Electronic cigarettes may not be a "safer alternative" of conventional cigarettes during pregnancy: evidence from the nationally representative PRAMS data

Sooyong Kim, Sanda Cristina Oancea, Sooyong Kim, Sanda Cristina Oancea

Abstract

Background: Conventional cigarette (CC) smoking is one of the most preventable causes of adverse birth outcomes. Although electronic cigarettes (ECs) are considered to be safer than CCs during pregnancy, the evidence is yet to be presented. This study examines the effects of prenatal EC use on neonatal birth outcomes compared to those of CC smokers and complete tobacco abstainers.

Methods: Data was extracted from 55,251 pregnant women who participated in the Phase 8 survey of the Pregnancy Risk Assessment Monitoring System between 2016 and 2018. Participants were classified into three groups based on their smoking behaviors in the third trimester: complete tobacco abstinence, exclusive CC smoking, or exclusive EC use. Adverse outcomes included infants being small-for-gestational-age (SGA), having low birthweight (LBW), and being born at preterm. EC users were matched to complete abstainers and CC smokers who share the same baseline characteristics in race/ethnicity, age, educational attainment, income, prenatal care adequacy, and first- and second-trimester CC smoking statuses. The association between EC use and adverse birth outcomes were examined by survey-weighted logistic regression analyses in the matched population.

Results: Among participants, 1.0% of women reported having used ECs during the third trimester, 60% of which reported using ECs exclusively. Neonates of EC users were significantly more likely to be SGA (OR 1.76; 95% CI 1.04, 2.96), have LBW (OR 1.53; 95% CI 1.06, 2.22), or be born preterm (OR 1.86; 95% CI 1.11, 3.12) compared to tobacco abstainers. However, odds of EC users' pregnancies resulting in SGA (OR 0.67; 95% CI 0.30, 1.47), LBW (OR 0.71; 95% CI 0.37, 1.37), or preterm birth (OR 1.06; 95% CI 0.46, 2.48) were not significantly lower than those of CC smokers.

Conclusions: Even after accounting for shared risk factors between prenatal tobacco use and adverse birth outcomes, EC use remains an independent risk factor for neonatal complications and is not a safer alternative to CC smoking during pregnancy. Until further research is completed, all pregnant women are encouraged to abstain from all tobacco products including ECs.

Keywords: Adverse birth outcomes; Electronic cigarette; PRAMS; Prenatal tobacco use.

Conflict of interest statement

After the submission of this initial manuscript and the first-round revision, SK became employed by Pinney Associates, which provides consulting services on tobacco harm minimization to JUUL Labs, Inc. The conceptualization, design, analysis, interpretation, or presentation of data presented in this study precedes this competing interest, and JUUL Labs, Inc. had no role in this research.

