Mesenchymal stem cell perspective: cell biology to clinical progress

Mark F Pittenger, Dennis E Discher, Bruno M Péault, Donald G Phinney, Joshua M Hare, Arnold I Caplan, Mark F Pittenger, Dennis E Discher, Bruno M Péault, Donald G Phinney, Joshua M Hare, Arnold I Caplan

Abstract

The terms MSC and MSCs have become the preferred acronym to describe a cell and a cell population of multipotential stem/progenitor cells commonly referred to as mesenchymal stem cells, multipotential stromal cells, mesenchymal stromal cells, and mesenchymal progenitor cells. The MSCs can differentiate to important lineages under defined conditions in vitro and in limited situations after implantation in vivo. MSCs were isolated and described about 30 years ago and now there are over 55,000 publications on MSCs readily available. Here, we have focused on human MSCs whenever possible. The MSCs have broad anti-inflammatory and immune-modulatory properties. At present, these provide the greatest focus of human MSCs in clinical testing; however, the properties of cultured MSCs in vitro suggest they can have broader applications. The medical utility of MSCs continues to be investigated in over 950 clinical trials. There has been much progress in understanding MSCs over the years, and there is a strong foundation for future scientific research and clinical applications, but also some important questions remain to be answered. Developing further methods to understand and unlock MSC potential through intracellular and intercellular signaling, biomedical engineering, delivery methods and patient selection should all provide substantial advancements in the coming years and greater clinical opportunities. The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.

Keywords: Mesenchymal stem cells; Stem-cell research.

Conflict of interest statement

Competing interestsM.F.P. is a founder of Longevity Therapeutics, Inc. J.M.H. reported having a patent for cardiac cell-based therapy. He holds equity in Vestion Inc. and maintains a professional relationship with Vestion Inc. as a consultant and member of the Board of Directors and Scientific Advisory Board. J.M.H. is the Chief Scientific Officer, a compensated consultant and advisory board member for Longeveron and holds equity in Longeveron. He is also the co-inventor of intellectual property licensed to Longeveron. BMP is co-inventor of intellectual property on native MSCs for therapeutic use, held by the University of California, Los Angeles. The other authors declare no competing interests.

© The Author(s) 2019.

Figures

Fig. 1
Fig. 1
Characteristics of MSCs. a MSCs can be readily isolated from bone marrow and adipose tissue but all tissues harbor MSC-like cells as part of the microvasculature. b The number of MSCs, indicated here as colony-forming units (CFU-F), isolated from bone marrow drops off after 15–20 yrs of age and continues to decrease.c MSCs are rare in bone marrow and are culture-expanded to achieve high numbers for research or therapeutic use. However, there is a decrease in the clonal complexity with increased passaging, but the effect of this process on MSC uses is unclear. d The MSCs are known to produce a large number of soluble or vesicle-bound growth factors and cytokines, as well as microRNAs, that can signal to other cells and tissues. e The culture-expanded MSCs can differentiate to multiple cell lineages under separate specific in vitro conditions. The standard chrondro-, osteo- and adipo- differentiation conditions are widely used but additional in vitro conditions promote smooth muscle and striated muscle gene expression; changing medium conditions can induce expression of cardiac and liver genes. Once differentiated, the MSCs express virtually all the hallmark genes of the differentiated cell types. Currently, the more prominent MSC therapeutic uses take advantage of the MSC’s production of factors and the responsiveness of other interacting cells, such as cells of the immune system (see Table 1).
Fig. 2
Fig. 2
MSC interactions with cytoskeletal elements, cell−cell contacts, extracellular matrix and topography can have profound effects on multipotential MSCs. a Harvesting MSCs from a bone marrow niche with its condensed cell-rich environment and culturing them in vitro removes the cell−cell cadherin and connexin connections and replaces them with cell−substrate and cell−matrix interactions, as the cells produce more extracellular matrix. b The stiffness of the MSC culture surface and the nature of the environment have significant input to alter gene transcription and biological responsiveness of the MSCs through nuclear Lamin-A and YAP1 (b) and the surface curvature can transduce cytoskeletal influence over MSC potential. Also, dynamic stretching and 3D matrix materials can provide new approaches to understanding MSC responses and potential therapeutic applications.
