The Influence of Different Guided Bone Regeneration Procedures on the Contour of Bone Graft after Wound Closure: A Retrospective Cohort Study

Maoxia Wang, Xiaoqing Zhang, Yazhen Li, Anchun Mo, Maoxia Wang, Xiaoqing Zhang, Yazhen Li, Anchun Mo

Abstract

The aim of this study was to evaluate the impact of different guided bone regeneration (GBR) procedures on bone graft contour after wound closure in lateral ridge augmentation. A total of 48 patients with 63 augmented sites were included in this study. Participants were divided into 4 groups (n = 12 in each group) based on different surgical procedures: group 1: particulate bone substitute + collagen membrane; group 2: particulate bone substitute + collagen membrane + healing cap, group 3: particulate bone substitute + injectable platelet-rich fibrin (i-PRF) + collagen membrane; group 4: particulate bone substitute + i-PRF + surgical template + collagen membrane. After wound closure, the thickness of labial graft was measured at 0-5 mm apical to the implant shoulder (T0-T5). At T0-T2, the thickness of labial graft in group 4 was significantly higher than the other three groups (p < 0.05). And group 4 showed significantly more labial graft thickness than group 1 and group 2 at T3-T5 (p < 0.05). Within the limitations of this study, the use of i-PRF in combination with the surgical template in GBR may contribute to achieving an appropriate bone graft contour after wound closure.

Keywords: bone defect; computer-aided surgery; guided bone regeneration; lateral ridge augmentation; wound closure.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(a) The labial defect could be observed. (b,c) Guided bone regeneration with particulate bone substitutes and collagen membrane. (d) Radiographic view of cone beam CT immediately after wound closure.
Figure 2
Figure 2
(a) The labial defect could be observed, and a wide healing cap was connected to the implant. (b,c) Guided bone regeneration with particulate bone substitutes and collagen membrane. (d) Radiographic view of cone beam CT immediately after wound closure.
Figure 3
Figure 3
(a) The labial defect could be observed. (b) Particulate bone substitutes were mixed with i-PRF to form sticky bone. (c,d) The sticky bone was placed into the bone defect and covered with a collagen membrane, and titanium pins were used to fixate the membrane. (e) Radiographic view of cone beam CT immediately after wound closure.
Figure 4
Figure 4
(a,b) Digital simulation of bone graft contour before surgery. (c) A two-piece surgical template, which consists of two parts: the coronal part (green) for retention and the labial part (blue) for shaping the bone grafts, was fabricated based on the digital model. the template can be removed without disrupting the graft material. (d) The labial defect could be observed. (e) Particulate bone substitutes were mixed with i-PRF. (f,g) The mixture of i-PRF and particulate bone substitutes was placed into the defect under the guidance of a surgical template to form customized sticky bone. (h) The customized sticky bone was covered with a collagen membrane and fixed with pins. (i) Radiographic view of cone beam CT immediately after wound closure.
Figure 5
Figure 5
(ad) Virtual implants were placed in a prosthetically ideal position under the guidance of the diagnostic wax-up. (e) The DICOM files of the postoperative CBCT were converted to STL files (red) and superimposed on the preoperative CBCT (yellow). (f) The thickness of labial bone graft was measured from the labial outline of the bone graft (red lines) to the implant (T0–T5).
Figure 6
Figure 6
Quantification of labial graft thickness at different apico-coronal levels (T0–T5) immediately after wound closure. Error lines represent +/− standard deviation. * Statistically significant.
Figure 7
Figure 7
Results of the standard deviation of T0–T2 for different treatment modalities. Error lines represent +/− standard deviation. * Statistically significant.

