Does Whole Grain Consumption Alter Gut Microbiota and Satiety?

Danielle N Cooper, Roy J Martin, Nancy L Keim, Danielle N Cooper, Roy J Martin, Nancy L Keim

Abstract

This review summarizes recent studies examining whole grain consumption and its effect on gut microbiota and satiety in healthy humans. Studies comparing whole grains to their refined grain counterparts were considered, as were studies comparing different grain types. Possible mechanisms linking microbial metabolism and satiety are described. Clinical trials show that whole grain wheat, maize, and barley alter the human gut microbiota, but these findings are based on a few studies that do not include satiety components, so no functional claims between microbiota and satiety can be made. Ten satiety trials were evaluated and provide evidence that whole oats, barley, and rye can increase satiety, whereas the evidence for whole wheat and maize is not compelling. There are many gaps in the literature; no one clinical trial has examined the effects of whole grains on satiety and gut microbiota together. Once understanding the impact of whole grains on satiety and microbiota is more developed, then particular grains might be used for better appetite control. With this information at hand, healthcare professionals could make individual dietary recommendations that promote satiety and contribute to weight control.

Keywords: VAS appetite assessment; bile acids; gut microbiota; obesity; satiety; short chain fatty acids; whole grains.

Figures

Figure 1
Figure 1
Percent of per capita availability of cereal grains in the United States. Data from the USDA Economic Research Service, 2012 [20].
Figure 2
Figure 2
Products that contributed to adult whole grain intake. Data represent the average consumption of different categories of whole grain foods from the National Health and Nutrition Examination Survey (NHANES) 2009–2010 [11].

References

    1. Ferruzzi M.G., Jonnalagadda S.S., Liu S.M., Marquart L., McKeown N., Reicks M., Riccardi G., Seal C., Slavin J., Thielecke F., et al. Developing a standard definition of whole-grain foods for dietary recommendations: Summary. Report of a multidisciplinary expert roundtable discussion. Adv. Nutr. 2014;5:164–176. doi: 10.3945/an.113.005223.
    1. OʼNeil C.E., Zanovec M., Cho S.S., Nicklas T.A. Whole grain and fiber consumption are associated with lower body weight measures in us adults: National health and nutrition examination survey 1999–2004. Nutr. Res. 2010;30:815–822. doi: 10.1016/j.nutres.2010.10.013.
    1. Kris-Etherton P. Whole Grain Wheat Intake—Impact on Weight Loss, Body Composition and Cardiometabolic Factors—Results from Intervention Studies; Processing of IUNS 20th International Congress of Nutrition; Granada, Spain. 15–20 September 2013.
    1. Rebello C.J., Greenway F.L., Finley J.W. Whole grains and pulses: A comparison of the nutritional and health benefits. J. Agric. Food Chem. 2014;62:7029–7049. doi: 10.1021/jf500932z.
    1. Borneo R., Leon A.E. Whole grain cereals: Functional components and health benefits. Food Funct. 2012;3:110–119. doi: 10.1039/C1FO10165J.
    1. Andersson A.A.M., Dimberg L., Aman P., Landberg R. Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci. 2014;59:294–311. doi: 10.1016/j.jcs.2014.01.003.
    1. Sanz-Penella M.J., Haros M. Wheat and Rice in Disease Prevention and Health. Academic Press; Waltham, MA, USA: 2014. pp. 17–31. Chapter 2.
    1. Ndolo V.U., Beta T. Comparative studies on composition and distribution of phenolic acids in cereal grain botanical fractions. Cereal Chem. 2014;91:522–530. doi: 10.1094/CCHEM-10-13-0225-R.
    1. Ortiz-Robledo F., Villanueva-Fierro I., Oomah B.D., Lares-Asef I., Proal-Najera J.B., Navar-Chaidez J.J. Avenanthramides and nutritional components of four mexican oat (avena sativa l.) varieties. Agrociencia. 2013;47:225–232.
    1. Bjorck I., Ostman E., Kristensen M., Anson N.M., Price R.K., Haenen G.R.M.M., Havenaar R., Knudsen K.E.B., Frid A., Mykkanen H., et al. Cereal grains for nutrition and health benefits: Overview of results from in vitro, animal and human studies in the healthgrain project. Trends Food Sci. Technol. 2012;25:87–100. doi: 10.1016/j.tifs.2011.11.005.
