Neurophysiological Correlates of Gait in the Human Basal Ganglia and the PPN Region in Parkinson's Disease

Rene Molina, Chris J Hass, Kristen Sowalsky, Abigail C Schmitt, Enrico Opri, Jaime A Roper, Daniel Martinez-Ramirez, Christopher W Hess, Kelly D Foote, Michael S Okun, Aysegul Gunduz, Rene Molina, Chris J Hass, Kristen Sowalsky, Abigail C Schmitt, Enrico Opri, Jaime A Roper, Daniel Martinez-Ramirez, Christopher W Hess, Kelly D Foote, Michael S Okun, Aysegul Gunduz

Abstract

This study aimed to characterize the neurophysiological correlates of gait in the human pedunculopontine nucleus (PPN) region and the globus pallidus internus (GPi) in Parkinson's disease (PD) cohort. Though much is known about the PPN region through animal studies, there are limited physiological recordings from ambulatory humans. The PPN has recently garnered interest as a potential deep brain stimulation (DBS) target for improving gait and freezing of gait (FoG) in PD. We used bidirectional neurostimulators to record from the human PPN region and GPi in a small cohort of severely affected PD subjects with FoG despite optimized dopaminergic medications. Five subjects, with confirmed on-dopaminergic medication FoG, were implanted with bilateral GPi and bilateral PPN region DBS electrodes. Electrophysiological recordings were obtained during various gait tasks for 5 months postoperatively in both the off- and on-medication conditions (obtained during the no stimulation condition). The results revealed suppression of low beta power in the GPi and a 1-8 Hz modulation in the PPN region which correlated with human gait. The PPN feature correlated with walking speed. GPi beta desynchronization and PPN low-frequency synchronization were observed as subjects progressed from rest to ambulatory tasks. Our findings add to our understanding of the neurophysiology underpinning gait and will likely contribute to the development of novel therapies for abnormal gait in PD. Clinical Trial Registration: Clinicaltrials.gov identifier; NCT02318927.

Keywords: DBS; Parkinson’s disease (PD); brainstem; deep brain stimulation; deep brain stimulation (DBS); gait.

Copyright © 2020 Molina, Hass, Sowalsky, Schmitt, Opri, Roper, Martinez-Ramirez, Hess, Foote, Okun and Gunduz.

Figures

Figure 1
Figure 1
Pedunculopontine nucleus (PPN) lead localization methods. (A) MRI-CT co-registered images of each subject. The “active contact” marks the center of the bipolar electrode configuration that yielded the feature most correlated with gait. The left panels show T1 inverted axial views of the active contact (orange) and the contralateral lead (blue). The right panels show T2 sagittal views of the active contact. (B) Leads normalized to MNI space using Lead-deep brain stimulation (DBS). All leads are shown with a red dot that roughly defines the location of the PPN.
Figure 2
Figure 2
Globus pallidus internus (GPi) response to medication. (A) Power spectral density of GPi signals from Subject 1, OFF, and ON levodopa medication during various baseline and gait tasks. (B) Bar plots of raw decrease in GPi beta power during sitting (8–20 Hz). (C) Bar plots of each subject’s percent improvement in UPDRS III score from OFF medication to ON medication during sitting. The red line marks a 30% improvement, a commonly employed clinical benchmark for medication responsiveness.
Figure 3
Figure 3
PPN and GPi response to gait tasks in the on medication condition. (A) Logarithmic power spectral density of PPN signal power in a single subject during various balance and gait-related tasks. (B,C) Single-subject (log normalized to standing) demonstrating PPN low frequency and GPi beta modulation with gait onset shown as boxplots. Significance bars indicate that tasks that statistically could be differentiated from gait every month (p < 0.001). Panel (D) Shows the temporal evolution of neural signatures with gait initiation and the spectrogram from the same subject as (A) averaged across gait initiation trials in one session. This subject exhibited a beta peak while at rest, and this beta peak decreased with gait initiation, while the PPN modulated in response to walking in the 1–8 Hz spectral band. The outlined bands show the dissipation of the beta rhythm in the GPi while the PPN feature bands modulated at the onset of gait.
Figure 4
Figure 4
PPN low-frequency feature compared against gait metrics. The mean walking speed of subjects 1, 2, and 5 are plotted against their averaged normalized power in the 1–8 Hz PPN feature band. Each regression is performed by subject and within the same medication condition, for a total of six regressions. Each point represents a trial. Error bars are shown as dotted parabolas following the trend line. *p < 0.1.

