000000000930
    1. Gaul C., Diener H. C., Silver N., Magis D., Reuter U., Andersson A., et al. (2016). Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia 36 534–546. 10.1177/0333102415607070
    1. Grant P. F., Lowery M. M. (2012). Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation. IEEE Trans. Neural. Syst. Rehabil. Eng. 21 584–594. 10.1109/TNSRE.2012.2202403
    1. Groves D. A., Brown V. J. (2005). Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 29 493–500. 10.1016/j.neubiorev.2005.01.004
    1. Guiraud D., Andreu D., Bonnet S., Carrault G., Couderc P., Hagege A., et al. (2016). Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation. J. Neural. Eng. 13 1–21. 10.1088/1741-2560/13/4/041002
    1. Hays S. A. (2015). Enhancing rehabilitative therapies with vagus nerve stimulation. Neurotherapeutics 13 382–394. 10.1007/s13311-015-0417-z
    1. He W., Wang X., Shi H., Shang H., Li L., Jing X., et al. (2012). Auricular acupuncture and vagal regulation. Evid. Based Complement Alternat. Med. 2012:786839. 10.1155/2012/786839
    1. Howland R. H. (2014). Vagus nerve stimulation. Curr. Behav. Neurosci. Rep. 1 64–73. 10.1007/s40473-014-0010-5
    1. ICNIRP (1998). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys. 74 494–522.
    1. Jodoin V. D., Lespérance P., Nguyen D. K., Fournier-Gosselin M.-P., Richer F. (2015). Effects of vagus nerve stimulation on pupillary function. Int. J. Psychophysiol. 98 455–459. 10.1016/j.ijpsycho.2015.10.001
    1. Kampusch S., Kaniusas E., Szeles C. (2013). “New approaches in multi-punctual percutaneous stimulation of the auricular vagus nerve,” in Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER) 2013 (San Diego, CA: IEEE; ) 263–266. 10.1109/ner.2013.6695922
    1. Kampusch S., Kaniusas E., Thürk F., Felten D., Hofmann I., Szeles C. (2016). Device development guided by user satisfaction survey on auricular vagus nerve stimulation. Curr. Dir. Biomed. Eng. 2 593–597. 10.1515/cdbme-2016-0131
    1. Kandel E. R., Schwartz J. H., Jessell T. M. (2000). Principles of Neural Science. New York, NY: McGraw-Hill.
    1. Kaniusas E. (2012). Biomedical Signals and Sensors I: Linking Physiological Phenomena and Biosignals. Berlin: Springer Publisher; 10.1007/978-3-642-24843-6
    1. Kaniusas E. (2019). Biomedical Signals and Sensors III: Linking Electric Biosignals and Biomedical Sensors. Berlin: Springer Publisher.
    1. Kaniusas E., Kampusch S., Tittgemeyer M., Panetsos F., Gines R. F., Papa M., et al. (2019). Current directions in the auricular vagus nerve stimulation I - a physiological perspective. Front. Neurosci.
    1. Kaniusas E., Szeles C., Materna T., Varoneckas G. (2009). “Adaptive auricular electrical stimulation controlled by vital biosignals,” in Proceedings of the 2nd International Conference on Biomedical Electronics and Devices (BIODEVICES) Porto: 304–309. 10.5220/0001779703040309
    1. Kaniusas E., Varoneckas G., Mahr B., Szeles C. (2011). Optic visualization of auricular nerves and blood vessels: optimisation and validation. IEEE Trans. Instrum. Meas. 60 3253–3258. 10.1109/tim.2011.2159314
    1. Karemaker J. M. (2017). An introduction into autonomic nervous function. Physiol. Meas. 38 R89–R118. 10.1088/1361-6579/aa6782
    1. Kothe A. R. (2009). Transcutaneous Vagus Nerve Stimulation - Change of psychometric parameters as a function of different stimulation regions. Ph.D. thesis, Friedrich-Alexander-University; Erlangen.