Figures

Fig. 1
Fig. 1
Selection of the final study sample

References

    1. Cnattingius S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob Res. 2004;6(Suppl 2):125–40.
    1. Castles A, Adams EK, Melvin CL, Kelsch C, Boulton ML. Effects of smoking during pregnancy. Five meta-analyses. Am J Prev Med. 1999;16(3):208–15.
    1. Horta BL, Victora CG, Menezes AM, Halpern R, Barros FC. Low birthweight, preterm births and intrauterine growth retardation in relation to maternal smoking. Paediatr Perinat Epidemiol. 1997;11(2):140–51.
    1. Kallen K. The impact of maternal smoking during pregnancy on delivery outcome. Eur J Public Health. 2001;11(3):329–33.
    1. Centers for Disease Control. The Surgeon General’s 1990 Report on The Health Benefits of Smoking Cessation. Executive Summary. MMWR Recomm Rep. 1990, 39(RR-12):i-xv, 1–12.
    1. Butler NR, Goldstein H, Ross EM. Cigarette smoking in pregnancy: its influence on birth weight and perinatal mortality. Br Med J. 1972;2(5806):127–30.
    1. D’Souza SW, Black P, Richards B. Smoking in pregnancy: associations with skinfold thickness, maternal weight gain, and fetal size at birth. Br Med J (Clin Res Ed) 1981;282(6277):1661–3.
    1. Steyn K, de Wet T, Saloojee Y, Nel H, Yach D. The influence of maternal cigarette smoking, snuff use and passive smoking on pregnancy outcomes: the Birth To Ten Study. Paediatr Perinat Epidemiol. 2006;20(2):90–9.
    1. Haberg SE, Stigum H, Nystad W, Nafstad P. Effects of pre- and postnatal exposure to parental smoking on early childhood respiratory health. Am J Epidemiol. 2007;166(6):679–86.
    1. von Kries R, Toschke AM, Koletzko B, Slikker W., Jr Maternal smoking during pregnancy and childhood obesity. Am J Epidemiol. 2002;156(10):954–61.
    1. Ashford J, van Lier PA, Timmermans M, Cuijpers P, Koot HM. Prenatal smoking and internalizing and externalizing problems in children studied from childhood to late adolescence. J Am Acad Child Adolesc Psychiatry. 2008;47(7):779–87.
    1. Huijbregts SC, Seguin JR, Zoccolillo M, Boivin M, Tremblay RE. Associations of maternal prenatal smoking with early childhood physical aggression, hyperactivity-impulsivity, and their co-occurrence. J Abnorm Child Psychol. 2007;35(2):203–15.
    1. Oh K, Xu Y, Terrizzi BF, Lanphear B, Chen A, Kalkbrenner AE, Yolton K. Associations Between Early Low-Level Tobacco Smoke Exposure and Executive Function at Age 8 Years. J Pediatr. 2020;221:174-180.e1.
    1. Lumley J, Chamberlain C, Dowswell T, Oliver S, Oakley L, Watson L. Interventions for promoting smoking cessation during pregnancy. Cochrane Database Syst Rev. 2009;3:CD001055.
    1. Tod AM. Barriers to smoking cessation in pregnancy: a qualitative study. Br J Community Nurs. 2003;8(2):56–64.
    1. Osadchy A, Kazmin A, Koren G. Nicotine replacement therapy during pregnancy: recommended or not recommended? J Obstet Gynaecol Can. 2009;31(8):744–7. doi: 10.1016/S1701-2163(16)34281-5.
    1. U.S. Department of Health and Human Services . A Report of the Surgeon General. Atlanta: U.S Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2014. The Health Consequences of Smoking – 50 Years of Progress.
    1. Drake P, Driscoll AK, Mathews TJ. Cigarette Smoking During Pregnancy: United States, 2016. NCHS Data Brief. 2018;305:1–8.
    1. U.S. Department of Health and Human Services. In: E-Cigarette Use Among Youth and Young Adults: A Report of the Surgeon General. edn. Atlanta (GA): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2016.
    1. Gentzke AS, Creamer M, Cullen KA, Ambrose BK, Willis G, Jamal A, King BA. Vital Signs: Tobacco Product Use Among Middle and High School Students - United States, 2011–2018. MMWR Morb Mortal Wkly Rep. 2019;68(6):157–64.
    1. Davidson K, Brancato A, Heetderks P, Mansour W, Matheis E, Nario M, Rajagopalan S, Underhill B, Wininger J, Fox D: Outbreak of Electronic-Cigarette-Associated Acute Lipoid Pneumonia - North Carolina, July-August 2019. MMWR Morb Mortal Wkly Rep. 2019; 68(36):784–786.
