Effects of dietary fat and saturated fat content on liver fat and markers of oxidative stress in overweight/obese men and women under weight-stable conditions

Anna Marina, Anize Delfino von Frankenberg, Seda Suvag, Holly S Callahan, Mario Kratz, Todd L Richards, Kristina M Utzschneider, Anna Marina, Anize Delfino von Frankenberg, Seda Suvag, Holly S Callahan, Mario Kratz, Todd L Richards, Kristina M Utzschneider

Abstract

Dietary fat and oxidative stress are hypothesized to contribute to non-alcoholic fatty liver disease and progression to steatohepatitis. To determine the effects of dietary fat content on hepatic triglyceride, body fat distribution and markers of inflammation and oxidative stress, overweight/obese subjects with normal glucose tolerance consumed a control diet (CONT: 35% fat/12% saturated fat/47% carbohydrate) for ten days, followed by four weeks on a low fat (LFD (n = 10): 20% fat/8% saturated fat/62% carbohydrate) or high fat diet (HFD (n = 10): 55% fat/25% saturated fat/27% carbohydrate). Hepatic triglyceride content was quantified by MRS and abdominal fat distribution by MRI. Fasting biomarkers of inflammation (plasma hsCRP, IL-6, IL-12, TNFα, IFN-γ) and oxidative stress (urinary F2-α isoprostanes) were measured. Body weight remained stable. Compared to the CONT, hepatic triglyceride decreased on the LFD (mean (95% CI): change -2.13% (-3.74%, -0.52%)), but did not change on the HFD and there was no significant difference between the LFD and HFD. Intra-abdominal fat did not change significantly on either diet, but subcutaneous abdominal fat increased on the HFD. There were no significant changes in fasting metabolic markers, inflammatory markers and urinary F2-α isoprostanes. We conclude that in otherwise healthy overweight/obese adults under weight-neutral conditions, a diet low in fat and saturated fat has modest effects to decrease liver fat and may be beneficial. On the other hand, a diet very high in fat and saturated fat had no effect on hepatic triglyceride or markers of metabolism, inflammation and oxidative stress.

Figures

Figure 1
Figure 1
Effect of dietary fat on abdominal fat distribution. Compared to the control (CONT) diet, intra-abdominal fat (IAF) volume did not change on either diet (Panels A and B). Abdominal subcutaneous fat (SQF) increased on the high fat diet (HFD) (mean (95% CI): change 156 (73, 239) cm3), but did not change on the low fat diet (LFD) (panels C and D).
Figure 2
Figure 2
Effect of dietary fat on hepatic triglyceride. Compared to the CONT diet, hepatic triglyceride content by MRS decreased on the LFD (Panel A: mean (95% CI): change −2.13% (−3.74%, −0.52%)), but did not change on the HFD (Panel B). One subject on the LFD had a dramatic decrease in hepatic triglyceride from 13.9% to 1.3%. Removal of this subject decreased the mean change, but there was still a significant decrease from the CONT diet (Panel A: change −1.18% (−2.11%, −0.25%)).