    1. Kovacic K., Hainsworth K., Sood M., Chelimsky G., Unteutsch R., Nugent M., et al. (2017). Neurostimulation for abdominal pain-related functional gastrointestinal disorders in adolescents: a randomised, double-blind, sham-controlled trial. Lancet Gastroenterol. Hepatol. 2 727–737. 10.1016/S2468-1253(17)30253-4
    1. Kreuzer P. M., Landgrebe M., Husser O., Resch M., Schecklmann M., Geisreiter F., et al. (2012). Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front. Psychiatry 3:70. 10.3389/fpsyt.2012.00070
    1. Kuhn A., Keller T., Lawrence M., Morari M. (2008). A model for transcutaneous current stimulation: simulations and experiments. Med. Biol. Eng. Comput. 47 279–289. 10.1007/s11517-008-0422-z
    1. Lehtimaki J., Hyvarinen P., Ylikoski M., Bergholm M., Makela J. P., Aarnisalo A., et al. (2012). Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Otolaryngol. 133 378–382. 10.3109/00016489.2012.750736
    1. Liporace J., Hucko D., Morrow R., Barolat G., Nei M., Schnur J., et al. (2001). Vagal nerve stimulation: adjustments to reduce painful side effects. Neurology 57 885–886. 10.1212/wnl.57.5.885
    1. Liu H., Yang Z., Huang L., Qu W., Hao H., Li L. (2017). Heart-rate variability indices as predictors of the response to vagus nerve stimulation in patients with drug-resistant epilepsy. Epilepsia 58 1015–1022. 10.1111/epi.13738
    1. Mahadi K. M., Lall V. K., Deuchars S. A., Deuchars J. (2019). Cardiovascular autonomic effects of transcutaneous auricular nerve stimulation via the tragus in the rat involve spinal cervical sensory afferent pathways. Brain Stimul. 10.1016/j.brs.2019.05.002 [Epub ahead of print].
    1. Martlé V., Peremans K., Raedt R., Vermeire S., Vonck K., Boon P., et al. (2014). Regional brain perfusion changes during standard and microburst vagus nerve stimulation in dogs. Epilepsy Res. 108 616–622. 10.1016/j.eplepsyres.2014.02.004
    1. McIntyre C. C., Richardson A. G., Grill W. M. (2002). Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J. Neurophysiol. 87 995–1006. 10.1152/jn.00353.2001
    1. Mercante B., Ginatempo F., Manca A., Melis F., Enrico P., Deriu F. (2018). Anatomo-physiologic basis for auricular stimulation. Med. Acupunct. 30 141–150. 10.1089/acu.2017.1254
    1. Mertens A., Raedt R., Gadeyne S., Carrette E., Boon P., Vonck K. (2018). Recent advances in devices for vagus nerve stimulation. Expert Rev. Med. Devices 15 527–539. 10.1080/17434440.2018.1507732
    1. Morris G. L. (2003). A retrospective analysis of the effects of magnet-activated stimulation in conjunction with vagus nerve stimulation therapy. Epilepsy Behav. 4 740–745. 10.1016/s1525-5050(03)00225-7
    1. Morris J., Straube A., Diener H.-C., Ahmed F., Silver N., Walker S., et al. (2016). Cost-effectiveness analysis of non-invasive vagus nerve stimulation for the treatment of chronic cluster headache. J. Headache Pain 17 1–9. 10.1186/s10194-016-0633-x
    1. Napadow V., Edwards R. R., Cahalan C. M., Mensing G., Greenbaum S., Valovska A., et al. (2012). Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain Med. 13 777–789. 10.1111/j.1526-4637.2012.01385.x
    1. Nayak S. K., Bit A., Dey A., Mohapatra B., Pal K. (2018). A review on the nonlinear dynamical system analysis of electrocardiogram signal. J. Healthc. Eng. 2018:6920420. 10.1155/2018/6920420
    1. Neufeld E., Cassará A. M., Montanaro H., Kuster N., Kainz W. (2016). Functionalized anatomical models for EM-neuron Interaction modeling. Phys. Med. Biol. 61 4390–4401. 10.1088/0031-9155/61/12/4390
    1. Neufeld E., Szczerba D., Chavannes N., Kuster N. (2014). A novel medical image data-based multi-physics simulation platform for computational life sciences. Interface Focus 3 1–6. 10.1098/rsfs.2012.0058
    1. Nonis R., D’Ostilio K., Schoenen J., Magis D. (2017). Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: an electrophysiological study in healthy volunteers. Cephalalgia 37 1285–1293. 10.1177/0333102417717470
    1. Olofsson P. S., Levine Y. A., Caravaca A., Chavan S. S., Pavlov V. A., Faltys M., et al. (2015). Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectron. Med. 2:2010037.
    1. Peña D. F., Engineer N. D., McIntyre C. K. (2012). Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol. Psychiatry 73 1071–1077. 10.1016/j.biopsych.2012.10.021
    1. Peuker E. T., Filler T. J. (2002). The nerve supply of the human auricle. Clin. Anat. 15 35–37. 10.1002/ca.1089
    1. Pierzchalski M., Stepien R. A., Stepien P. (2011). New nonlinear methods of heart rate variability analysis in diagnostics of atrial fibrillation. Int. J. Biol. Biomed. Eng. 4 201–208.