Fig. 3
Fig. 3
MSC—Immune cell interactions. Initial studies envisioned autologous use of MSCs. However, studies with immune cells demonstrated that MSCs are not immediately rejected by T cells and other immune cells, prompting the study of allogeneic MSCs in mutiple therapies. MSCs produce at least 11 factors known to affect immune cells. When interacting with T cells (pathways 1 and 5) MSCs cause a reduction in inflammatory T H1 and an increase in T Regs and T H2 cells with the concomitant decrease in IFNγ, increase in IL-10, IL-4 and IL-5. When MSCs interact with dendritic cells (pathways 2, 3,and 4) there is a decrease in proinflammatory mature DC1 with a decrease in TNF-α and IL-12, and an increase in immature DC and DC2, with increased expression of IL-10. When MSCs interact with natural killer cells (pathway 6) there is a decrease in the expression of IFNγ. When macrophages interact with MSCs (pathway 7), there is a decrease in the proinflammatory M1 phenotype and an increase in the anti-inflammatory M2 phenotype, with increased PGE2, TSG-6 and IL-1RA. MSCs can also reduce the secretion of antibodies from B cells (pathway 8) and inhibit bacterial growth by a direct or indirect mechanism (pathway 9). This figure is used with permission from Blood/Aggarwal and Pittenger and has been updated/modified from its original form.
Fig. 4
Fig. 4
MSCs implanted in vivo in the infarcted left ventricle wall improve cardiac recovery in preclinical models and patient studies. A diagram of cellular therapy approaches tested with MSCs is shown. 1—Peripheral veinous infusion. 2—Endomyocardial delivery via injection catheter. 3—Direct myocardial injection during open chest surgery such as for coronary artery bypass grafting. 4—Delivery via intracoronary arteries. MSCs release anti-inflammatory factors and interact with endogenous cells to improve physiological outcome despite limited engraftment. Panels (ad)—a Porcine female heart receiving male allo-MSC injection show greater repair processes with active stimulation of endogenous cardiomyocyte cell-cycle activity (phospho H3 staining) which are associated with greater functional recovery. b Following direct injection of male MSCs near the infarct border, there are increased phospho-H3 detected at 8 weeks in the infarct (IZ) and border zones (BZ) compared to the remote zones (RZ) away from the infarct. The error bars indicate the mean ± SEM. c, d Immunohistology of data in (a) and (b). Results of clinical delivery of MSCs (e) are shown with MRI cross-section of hearts from patients receiving standard of care or standard of care plus MSCs in the PROMETHEUS trial. The MSC-treated hearts showed smaller infarcts at 12 and 18 months. The MSC-treated patients also had greater heart function (ejection fraction) and stamina (6 min walk test). The error bars indicate the mean ± SEM. Figures reproduced with permission of Kluwers Wolter/Circulation Research/Hare.,

References

    1. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.
    1. Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 1988;136:42–60.
    1. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human bone marrow. Bone. 1992;13:81–88. doi: 10.1016/8756-3282(92)90364-3.
    1. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transpl. 1995;16:557–564.
    1. Gratwohl A, et al. Worldwide Network for Blood and Marrow Transplantation (WBMT). one million haemopoietic stem-cell transplants: a retrospective observational study. Lancet Haematol. 2015;2:e91–e100. doi: 10.1016/S2352-3026(15)00028-9.
    1. Pittenger M. F. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 1999;284(5411):143–147. doi: 10.1126/science.284.5411.143.
    1. Halvorsen, Y., Wilkison, W. & Gimble, J. Adipose-derived stromal cells—their utility and potential in bone formation. Int. J. Obes.24, S41–S44 (2000).
    1. Zuk PA, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–228. doi: 10.1089/107632701300062859.
    1. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2001;21:105–110. doi: 10.1634/stemcells.21-1-105.
    1. In ‘t Anker PS, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22:1338–1345. doi: 10.1634/stemcells.2004-0058.
    1. He S, et al. Human placenta-derived mesenchymal stromal-like cells enhance angiogenesis via T cell-dependent reprogramming of macrophage differentiation. Stem Cells. 2017;35:1603–1613. doi: 10.1002/stem.2598.
    1. Pittenger, M. F., Mbalaviele, G., Black, M., Mosca, J. D. & Marshak D. R. (2001). Adult mesenchymal stem cells from bone marrow. Primary Mesenchymal Cells, Ch. 10, Human Cell Culture, Vol. 5 (eds Koller, M. et al.) pp 190-207 (Kluwer Academic Publishers, Dordrecht, Netherlands, 2001).
    1. Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech. Aging Dev. 2008;129:163–173. doi: 10.1016/j.mad.2007.12.002.
    1. Sheng G. The developmental basis of mesenchymal stem/stromal cells (MSCs) BMC Dev. Biol. 2015;20:44–51. doi: 10.1186/s12861-015-0094-5.
