Surefire infusion system versus standard microcatheter use during holmium-166 radioembolization: study protocol for a randomized controlled trial

Andor F van den Hoven, Jip F Prince, Rutger C G Bruijnen, Helena M Verkooijen, Gerard C Krijger, Marnix G E H Lam, Maurice A A J van den Bosch, Andor F van den Hoven, Jip F Prince, Rutger C G Bruijnen, Helena M Verkooijen, Gerard C Krijger, Marnix G E H Lam, Maurice A A J van den Bosch

Abstract

Background: An anti-reflux catheter (ARC) may increase the tumor absorbed dose during radioembolization (RE) by elimination of particle reflux and its effects on hemodynamics. Since the catheter is fixed in a centro-luminal position, it may also increase the predictive accuracy of a scout dose administration before treatment. The purpose of the SIM trial is to compare the effects of ARC use during RE with holmium-166 (166Ho) microspheres in patients with colorectal liver metastases (CRLM), with the use of a standard end-hole microcatheter.

Methods/design: A within-patient randomized controlled trial (RCT) will be conducted in 25 patients with unresectable chemorefractory liver-dominant CRLM. Study participants will undergo a 166Ho scout dose procedure in the morning and a therapeutic procedure in the afternoon. The ARC will be randomly allocated to the left/right hepatic artery, and a standard microcatheter will be used in the contralateral artery. SPECT/CT imaging will be performed for quantitative analyses of the microsphere distribution directly after the scout and treatment procedure. Baseline and follow-up investigations include 18F-FDG-PET + liver CT, clinical and laboratory examinations. The primary endpoint is the comparison of tumor to non-tumor (T/N) activity ratio in both groups. Secondary endpoints include comparisons of mean absorbed dose in tumors and healthy liver tissue, infusion efficiency, the predictive value of 166Ho scout dose for tumor response. In the entire cohort, a dose-response relationship, clinical toxicity, and overall survival will be assessed. The sample was determined for the expectation that the ARC will increase the T/N ratio by 25 % (mean T/N ratio 2.0 vs. 1.6).

Discussion: The SIM trial is a within-patient RCT that will assess whether 166Ho RE treatment can be optimized by using an ARC.

Trial registration: The SIM trial is registered at clinicaltrials.gov ( NCT02208804 ). Registered on 31 July 2014.

Figures

Fig. 1
Fig. 1
Flowchart of the investigations and interventions in the SIM trial. The study procedures are compared to standard radioembolization practice with yttrium-90 (90Y) microspheres. Note that in the SIM trial, the same particle is used during the scout and therapy procedure, and patients receive all procedures on the same day