    1. Pisinger C, Dossing M. A systematic review of health effects of electronic cigarettes. Prev Med. 2014;69:248–60.
    1. Ashford K, Wiggins A, Butler K, Ickes M, Rayens MK, Hahn E. e-Cigarette use and perceived harm among women of childbearing age who reported tobacco use during the past year. Nurs Res. 2016;65(5):408–14.
    1. Mark KS, Farquhar B, Chisolm MS, Coleman-Cowger VH, Terplan M. Knowledge, attitudes, and practice of electronic cigarette use among pregnant women. J Addict Med. 2015;9(4):266–72.
    1. Baeza-Loya S, Viswanath H, Carter A, Molfese DL, Velasquez KM, Baldwin PR, Thompson-Lake DG, Sharp C, Fowler JC, De La Garza R. 2nd et al: Perceptions about e-cigarette safety may lead to e-smoking during pregnancy. Bull Menninger Clin 2014, 78(3):243–52.
    1. Kahr MK, Padgett S, Shope CD, Griffin EN, Xie SS, Gonzalez PJ, Levison J, Mastrobattista J, Abramovici AR, Northrup TF, et al. A qualitative assessment of the perceived risks of electronic cigarette and hookah use in pregnancy. BMC Public Health. 2015;15:1273.
    1. Wagner NJ, Camerota M, Propper C. Prevalence and perceptions of electronic cigarette use during pregnancy. Matern Child Health J. 2017;21(8):1655–61.
    1. Kapaya M, D’Angelo DV, Tong VT, England L, Ruffo N, Cox S, Warner L, Bombard J, Guthrie T, Lampkins A, et al. Use of electronic vapor products before, during, and after pregnancy among women with a recent live birth - Oklahoma and Texas, 2015. MMWR Morb Mortal Wkly Rep. 2019;68(8):189–194.
    1. Kurti AN, Redner R, Lopez AA, Keith DR, Villanti AC, Stanton CA, Gaalema DE, Bunn JY, Doogan NJ, Cepeda-Benito A, et al. Tobacco and nicotine delivery product use in a national sample of pregnant women. Prev Med. 2017;104:50–6.
    1. Holbrook BD. The effects of nicotine on human fetal development. Birth Defects Res C Embryo Today. 2016;108(2):181–92.
    1. Spindel ER, McEvoy CT. The Role of Nicotine in the Effects of Maternal Smoking during Pregnancy on Lung Development and Childhood Respiratory Disease. Implications for Dangers of E-Cigarettes. Am J Respir Crit Care Med. 2016;193(5):486–94.
    1. Whittington JR, Simmons PM, Phillips AM, Gammill SK, Cen R, Magann EF, Cardenas VM. The Use of Electronic Cigarettes in Pregnancy: A Review of the Literature. Obstet Gynecol Surv. 2018;73(9):544–9.
    1. Wang X, Lee NL, Burstyn I. Smoking and use of electronic cigarettes (vaping) in relation to preterm birth and small-for-gestational-age in a 2016 U.S. national sample. Prev Med. 2020;134:106041.
    1. Salomon LJ, Bernard JP, Ville Y. Estimation of fetal weight: reference range at 20–36 weeks’ gestation and comparison with actual birth-weight reference range. Ultrasound Obstet Gynecol. 2007;29(5):550–5.
    1. Blatt K, Moore E, Chen A, Van Hook J, DeFranco EA. Association of reported trimester-specific smoking cessation with fetal growth restriction. Obstet Gynecol. 2015;125(6):1452–9.
    1. Lieberman E, Gremy I, Lang JM, Cohen AP. Low birthweight at term and the timing of fetal exposure to maternal smoking. Am J Public Health. 1994;84(7):1127–31.
    1. Suzuki K, Sato M, Zheng W, Shinohara R, Yokomichi H, Yamagata Z. Effect of maternal smoking cessation before and during early pregnancy on fetal and childhood growth. J Epidemiol. 2014;24(1):60–6.
    1. Marsot A, Simon N. Nicotine and Cotinine Levels With Electronic Cigarette: A Review. Int J Toxicol. 2016;35(2):179–85.
    1. Goel R, Durand E, Trushin N, Prokopczyk B, Foulds J, Elias RJ, Richie JP., Jr Highly reactive free radicals in electronic cigarette aerosols. Chem Res Toxicol. 2015;28(9):1675–7. doi: 10.1021/acs.chemrestox.5b00220.
    1. Albuquerque CA, Smith KR, Johnson C, Chao R, Harding R. Influence of maternal tobacco smoking during pregnancy on uterine, umbilical and fetal cerebral artery blood flows. Early Hum Dev. 2004;80(1):31–42.