    1. Galipeau J, Weiss DJ, Dominici M. Response to Nature commentary “Clear up this stem-cell mess”. Cytotherapy. 2019;21:1–2. doi: 10.1016/j.jcyt.2018.11.007.
    1. Murray Iain R., Chahla Jorge, Safran Marc R., Krych Aaron J., Saris Daniel B.F., Caplan Arnold I., LaPrade Robert F., Caplan Arnold I., Cole Brian J., Guilak Farshid, Rodeo Scott A., Lattermann Christian, Birch Mark A., Peault Bruno, Biant Leela C., Chahla Jorge, Chu Constance R., Dalby Matthew J., Dietz Allan B., Dragoo Jason L., Engebretsen Lars, Evseenko Denis, Getgood Alan, Geeslin Andrew G., Hollander Anthony P., Huard Johnny, Kon Elizaveta, Krych Aaron J., LaPrade Robert F., Maffulli Nicola, Mandelbaum Bert R., Mardones Rodrigo, Murray Iain R., Petrigliano Frank A., Safran Marc R., Saris Daniel B.F., Simpson A. Hamish R.W., Wang James H.C., Madry Henning, Jo Chris H., Nakamura Norimasa. International Expert Consensus on a Cell Therapy Communication Tool. The Journal of Bone and Joint Surgery. 2019;101(10):904–911. doi: 10.2106/JBJS.18.00915.
    1. Behfar A, et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J. Am. Coll. Cardiol. 2010;56:721–734. doi: 10.1016/j.jacc.2010.03.066.
    1. Freeman BT, Jung JP, Ogle BM. Single-cell RNA-Seq of bone marrow-derived mesenchymal stem cells reveals unique profiles of lineage priming. PLoS ONE. 2015;10:e0136199. doi: 10.1371/journal.pone.0136199.
    1. Schellenberg A, et al. Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy. 2012;14:401–411. doi: 10.3109/14653249.2011.640669.
    1. Huang S. Systems biology of stem cells: three useful perspectives to help overcome the paradigm of linear pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011;366:2247–2259. doi: 10.1098/rstb.2011.0008.
    1. Lander AD. The individuality of stem cells. BMC Biol. 2011;7:40. doi: 10.1186/1741-7007-9-40.
    1. Rennerfeldt DA, Van Vliet KJ. Concise review: when colonies are not clones: evidence and implications of intracolony heterogeneity in mesenchymal stem cells. Stem Cells. 2016;34:1135–1141. doi: 10.1002/stem.2296.
    1. Selich A, et al. Massive clonal selection and transiently contributing clones during expansion of mesenchymal stem cell cultures revealed by lentiviral RGB-barcode technology. Stem Cells Transl. Med. 2016;5:591–601. doi: 10.5966/sctm.2015-0176.
    1. Crizan M, Dzierzak E. The many faces of hematopoietic stem cell heterogeneity. Development (2016) 2016;143:4571–4581. doi: 10.1242/dev.114231.
    1. Yu VWC, et al. Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell. 2017;168:944–945. doi: 10.1016/j.cell.2017.02.010.
    1. Ritsma L, et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature. 2014;507:362–365. doi: 10.1038/nature12972.
    1. Phinney DG, Pittenger MF. MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35:851–858. doi: 10.1002/stem.2575.
    1. Börger V, et al. Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int. J. Mol. Sci. 2017;6:18.
    1. Baglio S, et al. Human bone marrow- and adipose mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res. Ther. 2015;6:127–148. doi: 10.1186/s13287-015-0116-z.
    1. Saha P, et al. Circulating exosomes derived from transplanted progenitor cells aid the functional recovery of ischemic myocardium. Sci. Transl. Med. 2019;11:1–14. doi: 10.1126/scitranslmed.aau1168.
    1. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:15–27. doi: 10.1080/14653240600855905.
    1. Tremain N, et al. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells. 2001;19:408–418. doi: 10.1634/stemcells.19-5-408.
    1. Covas DT, et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp. Hematol. 2008;36:642–654. doi: 10.1016/j.exphem.2007.12.015.
    1. Wagner W, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 2005;33:1402–1416. doi: 10.1016/j.exphem.2005.07.003.
    1. Meyer MB, Benkusky NA, Sen B, Rubin J, Pike JW. Epigenetic plasticity drives adipogenic and osteogenic differentiation of marrow-derived mesenchymal stem cells. J. Biol. Chem. 2016;291:17829–17847. doi: 10.1074/jbc.M116.736538.
    1. Wu H, et al. Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. Biochim. Biophys. Acta. 2017;1860:438–449. doi: 10.1016/j.bbagrm.2017.01.003.