References

    1. Afshar P., Khambhati A., Stanslaski S., Carlson D., Jensen R., Linde D., et al. . (2012). A translational platform for prototyping closed-loop neuromodulation systems. Front. Neural Circuits 6:117. 10.3389/fncir.2012.00117
    1. Alam M., Schwabe K., Krauss J. K. (2011). The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 134, 11–23. 10.1093/brain/awq322
    1. Androulidakis A. G., Mazzone P., Litvak V., Penny W., Dileone M., Gaynor L. M. F., et al. . (2008). Oscillatory activity in the pedunculopontine area of patients with Parkinson’s disease. Exp. Neurol. 211, 59–66. 10.1016/j.expneurol.2008.01.002
    1. Aziz T. Z., Davies L., Stein J., France S. (1998). The role of descending basal ganglia connections to the brain stem in Parkinsonian akinesia. Br. J. Neurosurg. 12, 245–249. 10.1080/02688699845078
    1. Bourget D., Bink H., Stanslaski S., Linde D., Arnett C., Adamski T., et al. (2015). “An implantable, rechargeable neuromodulation research tool using a distributed interface and algorithm architecture,” in 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), (Montpellier, France: IEEE), 61–65.
    1. Breit S., Bouali-Benazzouz R., Benabid A. L., Benazzouz A. (2001). Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat. Eur. J. Neurosci. 14, 1833–1842. 10.1046/j.0953-816x.2001.01800.x
    1. Breit S., Lessmann L., Benazzouz A., Schulz J. B. (2005). Unilateral lesion of the pedunculopontine nucleus induces hyperactivity in the subthalamic nucleus and substantia nigra in the rat. Eur. J. Neurosci. 22, 2283–2294. 10.1111/j.1460-9568.2005.04402.x
    1. Brown P., Oliviero A., Mazzone P., Insola A., Tonali P., Di Lazzaro V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. 21, 1033–1038. 10.1523/JNEUROSCI.21-03-01033.2001
    1. Fahn S., Elton R. (1987). “Unified Parkinson’s disease rating scale,” in Recent Developments in Parkinson’s Disease, eds Fahn S., Marsden C. D., Calne D., Goldstein M. (Florham Park: Macmillan Health Care Information; ), 153–163.
    1. Futami T., Takakusaki K., Kitai S. T. (1995). Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci. Res. 21, 331–342. 10.1016/0168-0102(94)00869-h
    1. Giladi N., Shabtai H., Simon E. S., Biran S., Tal J., Korczyn A. D. (2000). Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat. Disord. 6, 165–170. 10.1016/s1353-8020(99)00062-0
    1. Goetz L., Bhattacharjee M., Ferraye M. U., Fraix V., Maineri C., Nosko D., et al. . (2019). Deep brain stimulation of the pedunculopontine nucleus area in parkinson disease: MRI-based anatomoclinical correlations and optimal target. Neurosurgery 84, 506–518. 10.1093/neuros/nyy151
    1. Grabli D., Karachi C., Folgoas E., Monfort M., Tande D., Clark S., et al. . (2013). Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J. Neurosci. 33, 11986–11993. 10.1523/JNEUROSCI.1568-13.2013
    1. Grillner S., Wallén P., Saitoh K., Kozlov A., Robertson B., Wallen P., et al. . (2008). Neural bases of goal-directed locomotion in vertebrates-an overview. Brain Res. Rev. 57, 2–12. 10.1016/j.brainresrev.2007.06.027
    1. Hamani C., Lozano A. M., Mazzone P. A. M., Moro E., Hutchison W., Silburn P. A., et al. . (2016). Pedunculopontine nucleus region deep brain stimulation in parkinson disease: surgical techniques, side effects, and postoperative imaging. Stereotact. Funct. Neurosurg. 94, 307–319. 10.1159/000449011
    1. Hamani C., Stone S., Laxton A., Lozano A. M. (2007). The pedunculopontine nucleus and movement disorders: anatomy and the role for deep brain stimulation. Parkinsonism Relat. Disord. 13, 276–280. 10.1016/s1353-8020(08)70016-6
    1. Heremans E., Nieuwboer A., Vercruysse S. (2013). Freezing of gait in Parkinson’s disease: where are we now? Topical collection on movement disorders. Curr. Neurol. Neurosci. Rep. 13:350. 10.1007/s11910-013-0350-7