References

    1. Rosenbaum CENM, Verkooijen HM, Lam MGEH, et al. Radioembolization for treatment of salvage patients with colorectal cancer liver metastases: a systematic review. J Nucl Med. 2013;54(11):1890–1895. doi: 10.2967/jnumed.113.119545.
    1. van den Hoven AF, Lam MGEH, Jernigan S, van den Bosch MAAJ, Buckner GD. Innovation in catheter design for intra-arterial liver cancer treatments results in favorable particle-fluid dynamics. J Exp Clin Cancer Res. 2015;34(1):74. doi: 10.1186/s13046-015-0188-8.
    1. Smits MLJ, Nijsen JFW, van den Bosch MAAJ, et al. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol. 2012;13(10):1025–1034. doi: 10.1016/S1470-2045(12)70334-0.
    1. Smits MLJ, Elschot M, van den Bosch MAAJ, et al. In vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies. J Nucl Med. 2013;54(12):2093–2100. doi: 10.2967/jnumed.113.119768.
    1. Prince JF, van Rooij R, Bol GH, de Jong HWM, van den Bosch MJ, Lam MGEH. Safety of a scout dose preceding hepatic radioembolization with 166Ho microspheres. J Nucl Med. 2015;56(6):817–823. doi: 10.2967/jnumed.115.155564.
    1. Arepally A, Chomas J, Kraitchman D, Hong K. Quantification and reduction of reflux during embolotherapy using an antireflux catheter and tantalum microspheres: ex vivo analysis. J Vasc Interv Radiol. 2013;24(4):575–580. doi: 10.1016/j.jvir.2012.12.018.
    1. van den Hoven AF, Prince JF, Samim M, et al. Posttreatment PET-CT-confirmed intrahepatic radioembolization performed without coil embolization, by using the antireflux Surefire Infusion System. Cardiovasc Intervent Radiol. 2014;37(2):523–528. doi: 10.1007/s00270-013-0674-3.
    1. Fischman AM, Ward TJ, Patel RS, et al. Prospective, randomized study of coil embolization versus surefire infusion system during yttrium-90 radioembolization with resin microspheres. J Vasc Interv Radiol. 2014;25(11):1709–1716. doi: 10.1016/j.jvir.2014.08.007.
    1. Rose SC, Kikolski SG, Chomas JE. Downstream hepatic arterial blood pressure changes caused by deployment of the surefire antireflux expandable tip. Cardiovasc Intervent Radiol. 2013;36(5):1262–1269. doi: 10.1007/s00270-012-0538-2.
    1. Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 Explanation and Elaboration: Updated guidelines for reporting parallel group randomised trials. J Clin Epidemiol. 2010;63(8):e1–e37. doi: 10.1016/j.jclinepi.2010.03.004.
    1. Chan A-W, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Eisenhauer E, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Siriwardena AK, Mason JM, Mullamitha S, Hancock HC, Jegatheeswaran S. Management of colorectal cancer presenting with synchronous liver metastases. Nat Rev Clin Oncol. 2014;11(8):446–459. doi: 10.1038/nrclinonc.2014.90.
    1. Elferink MAG, de Jong KP, Klaase JM, Siemerink EJ, de Wilt JHW. Metachronous metastases from colorectal cancer: a population-based study in North-East Netherlands. Int J Colorectal Dis. 2014;30(2):205–212. doi: 10.1007/s00384-014-2085-6.
    1. Guglielmi AP, Sobrero AF. Second-line therapy for advanced colorectal cancer. Gastrointest Cancer Res. 2007;1(2):57–63.
    1. Wang C-C, Li J. An update on chemotherapy of colorectal liver metastases. World J Gastroenterol. 2012;18(1):25–33. doi: 10.3748/wjg.v18.i1.25.
    1. Saltz LB. Second- and third-line treatment options for unresectable metastatic colorectal cancer. Gastrointest Cancer Res. 2008;2(6):299–302.
    1. Cunningham D, Maroun J, Vanhoefer U, Van Cutsem E. Optimizing the use of irinotecan in colorectal cancer. Oncologist. 2001;6(Suppl 4):17–23. doi: 10.1634/theoncologist.6-suppl_4-17.
    1. Simkens LHJ, Koopman M, Punt CJ. Optimal duration of systemic treatment in metastatic colorectal cancer. Curr Opin Oncol. 2014;26(4):448–453. doi: 10.1097/CCO.0000000000000087.
    1. Koopman M, Antonini NF, Douma J, et al. Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): a phase III randomised controlled trial. Lancet. 2007;370(9582):135–142. doi: 10.1016/S0140-6736(07)61086-1.
    1. Seymour MT, Maughan TS, Ledermann JA, et al. Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): a randomised controlled trial. Lancet. 2007;370(9582):143–152. doi: 10.1016/S0140-6736(07)61087-3.