    1. Polak T., Markulin F., Ehlis A.-C., Langer J. B. M., Ringel T. M., Fallgatter A. J. (2009). Far field potentials from brain stem after transcutaneous vagus nerve stimulation: optimization of stimulation and recording parameters. J. Neural. Transm. 116 1237–1242. 10.1007/s00702-009-0282-1
    1. Raedt R., Clinckers R., Mollet L., Vonck K., Wyckhuys T., De Herdt V., et al. (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J. Neurochem. 117 461–469. 10.1111/j.1471-4159.2011.07214.x
    1. Rattay F. (1986). Analysis of models for external stimulation of axons. IEEE Trans. Biomed. Eng. 33 974–977. 10.1109/TBME.1986.325670
    1. Rattay F. (1990). Electrical Nerve Stimulation: Theory, Experiments and Applications. Berlin: Springer Publisher.
    1. Rattay F. (1999). The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89 335–346. 10.1016/s0306-4522(98)00330-3
    1. Ravan M., Sabesan S., D’Cruz O. (2017). On quantitative biomarkers of VNS therapy using EEG and ECG signals. IEEE Trans. Biomed. Eng. 64 419–428. 10.1109/TBME.2016.2554559
    1. Razlighi B. D., Kampusch S., Geyer S. H., Le H., Thürk F., Brenner S., et al. (2018). “In-Silico Ear Model Based on Episcopic Images for Percutaneous Auricular Vagus Nerve Stimulation,” in proceedings of the EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med) 2018 (Split: FESB, University of Split; ) 1–2. 10.23919/emf-med.2018.8526013
    1. Reilly J. P., Diamant A. M. (2011). Electrostimulation: Theory, Applications, and Computational Model. London: Artech House Publisher.
    1. Roberts A., Sithole A., Sedghi M., Walker C. A., Quinn T. M. (2016). Minimal adverse effects profile following implantation of periauricular percutaneous electrical nerve field stimulators: a retrospective cohort study. Med. Devices 9 389–393. 10.2147/MDER.S107426
    1. Romero-Ugalde H. M., Le Rolle V., Bonnet J.-L., Henry C., Mabo P., Carrault G., et al. (2017). Closed-loop vagus nerve stimulation based on state transition models. IEEE Trans. Biomed. Eng. 65 1630–1638. 10.1109/TBME.2017.2759667
    1. Romero-Ugalde H. M., Ojeda D., Le Rolle V., Andreu D., Guiraud D., Bonnet J.-L., et al. (2015). Model-based design and experimental validation of control modules for neuromodulation devices. IEEE Trans. Biomed. Eng. 63 1551–1558. 10.1109/TBME.2015.2498878
    1. Safi S., Ellrich J., Neuhuber W. (2016). Myelinated axons in the auricular branch of the human vagus nerve. Anat. Rec. 299 1184–1191. 10.1002/ar.23391
    1. Salam M. T., Velazquez J. L. P., Genov R. (2015). Seizure suppression efficacy of closed-loop versus open-loop deep brain stimulation in a rodent model of Epilepsy. IEEE Trans. Neural. Syst. Rehabil. Eng. 24 710–719. 10.1109/TNSRE.2015.2498973
    1. Samoudi A., Kampusch S., Tanghe E., Szeles C., Martens L., Kaniusas E., et al. (2019). Sensitivity analysis of a numerical model for percutaneous auricular vagus nerve stimulation. Appl. Sci. 9 540–553. 10.3390/app9030540
    1. Samoudi A. M., Kampusch S., Tanghe E., Szeles C., Martens L., Kaniusas E., et al. (2017). Numerical modeling of percutaneous auricular vagus nerve stimulation: a realistic 3D model to evaluate sensitivity of neural activation to electrode position. Med. Biol. Eng. Comput. 55 1763–1772. 10.1007/s11517-017-1629-7
    1. Sator-Katzenschlager S. M., Michalek-Sauberer A. (2007). P-Stim auricular electroacupuncture stimulation device for pain relief. Expert Rev. Med. Devices 4 23–32. 10.1586/17434440.4.1.23
    1. Sator-Katzenschlager S. M., Scharbert G., Kozek-Langenecker S. A., Szeles J. C., Finster G., Schiesser A. W., et al. (2004). The short- and long-term benefit in chronic low back pain through adjuvant electrical versus manual auricular acupuncture. Anesth. Analg. 98 1359–1364. 10.1213/01.ane.0000107941.16173.f7
    1. Sclocco R., Garcia R. G., Kettner N. W., Isenburg K., Fisher H. P., Hubbard C. S., et al. (2019). The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: a multimodal ultrahigh-field (7T) fMRI study. Brain Stimul. 12 911–921. 10.1016/j.brs.2019.02.003
    1. Shinlapawittayatorn K., Chinda K., Palee S., Surinkaew S., Kumfu S., Kumphune S., et al. (2014). Vagus nerve stimulation initiated late during ischemia, but not reperfusion, exerts cardioprotection via amelioration of cardiac mitochondrial dysfunction. Heart Rhythm 11:2278. 10.1016/j.hrthm.2014.08.001
    1. Siauciunaite V., Kaniusas E., Kampusch S., Szeles J. C., Vainoras A. (2018). “Auricular vagus nerve stimulation affects fractality of the human body as resolved by advanced ECG,” in Proceedings of the EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med) 2018 (Split: FESB, University of Split; ) 1–2. 10.23919/emf-med.2018.8526021
    1. Silberstein S. D., Calhoun A. H., Lipton R. B., Grosberg B. M., Cady R. K., Dorlas S., et al. (2016). Chronic migraine headache prevention with noninvasive vagus nerve stimulation: the event study. Neurology 87 529–538. 10.1212/WNL.0000000000002918
    1. Standring S. (2016). Gray’s Anatomy, The Anatomical Basis of Clinical Practice 41st Edn Amsterdam: Elsevier Publisher.