    1. Jenkinson N., Brown P. (2011). New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci. 34, 611–618. 10.1016/j.tins.2011.09.003
    1. Jenkinson N., Nandi D., Oram R., Stein J. F., Aziz T. Z. (2006). Pedunculopontine nucleus electric stimulation alleviates akinesia independently of dopaminergic mechanisms. Neuroreport 17, 639–641. 10.1097/00001756-200604240-00016
    1. Kühn A. A., Kupsch A., Schneider G.-H., Brown P. (2006). Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 23, 1956–1960. 10.1111/j.1460-9568.2006.04717.x
    1. Kühn A. A., Tsui A., Aziz T., Ray N., Brücke C., Kupsch A., et al. . (2009). Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp. Neurol. 215, 380–387. 10.1016/j.expneurol.2008.11.008
    1. Karachi C., Grabli D., Bernard F. A., Tandé D., Wattiez N., Belaid H., et al. . (2010). Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Invest. 120, 2745–2754. 10.1172/JCI42642
    1. Khan S., Gill S. S., Mooney L., White P., Whone A., Brooks D. J., et al. . (2012). Combined pedunculopontine-subthalamic stimulation in Parkinson disease. Neurology 78, 1090–1095. 10.1212/WNL.0b013e31824e8e96
    1. Levy R., Hutchison W. D., Lozano A. M., Dostrovsky J. O. (2002). Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J. Neurosci. 22, 2855–2861. 10.1523/jneurosci.22-07-02855.2002
    1. Matsumura M., Kojima J. (2002). The role of the pedunculopontine tegmental nucleus in experimental parkinsonism in primates. Stereotact. Funct. Neurosurg. 77, 108–115. 10.1159/000064614
    1. Mestre T. A., Sidiropoulos C., Hamani C., Poon Y.-Y. Y., Lozano A. M., Lang A. E., et al. . (2016). Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson’s disease. Mov. Disord. 31, 1570–1575. 10.1002/mds.26710
    1. Mitchell I. J., Clarke C. E., Boyce S., Robertson R. G., Peggs D., Sambrook M. A., et al. . (1989). Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 32, 213–226. 10.1016/0306-4522(89)90120-6
    1. Molina R., Hass C. J., Sowalsky K., Schmitt A. C., Roper J., Martinez-Ramirez D., et al. (2018). Adaptive deep brain stimulation to treat freezing of gait in Parkinson’s disease. Submitt. Publ. 10.31525/ct1-nct04197947
    1. Moreau C., Defebvre L., Devos D., Marchetti F., Destée A., Stefani A., et al. . (2009). STN versus PPN-DBS for alleviating freezing of gait: toward a frequency modulation approach? Mov. Disord. 24, 2164–2166. 10.1002/mds.22743
    1. Morita H., Hass C. J., Moro E., Sudhyadhom A., Kumar R., Okun M. S. (2014). Pedunculopontine nucleus stimulation: where are we now and what needs to be done to move the field forward? Front. Neurol. 5:243. 10.3389/fneur.2014.00243
    1. Moro E., Hamani C., Poon Y. Y., Al-Khairallah T., Dostrovsky J. O., Hutchison W. D., et al. . (2010). Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133, 215–224. 10.1093/brain/awp261
    1. Nandi D., Jenkinson N., Stein J., Aziz T. (2008). The pedunculopontine nucleus in Parkinson’s disease: primate studies. Br. J. Neurosurg. 22, S4–S8. 10.1080/02688690802448350
    1. Nutt J. G., Bloem B. R., Giladi N., Hallett M., Horak F. B., Nieuwboer A. (2011). Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 10, 734–744. 10.1016/s1474-4422(11)70143-0
    1. Pahapill P. A., Lozano A. M. (2000). The pedunculopontine nucleus and Parkinson’s disease. Brain 123, 1767–1783. 10.1093/brain/123.9.1767
    1. Peto V., Jenkinson C., Fitzpatrick R. (1998). PDQ-39: a review of the development, validation and application of a Parkinson’s disease quality of life questionnaire and its associated measures. J. Neurol. 245, S10–S14. 10.1007/pl00007730
    1. Powell L. E., Myers A. M. (1995). The activities-specific balance confidence (ABC) Scale. J. Gerontol. A Biol. Sci. Med. Sci. 50A, M28–M34. 10.1093/gerona/50a.1.m28