    1. Simkens LHJ, van Tinteren H, May A, et al. Maintenance treatment with capecitabine and bevacizumab in metastatic colorectal cancer (CAIRO3): a phase 3 randomised controlled trial of the Dutch Colorectal Cancer Group. Lancet. 2015;6736(14):1–10.
    1. Smits MLJ, van den Hoven AF, Rosenbaum CENM, et al. Clinical and laboratory toxicity after intra-arterial radioembolization with 90Y-microspheres for unresectable liver metastases. PLoS One. 2013;8(7):e69448. doi: 10.1371/journal.pone.0069448.
    1. Mahnken AH, Spreafico C, Maleux G, Helmberger T, Jakobs TF. Standards of practice in transarterial radioembolization. Cardiovasc Intervent Radiol. 2013;36(3):613–622. doi: 10.1007/s00270-013-0600-8.
    1. Van de Wiele C, Maes A, Brugman E, et al. SIRT of liver metastases: physiological and pathophysiological considerations. Eur J Nucl Med Mol Imaging. 2012;39(10):1646–1655. doi: 10.1007/s00259-012-2189-6.
    1. Dhabuwala A, Lamerton P, Stubbs RS. Relationship of 99mtechnetium labelled macroaggregated albumin (99mTc-MAA) uptake by colorectal liver metastases to response following Selective Internal Radiation Therapy (SIRT) BMC Nucl Med. 2005;5:7. doi: 10.1186/1471-2385-5-7.
    1. Ulrich G, Dudeck O, Furth C, et al. Predictive value of intratumoral 99mTc-macroaggregated albumin uptake in patients with colorectal liver metastases scheduled for radioembolization with 90Y-microspheres. J Nucl Med. 2013;54(4):516–522. doi: 10.2967/jnumed.112.112508.
    1. Wondergem M, Smits MLJ, Elschot M, et al. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med. 2013;54(8):1294–1301. doi: 10.2967/jnumed.112.117614.
    1. Carlier T, Eugène T, Bodet-Milin C, et al. Assessment of acquisition protocols for routine imaging of Y-90 using PET/CT. EJNMMI Res. 2013;3(1):11. doi: 10.1186/2191-219X-3-11.
    1. Kao Y-H, Steinberg JD, Tay Y-S, et al. Post-radioembolization yttrium-90 PET/CT - part 1: diagnostic reporting. EJNMMI Res. 2013;3(1):56. doi: 10.1186/2191-219X-3-56.
    1. Elschot M, Vermolen BJ, Lam MGEH, de Keizer B, van den Bosch MJ, de Jong HWM. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS One. 2013;8(2):e55742. doi: 10.1371/journal.pone.0055742.
    1. Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C. Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys. 2004;60(5):1552–1563. doi: 10.1016/j.ijrobp.2004.09.004.
    1. Gulec S, Mesoloras G, Dezarn W, McNeillie P, Kennedy AS. Safety and efficacy of Y-90 microsphere treatment in patients with primary and metastatic liver cancer: the tumor selectivity of the treatment as a function of tumor to liver flow ratio. J Transl Med. 2007;5:15. doi: 10.1186/1479-5876-5-15.
    1. Lau WY, Leung WT, Ho S, et al. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer. 1994;70(5):994–999. doi: 10.1038/bjc.1994.436.
    1. Walrand S, Lhommel R, Goffette P, Van den Eynde M, Pauwels S, Jamar F. Hemoglobin level significantly impacts the tumor cell survival fraction in humans after internal radiotherapy. EJNMMI Res. 2012;2(1):20. doi: 10.1186/2191-219X-2-20.
    1. Garin E, Lenoir L, Rolland Y, et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med. 2012;53(2):255–263. doi: 10.2967/jnumed.111.094235.
    1. Lam MGEH, Goris ML, Iagaru AH, Mittra ES, Louie JD, Sze DY. Prognostic utility of 90Y radioembolization dosimetry based on fusion 99mTc-macroaggregated albumin-99mTc-sulfur colloid SPECT. J Nucl Med. 2013;54(12):2055–2061. doi: 10.2967/jnumed.113.123257.
    1. Lam MGEH, Banerjee A, Goris ML, et al. Fusion dual-tracer SPECT-based hepatic dosimetry predicts outcome after radioembolization for a wide range of tumour cell types. Eur J Nucl Med Mol Imaging. 2015;2:1192–1201. doi: 10.1007/s00259-015-3048-z.
    1. Flamen P, Vanderlinden B, Delatte P, et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys Med Biol. 2008;53(22):6591–6603. doi: 10.1088/0031-9155/53/22/019.
    1. van den Hoven AF, Smits MLJ, Rosenbaum CENM, Verkooijen HM, van den Bosch MAAJ, Lam MGEH. The effect of intra-arterial angiotensin II on the hepatic tumor to non-tumor blood flow ratio for radioembolization: a systematic review. PLoS One. 2014;9(1):e86394. doi: 10.1371/journal.pone.0086394.
    1. Vente MAD, Wondergem M, van der Tweel I, et al. Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: a structured meta-analysis. Eur Radiol. 2009;19(4):951–959. doi: 10.1007/s00330-008-1211-7.

Source: PubMed

3
Subscribe