    1. Stanslaski S., Afshar P., Cong P., Giftakis J., Stypulkowski P., Carlson D., et al. (2012). Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans. Neural. Syst. Rehabil. Eng. 20 410–421. 10.1109/TNSRE.2012.2183617
    1. Stavrakis S., Po S. S. (2015). Neuroimmunomodulation: a new frontier of treating cardiovascular diseases. Trends Cardiovasc. Med. 26 12–13. 10.1016/j.tcm.2015.04.007
    1. Straube A., Ellrich J., Eren O., Blum B., Ruscheweyh R. (2015). Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J. Headache Pain 16 1–9. 10.1186/s10194-015-0543-3
    1. Sweeney J. D., Mortimer J. T., Durand D. (1987). “Modeling of mammalian myelinated nerve for functional neuromuscular stimulation,” in Proceedings of the IEEE 9th Annual Conference of the Engineering in Medicine and Biology Society (Boston, MA: IEEE; ).
    1. Szabó C. Á, Salinas F. S., Papanastassiou A. M., Begnaud J., Ravan M., Eggleston K. S., et al. (2017). High-frequency burst vagal nerve simulation therapy in a natural primate model of genetic generalized epilepsy. Epilepsy Res. 138 46–52. 10.1016/j.eplepsyres.2017.10.010
    1. Tarnaud T., Joseph W., Martens L., Tanghe E. (2018). Dependence of excitability indices on membrane channel dynamics, myelin impedance, electrode location and stimulus waveforms in myelinated and unmyelinated fibre models. Med. Biol. Eng. Comput. 56 1595–1613. 10.1007/s11517-018-1799-y
    1. Tekdemir I., Aslan A., Elhan A. (1998). A clinico-anatomic study of the auricular branch of the vagus nerve and Arnold’s ear-cough reflex. Surg. Radiol. Anat. 20 253–257. 10.1007/s00276-998-0253-5
    1. Tilotta F., Lazaroo B., Laujac M.-H., Gaudy J.-F. (2008). A study of the vascularization of the auricle by dissection and diaphanization. Surg. Radiol. Anat. 31 259–265. 10.1007/s00276-008-0438-y
    1. Tosato M., Yoshida K., Toft E., Nekrasas V., Struijk J. J. (2006). Closed-loop control of the heart rate by electrical stimulation of the vagus nerve. Med. Biol. Eng. Comput. 44 161–169. 10.1007/s11517-006-0037-1
    1. Ward M. P., Qing K. Y., Otto K. J., Worth R. M., John S. W. M., Irazoqui P. P. (2014). A flexible platform for biofeedback-driven control and personalization of electrical nerve stimulation therapy. IEEE Trans. Neural. Syst. Rehabil. Eng. 23 475–484. 10.1109/TNSRE.2014.2351271
    1. Yakunina N., Kim S. S., Nam E.-C. (2016). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation 20 290–300. 10.1111/ner.12541
    1. Yuan H., Silberstein S. D. (2015). Vagus nerve and vagus nerve stimulation, a comprehensive review: part II. Headache 56 259–266. 10.1111/head.12650
    1. Zhang Y., Mowrey K. A., Zhuang S., Wallick D. W., Popović Z. B., Mazgalev T. N. (2002). Optimal ventricular rate slowing during atrial fibrillation by feedback AV nodal-selective vagal stimulation. Am. J. Physiol. Heart Circ. Physiol. 282 H1102–H1110. 10.1152/ajpheart.00738.2001

Source: PubMed

3
Subscribe