    1. Okarter N., Liu R.H. Health benefits of whole grain phytochemicals. Crit. Rev. Food Sci. Nutr. 2010;50:193–208. doi: 10.1080/10408390802248734.
    1. Pol K., Christensen R., Bartels E.M., Raben A., Tetens I., Kristensen M. Whole grain and body weight changes in apparently healthy adults: A systematic review and meta-analysis of randomized controlled studies. Am. J. Clin. Nutr. 2013;98:872–884. doi: 10.3945/ajcn.113.064659.
    1. Jackson K.H., West S.G., Vanden Heuvel J.P., Jonnalagadda S.S., Ross A.B., Hill A.M., Grieger J.A., Lemieux S.K., Kris-Etherton P.M. Effects of whole and refined grains in a weight-loss diet on markers of metabolic syndrome in individuals with increased waist circumference: A randomized controlled-feeding trial. Am. J. Clin. Nutr. 2014;100:577–586. doi: 10.3945/ajcn.113.078048.
    1. Thielecke F., Jonnalagadda S.S. Can whole grain help in weight management? J. Clin. Gastroenterol. 2014;48:S70–S77. doi: 10.1097/MCG.0000000000000243.
    1. Cani P.D., Lecourt E., Dewulf E.M., Sohet F.M., Pachikian B.D., Naslain D., de Backer F., Neyrinck A.M., Delzenne N.M. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr. 2009;90:1236–1243. doi: 10.3945/ajcn.2009.28095.
    1. Slavin J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients. 2013;5:1417–1435. doi: 10.3390/nu5041417.
    1. Higo A., Ibe N., Kurimoto Y., Ootubo S. The physical properties of 12 cereal flours including millets and whole grain (in Japanese) J. Jpn. Soc. Food Sci. Technol. 2014;61:117–126. doi: 10.3136/nskkk.61.117.
    1. American Association of Cereal Chemists International Whole grain definition. Cereal Foods World. 1999;45:79.
    1. Van der Kamp J.W., Poutanen K., Seal C.J., Richardson D.P. The HEALTHGRAIN definition of “whole grain”. Food Nutr. Res. 2014;58 doi: 10.3402/fnr.v58.22100.
    1. Food Availability (Per Capita) Data System. [(accessed on 20 April 2015)]; Available online: .
    1. McGill C.R., Fulgoni V.L., Devareddy L. Ten-year trends in fiber and whole grain intakes and food sources for the United States population: National health and nutrition examination survey 2001–2010. Nutrients. 2015;7:1119–1130. doi: 10.3390/nu7021119.
    1. Ventura M., Turroni F., Canchaya C., Vaughan E.E., OʼToole P.W., van Sinderen D. Microbial diversity in the human intestine and novel insights from metagenomics. Front. Biosci. 2009;14:3214–3221. doi: 10.2741/3445.
    1. Tremaroli V., Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249. doi: 10.1038/nature11552.
    1. Kellow N.J., Coughlan M.T., Reid C.M. Metabolic benefits of dietary prebiotics in human subjects: A systematic review of randomised controlled trials. Br. J. Nutr. 2014;111:1147–1161. doi: 10.1017/S0007114513003607.
    1. Delzenne N.M., Neyrinck A.M., Backhed F., Cani P.D. Targeting gut microbiota in obesity: Effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 2011;7:639–646. doi: 10.1038/nrendo.2011.126.
    1. Tap J., Mondot S., Levenez F., Pelletier E., Caron C., Furet J.P., Ugarte E., Munoz-Tamayo R., Paslier D.L.E., Nalin R., et al. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 2009;11:2574–2584. doi: 10.1111/j.1462-2920.2009.01982.x.
    1. Tuohy K.M., Conterno L., Gasperotti M., Viola R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J. Agric. Food Chem. 2012;60:8776–8782. doi: 10.1021/jf2053959.
    1. Schloissnig S., Arumugam M., Sunagawa S., Mitreva M., Tap J., Zhu A., Waller A., Mende D.R., Kultima J.R., Martin J., et al. Genomic variation landscape of the human gut microbiome. Nature. 2013;493:45–50. doi: 10.1038/nature11711.
    1. Walker A.W., Duncan S.H., Louis P., Flint H.J. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol. 2014;22:267–274. doi: 10.1016/j.tim.2014.03.001.
    1. Hooda S., Boler B.M.V., Serao M.C.R., Staeger M.A., Boileau T.W., Dowd S.E., Fahey G.C., Jr., Swanson K.S. 454 pyrosequencing reveals a beneficial shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. Faseb J. 2012;142:1259–1265.