    1. Meyers CA, et al. (2019) WISP-1 modulates the osteogenic and adipogenic differentiation of human perivascular stem/stromal cells. Sci. Rep. 2018;8:15618. doi: 10.1038/s41598-018-34143-x.
    1. Cao Y, et al. S-nitrosoglutathione reductase-dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis. J. Clin. Invest. 2015;125:1679–1691. doi: 10.1172/JCI73780.
    1. Delorme B, et al. Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity. Stem Cells. 2009;27:1142–1151. doi: 10.1002/stem.34.
    1. Schooley JC, Kullgren B, Fletcher BL. Growth of murine bone marrow adherent stromal cells in culture without hydrocortisone in a low oxygen environment. Int. J. Cell Cloning. 1985;3:2–9. doi: 10.1002/stem.5530030103.
    1. Gupta V, Rajaraman S, Costanzi JJ. Effect of oxygen on the clonal growth of adherent cells (CFU-F) from different compartments of mouse bone marrow. Ext. Hematol. 1987;15:1153–1157.
    1. Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J. Cell Phyisol. 2001;187:345–355. doi: 10.1002/jcp.1081.
    1. Chacko SM, et al. Hypoxic preconditioning induces expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am. J. Phyisol. Cell Physiol. 2010;299:C1562–C1570. doi: 10.1152/ajpcell.00221.2010.
    1. Liu L, et al. Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biol. Int. 2013;37:551–560. doi: 10.1002/cbin.10097.
    1. Paquet J, et al. Oxygen tension regulates human mesenchymal stem cell paracrine functions. Stem Cells Transl. Med. 2015;4:809–821. doi: 10.5966/sctm.2014-0180.
    1. Hu X, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thorac. Cardiovasc. Surg. 2008;2135:799–808. doi: 10.1016/j.jtcvs.2007.07.071.
    1. Li JH, Zhang N, Wang JA. Improved antiapoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic preconditioning in diabetic cardiomyopathy. J. Endocrinol. Invest. 2008;31:103–110. doi: 10.1007/BF03345575.
    1. Hu X, et al. A large-scale investigation of hypoxia-preconditioned allogeneic mesenchymal stem cells for myocardial repair in nonhuman primates: paracrine activity without remuscularization. Circ. Res. 2016;118:970–983. doi: 10.1161/CIRCRESAHA.115.307516.
    1. Jiang RH, et al. Hypoxic conditioned medium derived from bone marrow mesenchymal stromal cells protects against ischemic stroke in rats. J. Cell Physiol. 2019;234:1354–1368. doi: 10.1002/jcp.26931.
    1. Fehrer C, et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell. 2007;6:745–757. doi: 10.1111/j.1474-9726.2007.00336.x.
    1. Tsai CC, et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood. 2011;117:459–469. doi: 10.1182/blood-2010-05-287508.
    1. Ohnishi S, Yasuda T, Kitamura S, Nagaya N. Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells. 2007;25:1166–1177. doi: 10.1634/stemcells.2006-0347.
    1. Elabd C, et al. Comparing atmospheric and hypoxic cultured mesenchymal stem cell transcriptome: implication for stem cell therapies targeting intervertebral discs. J. Transl. Med. 2018;16:222. doi: 10.1186/s12967-018-1601-9.
    1. Kim SH, et al. Transcriptome sequencing and wide functional analysis of human mesenchymal stem cells in response to TLR4 ligand. Sci. Rep. 2016;6:30311. doi: 10.1038/srep30311.
    1. Krampera M, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24:386–398. doi: 10.1634/stemcells.2005-0008.
    1. Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin. Expt. Immunol. 2007;149:353–363. doi: 10.1111/j.1365-2249.2007.03422.x.
    1. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kB signaling in resident macrophages. Blood. 2011;118:330–338. doi: 10.1182/blood-2010-12-327353.
    1. Jin P, et al. Interferon-gamma and tumor necrosis factor-alpha polarize bone marrow stromal cells uniformly to a Th1 phenotype. Sci. Rep. 2016;6:2016.
    1. Rohart F, et al. A molecular classification of human mesenchymal stromal cells. PeerJ. 2016;4:e1845. doi: 10.7717/peerj.1845.
    1. Sivanathan, K. N., Rojas-Canales, D., Grey, S. T., Gronthos, S. & Coates, P. T. Transcriptome profiling of IL-17A preactivated mesenchymal stem cells: a comparative study to unmodified and IFN-gamma modified mesenchymal stem cells. Stem Cells Int.2017, 1–16 (2017).