    1. Stone WL, Bailey B, Khraisha N. The pathophysiology of smoking during pregnancy: a systems biology approach. Front Biosci (Elite Ed) 2014;6:318–28.
    1. Shulman HB, D’Angelo DV, Harrison L, Smith RA, Warner L. The pregnancy risk assessment monitoring system (PRAMS): overview of design and methodology. Am J Public Health. 2018;108(10):1305–13.
    1. Battaglia FC, Lubchenco LO. A practical classification of newborn infants by weight and gestational age. J Pediatr. 1967;71(2):159–63.
    1. World Health Organization. Organization WH: Global Nutrition Targets 2025: Low birth weight policy brief. 2014. Global Nutrition Targets 2015, 2025.
    1. World Health Organization. Organization WH. Born too soon: the global action report on preterm birth. 2012.
    1. Kotelchuck M. An evaluation of the Kessner adequacy of prenatal care index and a proposed adequacy of prenatal care utilization index. Am J Public Health. 1994;84(9):1414–20.
    1. Reeves MJ, Rafferty AP. Healthy lifestyle characteristics among adults in the United States, 2000. Arch Intern Med. 2005;165(8):854–7.
    1. Kypriotakis G, Robinson JD, Green CE, Cinciripini PM. Patterns of tobacco product use and correlates among adults in the population assessment of tobacco and health (PATH) study: a latent class analysis. Nicotine Tob Res. 2018;20(suppl_1):81–7.
    1. Rosenbaum PR. Observational Studies. 2. New York: Srpinger Science; 2002.
    1. Ho DE, Imai K, King G, Stuart EA. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J Stat Softw. 2011;42(8):1–28. .
    1. Qiu W. powerMediation: Power/Sample Size Calculation for Mediation Anlaysis. 2018.
    1. Lumley T: survey: Analysis of complex survey samples. In., 3.35-1, edn; 2019.
    1. R Foundation for Statistical Computing. R: A language and environment for statistical computing. In., 3.3.0, edn; 2018.
    1. Suter MA, Mastrobattista J, Sachs M, Aagaard K. Is there evidence for potential harm of electronic cigarette use in pregnancy? Birth Defects Res A Clin Mol Teratol. 2015;103(3):186–95.
    1. England LJ, Bunnell RE, Pechacek TF, Tong VT, McAfee TA. Nicotine and the Developing Human: A Neglected Element in the Electronic Cigarette Debate. Am J Prev Med. 2015;49(2):286–93.
    1. Orzabal MR, Lunde-Young ER, Ramirez JI, Howe SYF, Naik VD, Lee J, Heaps CL, Threadgill DW, Ramadoss J. Chronic exposure to e-cig aerosols during early development causes vascular dysfunction and offspring growth deficits. Transl Res. 2019;207:70–82.
    1. Laube BL, Afshar-Mohajer N, Koehler K, Chen G, Lazarus P, Collaco JM, McGrath-Morrow SA. Acute and chronic in vivo effects of exposure to nicotine and propylene glycol from an E-cigarette on mucociliary clearance in a murine model. Inhal Toxicol. 2017;29(5):197–205.
    1. Palpant NJ, Hofsteen P, Pabon L, Reinecke H, Murry CE. Cardiac development in zebrafish and human embryonic stem cells is inhibited by exposure to tobacco cigarettes and e-cigarettes. PLoS One. 2015;10(5):e0126259.
    1. Orzabal M, Ramadoss J. Impact of electronic cigarette aerosols on pregnancy and early development. Curr Opin Toxicol. 2019;14:14–20.
    1. Marynak KL, Gammon DG, Rogers T, Coats EM, Singh T, King BA. Sales of nicotine-containing electronic cigarette products: United States, 2015. Am J Public Health. 2017;107(5):702–5.
    1. Ramoa CP, Hiler MM, Spindle TR, Lopez AA, Karaoghlanian N, Lipato T, Breland AB, Shihadeh A, Eissenberg T. Electronic cigarette nicotine delivery can exceed that of combustible cigarettes: a preliminary report. Tob Control. 2016;25(e1):e6–9.
    1. Bush A, Bhatt J, Grigg J. E cigarettes: Tar Wars: The (Tobacco) Empire Strikes Back. Arch Dis Child. 2019;104(11):1027–39. 10.1136/archdischild-2018-315820.
    1. Cunningham FG, Leveno JK, Bloom LS, Dash SJ, Hoffman LB, Casey MB, Spong YC,: Williams obstetrics, 25th edition. edn. New York: McGraw-Hill; 2018.
    1. Cheng T. Chemical evaluation of electronic cigarettes. Tob Control. 2014;23(Suppl 2):ii11–17.

Source: PubMed

3
Subscribe