References

    1. Matteoni C.A., Younossi Z.M., Gramlich T., Boparai N., Liu Y.C., McCullough A.J. Nonalcoholic fatty liver disease: A spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413–1419. doi: 10.1016/S0016-5085(99)70506-8.
    1. Singal A.K., Guturu P., Hmoud B., Kuo Y.F., Salameh H., Wiesner R.H. Evolving frequency and outcomes of liver transplantation based on etiology of liver disease. Transplantation. 2013;95:755–760. doi: 10.1097/TP.0b013e31827afb3a.
    1. Day C.P., James O.F. Steatohepatitis: A tale of two “hits”? Gastroenterology. 1998;114:842–845. doi: 10.1016/S0016-5085(98)70599-2.
    1. Wang D., Wei Y., Pagliassotti M.J. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 2006;147:943–951. doi: 10.1210/en.2005-0570.
    1. Lieber C.S., Leo M.A., Mak K.M., Xu Y., Cao Q., Ren C., Ponomarenko A., DeCarli L.M. Model of nonalcoholic steatohepatitis. Am. J. Clin. Nutr. 2004;79:502–509.
    1. Van Herpen N.A., Schrauwen-Hinderling V., Schaart G., Mensinck R.P., Schrauwen P. Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men. JCEM. 2011;96:E691–E695.
    1. Westerbacka J., Lammi K., Hakkinen A.M., Rissanen A., Salminen I., Aro A., Yki-Jarvinen H. Dietary fat content modifies liver fat in overweight nondiabetic subjects. J. Clin. Endocrinol. Metab. 2005;90:2804–2809. doi: 10.1210/jc.2004-1983.
    1. Utzschneider K.M., Bayer-Carter J.L., Arbuckle M.D., Tidwell J.M., Richards T.L., Craft S. Beneficial effect of a weight-stable, low-fat/low-saturated fat/low-glycaemic index diet to reduce liver fat in older subjects. Br. J. Nutr. 2013;109:1096–1104. doi: 10.1017/S0007114512002966.
    1. USDA Database for the Added Sugar Content of Selected Foods, Release 1. [(accessed on 22 October 2014)]. Available online: .
    1. Agricultural Research Services USDA. [(accessed on 22 October 2014)]. Available online: .
    1. Mifflin M.D., St Jeor S.T., Hill L.A., Scott B.J., Daugherty S.A., Koh Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990;51:241–247.
    1. Harris J.A., Benedict F.G. A Biometric Study of Basal Metabolism in Man. Carnegie Institution of Washington; Washington, DC, USA: 1919.
    1. Craig C.L., Marshall A.L., Sjostrom M., Bauman A.E., Booth M.L., Ainsworth B.E., Pratt M., Ekelund U., Yngve A., Sallis J.F., et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003;35:1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. Jenkinson M., Beckmann C.F., Behrens T.E., Woolrich M.W., Smith S.M. FSL. NeuroImage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015.
    1. Milatovic D., vanRollins M., Li K., Montine K.S., Montine T.J. Suppression of murine cerebral F2-isoprostanes and F4-neuroprostanes from excitotoxicity and innate immune response in vivo by alpha- or gamma-tocopherol. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005;827:88–93. doi: 10.1016/j.jchromb.2005.03.037.
    1. Willett W. Nutritional Epidemiology. Oxford University Press; New York, NY, USA: 2012.
    1. Bozzetto L., Prinster A., Annuzzi G., Costagliola L., Mangione A., Vitelli A., Mazzarella R., Longobardo M., Mancini M., Vigorito C., et al. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care. 2012;35:1429–1435. doi: 10.2337/dc12-0033.
    1. Faeh D., Minehira K., Schwarz J.M., Periasamy R., Park S., Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes. 2005;54:1907–1913. doi: 10.2337/diabetes.54.7.1907.
    1. Le K.A., Ith M., Kreis R., Faeh D., Bortolotti M., Tran C., Boesch C., Tappy L. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am. J. Clin. Nutr. 2009;89:1760–1765. doi: 10.3945/ajcn.2008.27336.
    1. Le K.A., Faeh D., Stettler R., Ith M., Kreis R., Vermathen P., Boesch C., Ravussin E., Tappy L. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am. J. Clin. Nutr. 2006;84:1374–1379.
    1. Silbernagel G., Machann J., Unmuth S., Schick F., Stefan N., Haring H.U., Fritsche A. Effects of 4-week very-high-fructose/glucose diets on insulin sensitivity, visceral fat and intrahepatic lipids: An exploratory trial. Br. J. Nutr. 2011;106:79–86. doi: 10.1017/S000711451000574X.
    1. Musso G., Gambino R., de Michieli F., Biroli G., Premoli A., Pagano G., Bo S., Durazzo M., Cassader M. Nitrosative stress predicts the presence and severity of nonalcoholic fatty liver at different stages of the development of insulin resistance and metabolic syndrome: Possible role of vitamin A intake. Am. J. Clin. Nutr. 2007;86:661–671.
    1. Chalasani N., Deeg M.A., Crabb D.W. Systemic levels of lipid peroxidation and its metabolic and dietary correlates in patients with nonalcoholic steatohepatitis. Am. J. Gastroenterol. 2004;99:1497–1502. doi: 10.1111/j.1572-0241.2004.30159.x.
    1. Madan K., Bhardwaj P., Thareja S., Gupta S.D., Saraya A. Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD) J. Clin. Gastroenterol. 2006;40:930–935. doi: 10.1097/01.mcg.0000212608.59090.08.
    1. Yesilova Z., Yaman H., Oktenli C., Ozcan A., Uygun A., Cakir E., Sanisoglu S.Y., Erdil A., Ates Y., Aslan M., et al. Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic fatty liver disease. Am. J. Gastroenterol. 2005;100:850–855. doi: 10.1111/j.1572-0241.2005.41500.x.
    1. Gawrieh S., Opara E.C., Koch T.R. Oxidative stress in nonalcoholic fatty liver disease: Pathogenesis and antioxidant therapies. J. Investig. Med. 2004;52:506–514.
    1. Sanyal A.J., Campbell-Sargent C., Mirshahi F., Rizzo W.B., Contos M.J., Sterling R.K., Luketic V.A., Shiffman M.L., Clore J.N. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120:1183–1192. doi: 10.1053/gast.2001.23256.
    1. Sanyal A.J., Chalasani N., Kowdley K.V., McCullough A., Diehl A.M., Bass N.M., Neuschwander-Tetri B.A., Lavine J.E., Tonascia J., Unalp A., et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010;362:1675–1685. doi: 10.1056/NEJMoa0907929.
    1. Roberts C.K., Won D., Pruthi S., Lin S.S., Barnard R.J. Effect of a diet and exercise intervention on oxidative stress, inflammation and monocyte adhesion in diabetic men. Diabetes Res. Clin. Pract. 2006;73:249–259. doi: 10.1016/j.diabres.2006.02.013.
    1. Roberts C.K., Chen A.K., Barnard R.J. Effect of a short-term diet and exercise intervention in youth on atherosclerotic risk factors. Atherosclerosis. 2007;191:98–106. doi: 10.1016/j.atherosclerosis.2006.09.011.
    1. Fito M., Guxens M., Corella D., Saez G., Estruch R., de la Torre R., Frances F., Cabezas C., Lopez-Sabater Mdel C., Marrugat J., et al. Effect of a traditional Mediterranean diet on lipoprotein oxidation: A randomized controlled trial. Arch. Int. Med. 2007;167:1195–1203. doi: 10.1001/archinte.167.11.1195.
    1. Rankin J.W., Turpyn A.D. Low carbohydrate, high fat diet increases C-reactive protein during weight loss. J. Am. Coll. Nutr. 2007;26:163–169. doi: 10.1080/07315724.2007.10719598.

Source: PubMed

3
Subscribe