    1. Flint H.J., Scott K.P., Louis P., Duncan S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012;9:577–589. doi: 10.1038/nrgastro.2012.156.
    1. Kennedy N.A., Walker A.W., Berry S.H., Duncan S.H., Farquarson F.M., Louis P., Thomson J.M., Satsangi J., Flint H.J., Parkhill J., et al. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16s rRNA gene sequencing. PLoS ONE. 2014;9:e9. doi: 10.1371/journal.pone.0088982.
    1. Hartvigsen M.L., Laerke H.N., Overgaard A., Holst J.J., Knudsen K.E.B., Hermansen K. Postprandial effects of test meals including concentrated arabinoxylan and whole grain rye in subjects with the metabolic syndrome: A randomised study. Eur. J. Clin. Nutr. 2014;68:567–574. doi: 10.1038/ejcn.2014.25.
    1. Zhou Z.K., Cao X.H., Zhou J.Y.H. Effect of resistant starch structure on short-chain fatty acids production by human gut microbiota fermentation in vitro. Starch-Starke. 2013;65:509–516. doi: 10.1002/star.201200166.
    1. Scott K.P., Martin J.C., Duncan S.H., Flint H.J. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. Fems Microbiol. Ecol. 2014;87:30–40. doi: 10.1111/1574-6941.12186.
    1. Hoyles L., McCartney A.L. What do we mean when we refer to bacteroidetes populations in the human gastrointestinal microbiota? Fems Microbiol. Lett. 2009;299:175–183. doi: 10.1111/j.1574-6968.2009.01741.x.
    1. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010;107:14691–14696. doi: 10.1073/pnas.1005963107.
    1. Schippa S., Conte M.P. Dysbiotic events in gut microbiota: Impact on human health. Nutrients. 2014;6:5786–5805. doi: 10.3390/nu6125786.
    1. Mariat D., Firmesse O., Levenez F., Guimaraes V.D., Sokol H., Dore J., Corthier G., Furet J.P. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9 doi: 10.1186/1471-2180-9-123.
    1. Armougom F., Raoult D. Use of pyrosequencing and DNA barcodes to monitor variations in firmicutes and bacteroidetes communities in the gut microbiota of obese humans. BMC Genomics. 2008;9 doi: 10.1186/1471-2164-9-576.
    1. Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230. doi: 10.1038/nature11550.
    1. Holscher H.D., Caporaso J.G., Hooda S., Brulc J.M., Fahey G.C., Swanson K.S. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: Follow-up of a randomized controlled trial. Am. J. Clin. Nutr. 2015;101:55–64. doi: 10.3945/ajcn.114.092064.
    1. Bunesova V., Vlkova E., Rada V., Killer J., Musilova S. Bifidobacteria from the gastrointestinal tract of animals: Differences and similarities. Benef. Microbes. 2014;5:377–388. doi: 10.3920/BM2013.0081.
    1. Mirande C., Kadlecikova E., Matulova M., Capek P., Bernalier-Donadille A., Forano E., Bera-Maillet C. Dietary fibre degradation and fermentation by two xylanolytic bacteria bacteroides xylanisolvens xb1at and roseburia intestinalis xb6b4 from the human intestine. J. Appl. Microbiol. 2010;109:451–460.
    1. Xiong W.L., Giannone R.J., Morowitz M.J., Banfield J.F., Hettich R.L. Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut. J. Proteome Res. 2015;14:133–141. doi: 10.1021/pr500936p.
    1. Umu O.C.O., Oostindjer M., Pope P.B., Svihus B., Egelandsdal B., Nes I.F., Diep D.B. Potential applications of gut microbiota to control human physiology. Antonie Van Leeuwenhoek. 2013;104:609–618. doi: 10.1007/s10482-013-0008-0.
    1. Clark M.J., Slavin J.L. The effect of fiber on satiety and food intake: A systematic review. J. Am. Coll. Nutr. 2013;32:200–211. doi: 10.1080/07315724.2013.791194.
    1. Bornhorst G.M., Stroebinger N., Rutherfurd S.M., Singh R.P., Moughan P.J. Properties of gastric chyme from pigs fed cooked brown or white rice. Food Biophys. 2013;8:12–23. doi: 10.1007/s11483-012-9277-9.