References

    1. Araujo M.G., Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J. Clin. Periodontol. 2005;32:212–218. doi: 10.1111/j.1600-051X.2005.00642.x.
    1. Chiapasco M., Zaniboni M., Boisco M. Augmentation procedures for the rehabilitation of deficient edentulous ridges with oral implants. Clin. Oral Implants Res. 2006;17:136–159. doi: 10.1111/j.1600-0501.2006.01357.x.
    1. Donos N., Mardas N., Chadha V. Clinical outcomes of implants following lateral bone augmentation: Systematic assessment of available options (barrier membranes, bone grafts, split osteotomy) J. Clin. Periodontol. 2008;35:173–202. doi: 10.1111/j.1600-051X.2008.01269.x.
    1. Benic G.I., Hammerle C.H. Horizontal bone augmentation by means of guided bone regeneration. Periodontol. 2000. 2014;66:13–40. doi: 10.1111/prd.12039.
    1. Troeltzsch M., Troeltzsch M., Kauffmann P., Gruber R., Brockmeyer P., Moser N., Rau A., Schliephake H. Clinical efficacy of grafting materials in alveolar ridge augmentation: A systematic review. J. Craniomaxillofac. Surg. 2016;44:1618–1629. doi: 10.1016/j.jcms.2016.07.028.
    1. Sanz-Sanchez I., Ortiz-Vigon A., Sanz-Martin I., Figuero E., Sanz M. Effectiveness of lateral bone augmentation on the alveolar crest dimension: A systematic review and meta-analysis. J. Dent. Res. 2015;94:128S–142S. doi: 10.1177/0022034515594780.
    1. Benic G.I., Bernasconi M., Jung R.E., Hammerle C.H. Clinical and radiographic intra-subject comparison of implants placed with or without guided bone regeneration: 15-year results. J. Clin. Periodontol. 2017;44:315–325. doi: 10.1111/jcpe.12665.
    1. Urban I.A., Monje A., Lozada J.L., Wang H.L. Long-term evaluation of peri-implant bone level after reconstruction of severely atrophic edentulous maxilla via vertical and horizontal guided bone regeneration in combination with sinus augmentation: A case series with 1 to 15 years of loading. Clin. Implant. Dent. Relat Res. 2017;19:46–55. doi: 10.1111/cid.12431.
    1. Haugen H.J., Lyngstadaas S.P., Rossi F., Perale G. Bone grafts: Which is the ideal biomaterial? J. Clin. Periodontol. 2019;46:92–102. doi: 10.1111/jcpe.13058.
    1. Strietzel F.P., Khongkhunthian P., Khattiya R., Patchanee P., Reichart P.A. Healing pattern of bone defects covered by different membrane types--a histologic study in the porcine mandible. J. Biomed. Mater. Res. B Appl. Biomater. 2006;78:35–46. doi: 10.1002/jbm.b.30452.
    1. Schwarz F., Herten M., Ferrari D., Wieland M., Schmitz L., Engelhardt E., Becker J. Guided bone regeneration at dehiscence-type defects using biphasic hydroxyapatite + beta tricalcium phosphate (Bone Ceramic) or a collagen-coated natural bone mineral (BioOss Collagen): An immunohistochemical study in dogs. Int. J. Oral Maxillofac. Surg. 2007;36:1198–1206. doi: 10.1016/j.ijom.2007.07.014.
    1. Chiapasco M., Casentini P. Horizontal bone-augmentation procedures in implant dentistry: Prosthetically guided regeneration. Periodontol. 2000. 2018;77:213–240. doi: 10.1111/prd.12219.
    1. Shah R., Gowda T.M., Thomas R., Kumar T., Mehta D.S. Biological activation of bone grafts using injectable platelet-rich fibrin. J. Prosthet. Dent. 2019;121:391–393. doi: 10.1016/j.prosdent.2018.03.027.
    1. Mir-Mari J., Wui H., Jung R.E., Hammerle C.H., Benic G.I. Influence of blinded wound closure on the volume stability of different GBR materials: An in vitro cone-beam computed tomographic examination. Clin. Oral Implants Res. 2016;27:258–265. doi: 10.1111/clr.12590.
    1. Mertens C., Braun S., Krisam J., Hoffmann J. The influence of wound closure on graft stability: An in vitro comparison of different bone grafting techniques for the treatment of one-wall horizontal bone defects. Clin. Implant. Dent. Relat Res. 2019;21:284–291. doi: 10.1111/cid.12728.
    1. Ciocca L., Fantini M., De Crescenzio F., Corinaldesi G., Scotti R. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med. Biol. Eng. Comput. 2011;49:1347–1352. doi: 10.1007/s11517-011-0813-4.
    1. Blume O., Hoffmann L., Donkiewicz P., Wenisch S., Back M., Franke J., Schnettler R., Barbeck M. Treatment of severely resorbed maxilla due to peri-implantitis by guided bone regeneration using a customized allogenic bone block: A case report. Materials (Basel) 2017;10:1213. doi: 10.3390/ma10101213.
    1. Blume O., Back M., Born T., Smeets R., Jung O., Barbeck M. Treatment of a bilaterally severely resorbed posterior mandible due to early tooth loss by Guided Bone Regeneration using customized allogeneic bone blocks: A case report with 24 months follow-up data. J. Esthet. Restor. Dent. 2018;30:474–479. doi: 10.1111/jerd.12388.