    1. Ray N. J., Jenkinson N., Wang S., Holland P., Brittain J. S., Joint C., et al. . (2008). Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp. Neurol. 213, 108–113. 10.1016/j.expneurol.2008.05.008
    1. Schalk G., McFarland D. J., Hinterberger T., Birbaumer N., Wolpaw J. R. (2004). BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043. 10.1109/tbme.2004.827072
    1. Shimamoto S. A., Larson P. S., Ostrem J. L., Glass G. A., Turner R. S., Starr P. A. (2010). Physiological identification of the human pedunculopontine nucleus. J. Neurol. Neurosurg. Psychiatry 81, 80–86. 10.1136/jnnp.2009.179069
    1. Snijders A. H., Haaxma C. A., Hagen Y. J., Munneke M., Bloem B. R. (2012). Freezer or non-freezer: clinical assessment of freezing of gait. Parkinsonism Relat. Disord. 18, 149–154. 10.1016/j.parkreldis.2011.09.006
    1. Snijders A. H., Nijkrake M. J., Bakker M., Munneke M., Wind C., Bloem B. R. (2008). Clinimetrics of freezing of gait. Mov. Disord. 23, 468–474. 10.1002/mds.22144
    1. Snijders A. H., Takakusaki K., Debu B., Lozano A. M., Krishna V., Fasano A., et al. . (2016). Physiology of freezing of gait. Ann. Neurol. 80, 644–659. 10.1002/ana.24778
    1. Snijders A. H., Weerdesteyn V., Hagen Y. J., Duysens J., Giladi N., Bloem B. R. (2010). Obstacle avoidance to elicit freezing of gait during treadmill walking. Mov. Disord. 25, 57–63. 10.1002/mds.22894
    1. Spildooren J., Vercruysse S., Desloovere K., Vandenberghe W., Kerckhofs E., Nieuwboer A. (2010). Freezing of gait in Parkinson’s disease: the impact of dual-tasking and turning. Mov. Disord. 25, 2563–2570. 10.1002/mds.23327
    1. Stanslaski S., Afshar P., Cong P., Giftakis J., Stypulkowski P., Carlson D., et al. . (2012). Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 410–421. 10.1109/tnsre.2012.2183617
    1. Stefani A., Lozano A. M., Peppe A., Stanzione P., Galati S., Tropepi D., et al. . (2007). Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130, 1596–1607. 10.1093/brain/awl346
    1. Stefani A., Peppe A., Galati S., Bassi M. S., D’Angelo V., Pierantozzi M. (2013). The serendipity case of the pedunculopontine nucleus low-frequency brain stimulation: chasing a gait response, finding sleep and cognition improvement. Front. Neurol. 4:68. 10.3389/fneur.2013.00068
    1. Stegemõller E. L., Buckley T. A., Pitsikoulis C., Barthelemy E., Roemmich R., Hass C. J. (2012). Postural instability and gait impairment during obstacle crossing in parkinson’s disease. Arch. Phys. Med. Rehabil. 93, 703–709. 10.1016/j.apmr.2011.11.004
    1. Stoica P., Moses R. (2004). Spectral Analysis of Signals. Prentice Hall: Upper Saddle Single Process.
    1. Sudhyadhom A., Okun M. S., Foote K. D., Rahman M., Bova F. J. (2012). A three-dimensional deformable brain atlas for DBS targeting. I. methodology for atlas creation and artifact reduction. Open Neuroimag. J. 6, 92–98. 10.2174/1874440001206010092
    1. Thevathasan W., Debu B., Aziz T., Bloem B. R., Blahak C., Butson C., et al. . (2018). Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: a clinical review. Mov. Disord. 33, 10–20. 10.1002/mds.27098
    1. Thevathasan W., Pogosyan A., Hyam J. A., Jenkinson N., Foltynie T., Limousin P., et al. . (2012). Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain 135, 148–160. 10.1093/brain/awr315
    1. Welter M.-L., Demain A., Ewenczyk C., Czernecki V., Lau B., El Helou A., et al. . (2015). PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J. Neurol. 262, 1515–1525. 10.1007/s00415-015-7744-1
    1. Zrinzo L., Zrinzo L. V., Tisch S., Limousin P. D., Yousry T. A., Afshar F., et al. . (2008). Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131, 1588–1598. 10.1093/brain/awn075
    1. Zrinzo L., Zrinzo L. V., Massey L. A., Thornton J., Parkes H. G., Revesz T., et al. . (2011). Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study. J. Neural Transm. 118, 1487–1495. 10.1007/s00702-011-0639-0

Source: PubMed

3
Subscribe