    1. Klinker MW, Marklein RA, Lo Surdo JL, Wei CH, Bauer SR. Morphological features of IFN-γ-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity. Proc. Natl Acad. Sci. USA. 2017;114:E2598–E2607. doi: 10.1073/pnas.1617933114.
    1. Duque G, et al. Autocrine regulation of interferon gamma in mesenchymal stem cells plays a role in early osteoblastogenesis. Stem Cells. 2009;27:550–558. doi: 10.1634/stemcells.2008-0886.
    1. Vidal C, et al. The kynurenine pathway of tryptophan degradation is activated during osteoblastogenesis. Stem Cells. 2015;33:111–121. doi: 10.1002/stem.1836.
    1. Hoch AI, Binder BY, Genetos DC, Leach JK. Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PLoS ONE. 2012;7:e35579. doi: 10.1371/journal.pone.0035579.
    1. Romano Barbara, Elangovan Sudharshan, Erreni Marco, Sala Emanuela, Petti Luciana, Kunderfranco Paolo, Massimino Luca, Restelli Silvia, Sinha Shruti, Lucchetti Donatella, Anselmo Achille, Colombo Federico Simone, Stravalaci Matteo, Arena Vincenzo, D'Alessio Silvia, Ungaro Federica, Inforzato Antonio, Izzo Angelo A., Sgambato Alessandro, Day Anthony J., Vetrano Stefania. TNF-Stimulated Gene-6 Is a Key Regulator in Switching Stemness and Biological Properties of Mesenchymal Stem Cells. STEM CELLS. 2019;37(7):973–987. doi: 10.1002/stem.3010.
    1. Brandt L, et al. Tenogenic properties of mesenchymal progenitor cells are compromised in an inflammatory environment. Int. J. Mol. Sci. 2018;19:E2549. doi: 10.3390/ijms19092549.
    1. Boregowda SV, Krishnappa V, Haga CL, Ortiz LA, Phinney DG. A Clinical indications prediction scale based on TWIST1 for human mesenchymal stem cells. EBioMedicine. 2016;4:62–73. doi: 10.1016/j.ebiom.2015.12.020.
    1. Ren J, et al. Global transcriptome analysis of Human Bone Marrow Stromal Cells (BMSCs) reveals proliferative, mobile, and Interactive cells that produce abundant extracellular matrix proteins, some of which may affect BMSC Potency. Cytotherapy. 2011;13:661–674. doi: 10.3109/14653249.2010.548379.
    1. Cherubini, A. et al. FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition. Nucleic Acids Res. 10.1093/nar/gkz199 (2019).
    1. Billing AM, et al. Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers. Sci. Rep. 2016;9:21507. doi: 10.1038/srep21507.
    1. Lechanteur C, et al. Clinical-scale expansion of mesenchymal stromal cells: a large banking experience. J. Transl. Med. 2016;14:145–159. doi: 10.1186/s12967-016-0892-y.
    1. Ribeiro A, Ritter T, Griffin M, Ceredig R. Development of a flow cytometry-based potency assay for measuring the in vitro immunomodulatory properties of mesenchymal stromal cells. Immunol. Lett. 2016;177:38–46. doi: 10.1016/j.imlet.2016.07.010.
    1. Melo FR, et al. Transplantation of human skin-derived mesenchymal stromal cells improves locomotor recovery after spinal cord injury in rats. Cell Mol. Neurobiol. 2017;37:941–947. doi: 10.1007/s10571-016-0414-8.
    1. Miura M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl Acad. Sci. USA. 2003;100:5807–5812. doi: 10.1073/pnas.0937635100.
    1. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum. Reprod. 2007;22:2903–2911. doi: 10.1093/humrep/dem265.
    1. Traktuev DO, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ. Res. 2008;102:77–85. doi: 10.1161/CIRCRESAHA.107.159475.
    1. da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26:2287–2299. doi: 10.1634/stemcells.2007-1122.
    1. Crisan M, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–313. doi: 10.1016/j.stem.2008.07.003.
    1. Corselli M, et al. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev. 2012;21:1299–1308. doi: 10.1089/scd.2011.0200.
    1. Hardy WR, et al. Transcriptional networks in single perivascular cells sorted from human adipose tissue reveal a hierarchy of mesenchymal stem cells. Stem Cells. 2017;35:1273–1289. doi: 10.1002/stem.2599.
    1. Wang Y, et al. Relative contributions of adipose-derived CD146+ pericytes and CD34+ adventitial progenitor cells in bone tissue engineering. npj Regen. Med. 2019;7:4.
    1. Tang W, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322:583–586. doi: 10.1126/science.1156232.
    1. Dellavalle A, et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat. Commun. 2011;2:499–507. doi: 10.1038/ncomms1508.