    1. Joyce S.A., Gahan C.G.M. The gut microbiota and the metabolic health of the host. Curr. Opin. Gastroenterol. 2014;30:120–127. doi: 10.1097/MOG.0000000000000039.
    1. Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M., et al. Cross-talk between akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 2013;110:9066–9071. doi: 10.1073/pnas.1219451110.
    1. Peterson C.T., Sharma V., Elmen L., Peterson S.N. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin. Exp. Immunol. 2015;179:363–377. doi: 10.1111/cei.12474.
    1. Estrela S., Whiteley M., Brown S.P. The demographic determinants of human microbiome health. Trends Microbiol. 2015;23:134–141. doi: 10.1016/j.tim.2014.11.005.
    1. Petschow B., Dore J., Hibberd P., Dinan T., Reid G., Blaser M., Cani P.D., Degnan F.H., Foster J., Gibson G., et al. Probiotics, prebiotics, and the host microbiome: The science of translation. Ann. N. Y. Acad. Sci. 2013;1306:1–17. doi: 10.1111/nyas.12303.
    1. Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010;23:65–134. doi: 10.1017/S0954422410000041.
    1. Panickar K.S. Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity. Mol. Nutr. Food Res. 2013;57:34–47. doi: 10.1002/mnfr.201200431.
    1. Hamaker B.R., Tuncil Y.E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 2014;426:3838–3850. doi: 10.1016/j.jmb.2014.07.028.
    1. Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325–2340. doi: 10.1194/jlr.R036012.
    1. Everard A., Cani P.D. Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 2014;15:189–196. doi: 10.1007/s11154-014-9288-6.
    1. Frost G., Sleeth M.L., Sahuri-Arisoylu M., Lizarbe B., Cerdan S., Brody L., Anastasovska J., Ghourab S., Hankir M., Zhang S., et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 2014;5 doi: 10.1038/ncomms4611.
    1. Roberfroid M.B. Concepts in functional foods: The case of inulin and oligofructose. J. Nutr. 1999;129:S1398–S1401. doi: 10.1097/00017285-199907000-00007.
    1. Geurts L., Neyrinck A.M., Delzenne N.M., Knauf C., Cani P.D. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes. 2014;5:3–17. doi: 10.3920/BM2012.0065.
    1. Flint H.J. Obesity and the gut microbiota. J. Clin. Gastroenterol. 2011;45:S128–S132. doi: 10.1097/MCG.0b013e31821f44c4.
    1. Arora T., Sharma R., Frost G. Propionate. Anti-obesity and satiety enhancing factor? Appetite. 2011;56:511–515. doi: 10.1016/j.appet.2011.01.016.
    1. Toth I., Goszleth G., Frenyo V.L. The major regulators of feed-intake: Ghrelin, leptin and their interactions. Literature review. Magy. Allatorv. Lapja. 2012;134:504–512.
    1. Owyang C., Heldsinger A. Vagal control of satiety and hormonal regulation of appetite. J. Neurogastroenterol. Motil. 2011;17:338–348. doi: 10.5056/jnm.2011.17.4.338.
    1. Chambers E.S., Viardot A., Psichas A., Morrison D.J., Murphy K.G., Sagen E.K., Varghese Z., MacDougall K., Preston T. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adult. BMJ. 2014 doi: 10.1136/gutjnl-2014-307913.
    1. Shah M., Vella A. Effects of GLP-1 on appetite and weight. Rev. Endoc. Metab. Disord. 2014;15:181–187. doi: 10.1007/s11154-014-9289-5.
    1. Tagliabue A., Elli M. The role of gut microbiota in human obesity: Recent findings and future perspectives. Nutr. Metab. Cardiovasc. Dis. 2013;23:160–168. doi: 10.1016/j.numecd.2012.09.002.
    1. Giacco R., Della Pepa G., Luongo D., Riccardi G. Whole grain intake in relation to body weight: From epidemiological evidence to clinical trials. Nutr. Metab. Cardiovasc. Dis. 2011;21:901–908. doi: 10.1016/j.numecd.2011.07.003.
    1. Niwano Y., Adachi T., Kashimura J., Sakata T., Sasaki H., Sekine K., Yamamoto S., Yonekubo A., Kimura S. Is glycemic index of food a feasible predictor of appetite, hunger, and satiety? J. Nutr. Sci. Vitaminol. 2009;55:201–207. doi: 10.3177/jnsv.55.201.