    1. Buser D., Martin W., Belser U.C. Optimizing esthetics for implant restorations in the anterior maxilla: Anatomic and surgical considerations. Int. J. Oral Maxillofac. Implants. 2004;19:43–61.
    1. Rojas-Vizcaya F. Biological aspects as a rule for single implant placement. The 3A-2B rule: A clinical report. J. Prosthodont. 2013;22:575–580. doi: 10.1111/jopr.12039.
    1. Spray J.R., Black C.G., Morris H.F., Ochi S. The influence of bone thickness on facial marginal bone response: Stage 1 placement through stage 2 uncovering. Ann. Periodontol. 2000;5:119–128. doi: 10.1902/annals.2000.5.1.119.
    1. Le B.T., Borzabadi-Farahani A. Labial bone thickness in area of anterior maxillary implants associated with crestal labial soft tissue thickness. Implant. Dent. 2012;21:406–410. doi: 10.1097/ID.0b013e31826371b5.
    1. Elnayef B., Porta C., Suarez-Lopez D.A.F., Mordini L., Gargallo-Albiol J., Hernandez-Alfaro F. The Fate of Lateral Ridge Augmentation: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implants. 2018;33:622–635. doi: 10.11607/jomi.6290.
    1. Mir-Mari J., Benic G.I., Valmaseda-Castellon E., Hammerle C., Jung R.E. Influence of wound closure on the volume stability of particulate and non-particulate GBR materials: An in vitro cone-beam computed tomographic examination. Part II. Clin. Oral Implants. Res. 2017;28:631–639. doi: 10.1111/clr.12845.
    1. Benic G.I., Eisner B.M., Jung R.E., Basler T., Schneider D., Hammerle C. Hard tissue changes after guided bone regeneration of peri-implant defects comparing block versus particulate bone substitutes: 6-month results of a randomized controlled clinical trial. Clin. Oral Implants. Res. 2019 doi: 10.1111/clr.13515.
    1. Naenni N., Berner T., Waller T., Huesler J., Hammerle C., Thoma D.S. Influence of wound closure on volume stability with the application of different GBR materials: An in vitro cone-beam computed tomographic study. J. Periodontal Implant. Sci. 2019;49:14–24. doi: 10.5051/jpis.2019.49.1.14.
    1. Friedmann A., Strietzel F.P., Maretzki B., Pitaru S., Bernimoulin J.P. Histological assessment of augmented jaw bone utilizing a new collagen barrier membrane compared to a standard barrier membrane to protect a granular bone substitute material. Clin. Oral Implants Res. 2002;13:587–594. doi: 10.1034/j.1600-0501.2002.130603.x.
    1. Soni R., Priya A., Yadav H., Mishra N., Kumar L. Bone augmentation with sticky bone and platelet-rich fibrin by ridge-split technique and nasal floor engagement for immediate loading of dental implant after extracting impacted canine. Natl. J. Maxillofac. Surg. 2019;10:98–101. doi: 10.4103/njms.NJMS_37_18.
    1. Scarano A., Inchingolo F., Murmura G., Traini T., Piattelli A., Lorusso F. Three-dimensional architecture and mechanical properties of bovine bone mixed with autologous platelet liquid, blood, or physiological water: An in vitro study. Int. J. Mol. Sci. 2018;19:1230. doi: 10.3390/ijms19041230.
    1. Amorfini L., Migliorati M., Signori A., Silvestrini-Biavati A., Benedicenti S. Block allograft technique versus standard guided bone regeneration: A randomized clinical trial. Clin. Implant. Dent. Relat. Res. 2014;16:655–667. doi: 10.1111/cid.12040.
    1. Miron R.J., Fujioka-Kobayashi M., Hernandez M., Kandalam U., Zhang Y., Ghanaati S., Choukroun J. Injectable platelet rich fibrin (i-PRF): Opportunities in regenerative dentistry? Clin. Oral. Investig. 2017;21:2619–2627. doi: 10.1007/s00784-017-2063-9.
    1. Wang X., Zhang Y., Choukroun J., Ghanaati S., Miron R.J. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets. 2018;29:48–55. doi: 10.1080/09537104.2017.1293807.
    1. Varela H.A., Souza J., Nascimento R.M., Araujo R.J., Vasconcelos R.C., Cavalcante R.S., Guedes P.M., Araujo A.A. Injectable platelet rich fibrin: Cell content, morphological, and protein characterization. Clin. Oral Investig. 2019;23:1309–1318. doi: 10.1007/s00784-018-2555-2.
    1. Abd E.R.M., Wang X., Miusi S., Chai J., Mohamed A.A., Nefissa H.M., Ghanaati S., Choukroun J., Choukroun E., Zhang Y., et al. Injectable-platelet rich fibrin using the low speed centrifugation concept improves cartilage regeneration when compared to platelet-rich plasma. Platelets. 2019;30:213–221. doi: 10.1080/09537104.2017.1401058.
    1. Choukroun J., Ghanaati S. Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients’ own inflammatory cells, platelets and growth factors: The first introduction to the low speed centrifugation concept. Eur. J. Trauma Emerg. Surg. 2018;44:87–95. doi: 10.1007/s00068-017-0767-9.

Source: PubMed

3
Subscribe