    1. Krautler NJ, et al. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell. 2012;150:194–206. doi: 10.1016/j.cell.2012.05.032.
    1. Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L. Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat. Med. 2012;18:1262–1270. doi: 10.1038/nm.2848.
    1. Henderson NC, et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 2013;19:1617–1624. doi: 10.1038/nm.3282.
    1. Kramann R, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015;16:51–66. doi: 10.1016/j.stem.2014.11.004.
    1. El Agha E, et al. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell. 2017;21:166–177. doi: 10.1016/j.stem.2017.07.011.
    1. Murray IR, et al. αv integrins on mesenchymal cells critically regulate skeletal and cardiac muscle fibrosis. Nat. Commun. 2017 doi: 10.1038/s41467-017-01097-z.
    1. Zhao H, et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell. 2015;14:160–173. doi: 10.1016/j.stem.2013.12.013.
    1. Kramann R, et al. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell. 2016;19:628–642. doi: 10.1016/j.stem.2016.08.001.
    1. Guimarães-Camboa N, et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell. 2017;20:345–359. doi: 10.1016/j.stem.2016.12.006.
    1. de Souza LE, Malta TM, Kashima Haddad S, Covas DT. Mesenchymal stem cells and pericytes: to what extent are they related? Stem Cells Dev. 2016;25:1843–1852. doi: 10.1089/scd.2016.0109.
    1. Shaw I, Rider S, Mullins J, Hugues J, Peault B. Pericytes in the renal vasculature: roles in health and disease. Nat. Rev. Nephrol. 2018 doi: 10.1038/s41581-018-0032-4.
    1. Pelham RJ. Wang Yl. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA. 1997;94:13661–13665. doi: 10.1073/pnas.94.25.13661.
    1. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–689. doi: 10.1016/j.cell.2006.06.044.
    1. Méndez-Ferrer S, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–834. doi: 10.1038/nature09262.
    1. Dupont S, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–183. doi: 10.1038/nature10137.
    1. Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 2014;13:645–652. doi: 10.1038/nmat3889.
    1. Fu J, et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods. 2011;7:733–736. doi: 10.1038/nmeth.1487.
    1. Alakpa Enateri V., Jayawarna Vineetha, Lampel Ayala, Burgess Karl V., West Christopher C., Bakker Sanne C.J., Roy Sangita, Javid Nadeem, Fleming Scott, Lamprou Dimitris A., Yang Jingli, Miller Angela, Urquhart Andrew J., Frederix Pim W.J.M., Hunt Neil T., Péault Bruno, Ulijn Rein V., Dalby Matthew J. Tunable Supramolecular Hydrogels for Selection of Lineage-Guiding Metabolites in Stem Cell Cultures. Chem. 2016;1(3):512. doi: 10.1016/j.chempr.2016.08.001.
    1. Dingal PC, et al. Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. Nat. Mater. 2015;14:951–960. doi: 10.1038/nmat4350.
    1. Trappmann B, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 2012;11:642–649. doi: 10.1038/nmat3339.
    1. Swift J, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341:1240104. doi: 10.1126/science.1240104.
    1. Talele NP, Fradette J, Davies JE, Kapus A, Hinz B. Expression of α-smooth muscle actin determines the fate of mesenchymal stromal cells. Stem Cell Rep. 2015;4:1016–1030. doi: 10.1016/j.stemcr.2015.05.004.
    1. Huebsch N, et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 2010;9:518–526. doi: 10.1038/nmat2732.
    1. Werner M, et al. Surface curvature differentially regulates stem cell migration and differentiation via altered attachment, morphology and nuclear deformation. Adv. Sci. News (Weinh.) 2016;4:41600347.
    1. Ferlin KM, et al. Development of a dynamic stem cell culture platform for mesenchymal stem cell adhesion and evaluation. Mol. Pharm. 2014;11:2172–2181. doi: 10.1021/mp500062n.
    1. Rao, V. V., Vu, M. K., Ma, H., Killaars, A. R. & Anseth, K. S. Rescuing mesenchymal stem cell regenerative properties on hydrogel substrates post serial expansion. Bioeng. Transl. Med.4, 51–60 (2018).
    1. Huynh Nguyen P.T., Brunger Jonathan M., Gloss Catherine C., Moutos Franklin T., Gersbach Charles A., Guilak Farshid. Genetic Engineering of Mesenchymal Stem Cells for Differential Matrix Deposition on 3D Woven Scaffolds. Tissue Engineering Part A. 2018;24(19-20):1531–1544. doi: 10.1089/ten.tea.2017.0510.