    1. Knudsen K.E.B., Laerke H.N. Whole grain cereals and gut health. Agro Food Ind. Hi-Tech. 2008;19:6–8.
    1. McIntosh G.H., Noakes M., Royle P.J., Foster P.R. Whole-grain rye and wheat foods and markers of bowel health in overweight middle-aged men. Am. J. Clin. Nutr. 2003;77:967–974.
    1. Costabile A., Klinder A., Fava F., Napolitano A., Foglian V., Leonard C., Gibson G.R., Tuohy K.M. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study. Br. J. Nutr. 2008;99:110–120. doi: 10.1017/S0007114507793923.
    1. Christensen E.G., Licht T.R., Kristensen M., Bahl M.I. Bifidogenic effect of whole-grain wheat during a 12-week energy-restricted dietary intervention in postmenopausal women. Eur. J. Clin. Nutr. 2013;67:1316–1321. doi: 10.1038/ejcn.2013.207.
    1. Carvalho-Wells A.L., Helmolz K., Nodet C., Molzer C., Leonard C., McKevith B., Thielecke F., Jackson K.G., Tuohy K.M. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: A human feeding study. Br. J. Nutr. 2010;104:1353–1356. doi: 10.1017/S0007114510002084.
    1. Martinez I., Lattimer J.M., Hubach K.L., Case J.A., Yang J.Y., Weber C.G., Louk J.A., Rose D.J., Kyureghian G., Peterson D.A., et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. Isme J. 2013;7:269–280. doi: 10.1038/ismej.2012.104.
    1. Ampatzoglou A., Atwal K.K., Maidens C.M., Williams C.L., Ross A.B., Thielecke F., Jonnalagadda S.S., Kennedy O.B., Yaqoob P. Increased whole grain consumption does not affect blood biochemistry, body composition, or gut microbiology in healthy, low-habitual whole grain consumers. J. Nutr. 2015;145:215–221. doi: 10.3945/jn.114.202176.
    1. Ross A.B., Bruce S.J., Blondel-Lubrano A., Oguey-Araymon S., Beaumont M., Bourgeois A., Nielsen-Moennoz C., Vigo M., Fay L.B., Kochhar S., et al. A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and ldl-cholesterol compared with a refined-grain diet in healthy subjects. Br. J. Nutr. 2011;105:1492–1502. doi: 10.1017/S0007114510005209.
    1. Walter J., Martinez I., Rose D.J. Holobiont nutrition: Considering the role of the gastrointestinal microbiota in the health benefits of whole grains. Gut Microb. 2013;4:340–346. doi: 10.4161/gmic.24707.
    1. Connolly M.L., Lovegrove J.A., Tuohy K.M. In vitro evaluation of the microbiota modulation abilities of different sized whole oat grain flakes. Anaerobe. 2010;16:483–488. doi: 10.1016/j.anaerobe.2010.07.001.
    1. Ibrugger S., Vigsnaes L.K., Blennow A., Skuflic D., Raben A., Lauritzen L., Kristensen M. Second meal effect on appetite and fermentation of wholegrain rye foods. Appetite. 2014;80:248–256. doi: 10.1016/j.appet.2014.05.026.
    1. Connolly M.L., Lovegrove J.A., Tuohy K.M. In vitro fermentation characteristics of whole grain wheat flakes and the effect of toasting on prebiotic potential. J. Med. Food. 2012;15:33–43. doi: 10.1089/jmf.2011.0006.
    1. Holt S.H.A., Miller J.C.B., Petocz P., Farmakalidis E. A satiety index of common foods. Eur. J. Clin. Nutr. 1995;49:675–690.
    1. Rebello C.J., Chu Y.-F., Johnson W.D., Martin C.K., Han H., Bordenave N., Shi Y., OʼShea M., Greenway F.L. The role of meal viscosity and oat β-glucan characteristics in human appetite control: A randomized crossover trial. Nutr. J. 2014;13 doi: 10.1186/1475-2891-13-49.
    1. Begg D.P., Woods S.C. The endocrinology of food intake. Nat. Rev. Endocrinol. 2013;9:584–597. doi: 10.1038/nrendo.2013.136.
    1. Albenberg L.G., Wu G.D. Diet and the intestinal microbiome: Associations, functions, and implications for health and disease. Gastroenterology. 2014;146:1564–1572. doi: 10.1053/j.gastro.2014.01.058.
    1. Chapelot D. Satiation, Satiety and the Control of Food Intake: Theory and Practice. Woodhead Publishing; Cambridge, UK: 2013. Quantifying Satiation and Satiety; pp. 12–39.