    1. Liu H, et al. Microdevice arrays with strain sensors for 3D mechanical stimulation and monitoring of engineered tissues. Biomaterials. 2018;172:30–40. doi: 10.1016/j.biomaterials.2018.04.041.
    1. Lazarus HM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow Transpl. 2005;11:389–398. doi: 10.1016/j.bbmt.2005.02.001.
    1. Bernardo ME, et al. Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transpl. 2011;46:200–207. doi: 10.1038/bmt.2010.87.
    1. Di Nicola M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–3843. doi: 10.1182/blood.V99.10.3838.
    1. Klyushnenkova E, et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J. Biomed. Sci. 2005;12:47–57. doi: 10.1007/s11373-004-8183-7.
    1. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–1822. doi: 10.1182/blood-2004-04-1559.
    1. Ortiz LA, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl Acad. Sci. USA. 2007;104:11002–11007. doi: 10.1073/pnas.0704421104.
    1. Nasef A, et al. Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Expr. 2007;13:217–226. doi: 10.3727/000000006780666957.
    1. Djouad F, et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells. 2007;25:2025–2032. doi: 10.1634/stemcells.2006-0548.
    1. Sato K, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109:228–234. doi: 10.1182/blood-2006-02-002246.
    1. Lee RH, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5:54–63. doi: 10.1016/j.stem.2009.05.003.
    1. Bai L, et al. Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat. Neurosci. 2012;15:862–870. doi: 10.1038/nn.3109.
    1. Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp. Hematol. 2009;37:1445–1453. doi: 10.1016/j.exphem.2009.09.004.
    1. Liu Y, et al. MSCs inhibit bone marrow-derived DC maturation and function through the release of TSG-6. Biochem. Biophys. Res. Commun. 2014;450:1409–1415. doi: 10.1016/j.bbrc.2014.07.001.
    1. Németh K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 2009;15:42–49. doi: 10.1038/nm.1905.
    1. Krasnodembskaya A, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28:2229–2238. doi: 10.1002/stem.544.
    1. Galipeau J. The mesenchymal stromal cells dilemma–does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy. 2013;15:2–8. doi: 10.1016/j.jcyt.2012.10.002.
    1. Kurtzberg J, et al. Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol. Blood Marrow Transpl. 2014;20:229–235. doi: 10.1016/j.bbmt.2013.11.001.
    1. Hashmi S, et al. Survival after mesenchymal stromal cell therapy in steroid-refractory acute graft-versus-host disease: systematic review and meta-analysis. Lancet Haematol. 2016;3:e45–e52. doi: 10.1016/S2352-3026(15)00224-0.
    1. Munneke J. Marius, Spruit Melchior J.A., Cornelissen Anne S., van Hoeven Vera, Voermans Carlijn, Hazenberg Mette D. The Potential of Mesenchymal Stromal Cells as Treatment for Severe Steroid-Refractory Acute Graft-Versus-Host Disease. Transplantation. 2016;100(11):2309–2314. doi: 10.1097/TP.0000000000001029.
    1. Locatelli F, Algeri M, Trevisan V, Bertaina A. Remestemcel-L for the treatment of graft versus host disease. Expert Rev. Clin. Immunol. 2017;13:43–56. doi: 10.1080/1744666X.2016.1208086.
    1. Bergmann O, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102. doi: 10.1126/science.1164680.
    1. Levy O, et al. A small-molecule screen for enhanced homing of systemically infused cells. Cell Rep. 2015;10:1261–1268. doi: 10.1016/j.celrep.2015.01.057.
    1. Pezzi A, et al. Effects of hypoxia in long-term in vitro expansion of human bone marrow derived mesenchymal stem cells. J. Cell Biochem. 2017;118:3072–3079. doi: 10.1002/jcb.25953.
    1. Ruei-Zeng Lin, et al. Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proc. Natl Acad. Sci. USA. 2014;111:10137–10142. doi: 10.1073/pnas.1405388111.
    1. Mendez JJ, Ghaedi M, Steinbacher D, Niklason LE. Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds. Tissue Eng. Part A. 2014;20:1735–1746. doi: 10.1089/ten.tea.2013.0647.
    1. Redondo-Castro E, et al. Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming. Stem Cell Res Ther. 2018;9:11. doi: 10.1186/s13287-017-0753-5.
    1. Hare JM, et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: the Poseidon-DCM trial. J. Am. Coll. Cardiol. 2017;69:526–537. doi: 10.1016/j.jacc.2016.11.009.
    1. Hare JM, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the Poseidon randomized trial. JAMA. 2012;308:2369–2379. doi: 10.1001/jama.2012.25321.
    1. Butler J, et al. Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: safety and efficacy results of a phase Ii-a randomized trial. Circ. Res. 2017;120:332–340. doi: 10.1161/CIRCRESAHA.116.309717.
    1. Karantalis V, et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: the prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (Prometheus) Trial. Circ. Res. 2014;114:1302–1310. doi: 10.1161/CIRCRESAHA.114.303180.
    1. Eschenhagen T, et al. Cardiomyocyte regeneration: a consensus statement. Circulation. 2017;136:680–686. doi: 10.1161/CIRCULATIONAHA.117.029343.
    1. Mathiasen AB, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial) Eur. Heart J. 2015;36:1744–1753. doi: 10.1093/eurheartj/ehv136.
    1. Perin EC, et al. A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic Heart Failure. Circ. Res. 2015;117:576–584. doi: 10.1161/CIRCRESAHA.115.306332.
    1. Karantalis V, et al. Synergistic effects of combined cell therapy for chronic ischemic cardiomyopathy. J. Am. Coll. Cardiol. 2015;66:1990–1999. doi: 10.1016/j.jacc.2015.08.879.
    1. Hatzistergos KE, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ. Res. 2010;107:913–922. doi: 10.1161/CIRCRESAHA.110.222703.
    1. Wehman B, et al. Mesenchymal stem cells preserve neonatal right ventricular function in a porcine model of pressure overload. Am. J. Physiol. Heart Circ. Physiol. 2016;310:H1816–H1826. doi: 10.1152/ajpheart.00955.2015.
    1. Hatzistergos KE, et al. Tumor suppressors RB1 and CDKN2a cooperatively regulate cell-cycle progression and differentiation during cardiomyocyte development and repair. Circ. Res. 2019;124:1184–1197. doi: 10.1161/CIRCRESAHA.118.314063.
    1. Golpanian S, et al. Allogeneic human mesenchymal stem cell infusions for aging frailty. J. Gerontol. A Biol. Sci. Med. Sci. 2017;72:1505–1512. doi: 10.1093/gerona/glx056.
    1. Tompkins BA, et al. Allogeneic mesenchymal stem cells ameliorate aging frailty: a phase Ii randomized, double-blinded, placebo controlled clinical trial. J. Gerontol. A Biol. Sci. Med. Sci. 2017;72:1513–1522. doi: 10.1093/gerona/glx137.
    1. Perin EC, et al. Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J. Mol. Cell Cardiol. 2008;44:486–495. doi: 10.1016/j.yjmcc.2007.09.012.
    1. Guo Y, et al. Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Res. Cardiol. 2017;112:18–28. doi: 10.1007/s00395-017-0606-5.
    1. Mayourian J, et al. Experimental and computational insight into human mesenchymal stem cell paracrine signaling and heterocellular coupling effects on cardiac contractility and arrhythmogenicity. Circ. Res. 2017;121:411–423. doi: 10.1161/CIRCRESAHA.117.310796.
    1. Bolli R, et al. Rationale and design of the CONCERT-HF trial (combination of mesenchymal and c-kit(+) cardiac stem cells as regenerative therapy for heart failure) Circ. Res. 2018;122:1703–1715. doi: 10.1161/CIRCRESAHA.118.312978.
    1. Caplan AI. Cell-based therapies: the non-responders. Stem Cells Transl. Med. 2018;7:762–766. doi: 10.1002/sctm.18-0074.
    1. Moll G, et al. Intravascular mesenchymal stromal/stem cell therapy product diversification: time for new clinical guidelines. Trends Mol. Med. 2019;25:149–163. doi: 10.1016/j.molmed.2018.12.006.
    1. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cells. 2013;13:392–402. doi: 10.1016/j.stem.2013.09.006.
    1. Yen MH, et al. Efficient generation of hepatic cells from mesenchymal stromal cells by an innovative bio-microfluidic cell culture device. Stem Cell Res. Ther. 2016;7:120–133. doi: 10.1186/s13287-016-0371-7.
    1. Lee Mark H., Au Patrick, Hyde John, Gacchina Johnson Carmen, Heidaran Mohammad, Karandish Safa, Boxer Lynne, Mendicino Michael, Yoon Diana, Tull Lori, Arcidiacono Judith, McCright Brent, Kaplan David S., Fink Donald, Durfor Charles N., McFarland Richard, Witten Celia. Translational Regenerative Medicine. 2015. Translation of Regenerative Medicine Products Into the Clinic in the United States; pp. 49–74.

Source: PubMed

3
Subscribe