    1. Blundell J.E., Goodson S., Halford J.C.G. Regulation of appetite: Role of leptin in signalling systems for drive and satiety. Int. J. Obes. 2001;25:S29–S34. doi: 10.1038/sj.ijo.0801693.
    1. Kristensen M., Jensen M.G., Riboldi G., Petronio M., Bugel S., Toubro S., Tetens I., Astrup A. Wholegrain vs. Refined wheat bread and pasta. Effect on postprandial glycemia, appetite, and subsequent ad libitum energy intake in young healthy adults. Appetite. 2010;54:163–169. doi: 10.1016/j.appet.2009.10.003.
    1. Bodinham C.L., Hitchen K.L., Youngman P.J., Frost G.S., Robertson M.D. Short-term effects of whole-grain wheat on appetite and food intake in healthy adults: A pilot study. Br. J. Nutr. 2011;106:327–330. doi: 10.1017/S0007114511000225.
    1. Rebello C.J., Johnson W.D., Martin C.K., Xie W., O'Shea M., Kurilich A., Bordenave N., Andler S., van Klinken B.J.W., Chu Y.-F., et al. Acute effect of oatmeal on subjective measures of appetite and satiety compared to a ready-to-eat breakfast cereal: A randomized crossover trial. J. Am. Coll. Nutr. 2013;32:272–279. doi: 10.1080/07315724.2013.816614.
    1. Johansson E.V., Nilsson A.C., Ostman E.M., Bjorck I.M.E. Effects of indigestible carbohydrates in barley on glucose metabolism, appetite and voluntary food intake over 16 h in healthy adults. Nutr. J. 2013;12 doi: 10.1186/1475-2891-12-46.
    1. Isaksson H., Tillander I., Andersson R., Olsson J., Fredriksson H., Webb D.-L., Aman P. Whole grain rye breakfast—Sustained satiety during three weeks of regular consumption. Physiol. Behav. 2012;105:877–884. doi: 10.1016/j.physbeh.2011.10.023.
    1. Rosen L.A., Ostman E.M., Bjorck I.M.E. Effects of cereal breakfasts on postprandial glucose, appetite regulation and voluntary energy intake at a subsequent standardized lunch; focusing on rye products. Nutr. J. 2011;10 doi: 10.1186/1475-2891-10-7.
    1. Luhovyy B.L., Mollard R.C., Yurchenko S., Nunez M.F., Berengut S., Liu T.T., Smith C.E., Pelkman C.L., Anderson G.H. The effects of whole grain high-amylose maize flour as a source of resistant starch on blood glucose, satiety, and food intake in young men. J. Food Sci. 2014;79:H2550–H2556. doi: 10.1111/1750-3841.12690.
    1. Schroeder N., Gallaher D.D., Arndt E.A., Marquart L. Influence of whole grain barley, whole grain wheat, and refined rice-based foods on short-term satiety and energy intake. Appetite. 2009;53:363–369. doi: 10.1016/j.appet.2009.07.019.
    1. Lange E. Oats products as functional food. Zywnosc-Nauka Technol. Jakosc. 2010;17:7–24. doi: 10.15193/zntj/2010/70/007-024.
    1. Isaksson H., Rakha A., Andersson R., Fredriksson H., Olsson J., Aman P. Rye kernel breakfast increases satiety in the afternoon—An effect of food structure. Nutr. J. 2011;10 doi: 10.1186/1475-2891-10-31.
    1. Isaksson H., Sundberg B., Aman P., Fredriksson H., Olsson J. Whole grain rye porridge breakfast improves satiety compared to refined wheat bread breakfast. Food Nutr. Res. 2008;52 doi: 10.3402/fnr/v52i0.1809.
    1. Xu Z.J., Knight R. Dietary effects on human gut microbiome diversity. Br. J. Nutr. 2015;113:S1–S5. doi: 10.1017/S0007114514004127.
    1. Pal M., Febbraio M.A., Whitham M. From cytokine to myokine: The emerging role of interleukin-6 in metabolic regulation. Immunol. Cell Biol. 2014;92:331–339. doi: 10.1038/icb.2014.16.
    1. Zielinski H., Achremowicz B., Przygodzka M. Antioxidants in cereal grains. Zywnosc-Nauka Technol. Jakosc. 2012;19:5–26.

Source: PubMed

3
Subscribe