The effect of surgical and non-surgical weight loss on N-terminal pro-B-type natriuretic peptide and its relation to obstructive sleep apnea and pulmonary function

Anne-Marie Gabrielsen, Torbjørn Omland, Mette Brokner, Jan Magnus Fredheim, Jens Jordan, Sverre Lehmann, May Brit Lund, Jøran Hjelmesæth, Dag Hofsø, Anne-Marie Gabrielsen, Torbjørn Omland, Mette Brokner, Jan Magnus Fredheim, Jens Jordan, Sverre Lehmann, May Brit Lund, Jøran Hjelmesæth, Dag Hofsø

Abstract

Background: Obesity is a major risk factor for obstructive sleep apnea, impaired pulmonary function and heart failure, but obesity is also associated with paradoxically low levels of serum N-terminal pro-B-type natriuretic peptide (NT-proBNP). In subjects with severe obesity undergoing weight loss treatment, we assessed the associations between changes in severity of obstructive sleep apnea, pulmonary function and serum NT-proBNP levels.

Methods: One-year non-randomized controlled clinical trial. Participants, 69.6 % women, mean (SD) age 44.6 (10.8) years and body mass index (BMI) 45.1 (5.6) kg/m(2), underwent gastric bypass surgery (n = 76) or intensive lifestyle intervention (n = 63), resulting in 30 (8) % and 8 (9) % weight loss, respectively. The reference group included 30 normal weight, healthy, gender and age matched controls. Sleep recordings, arterial blood gases, pulmonary function and blood tests were assessed before and 1 year after the interventions.

Results: NT-proBNP concentrations increased significantly more after surgery than after lifestyle intervention. The post intervention values in both groups were significantly higher than in a normal weight healthy reference group. In the whole study population changes (∆) in NT-proBNP correlated significantly with changes in both BMI (r = -0.213) and apnea hypopnea index (AHI, r = -0.354). ∆NT-proBNP was, independent of age, gender and ∆BMI, associated with ∆AHI (beta -0.216, p = 0.021). ∆AHI was, independent of ∆BMI, significantly associated with changes in pO2 (beta -0.204), pCO2 (beta 0.199), forced vital capacity (beta -0.168) and forced expiratory volume first second (beta -0.160).

Conclusions: Gastric bypass surgery was associated with a greater increase in NT-proBNP concentrations than non-surgical weight loss treatment. Reduced AHI was, independent of weight loss, associated with increased NT-proBNP levels and improved dynamic lung volumes and daytime blood gases. Clinical Trial Registration ClinicalTrials.gov NCT00273104, retrospectively registered Jan 5, 2006 (study start Dec 2005).

Keywords: Natriuretic peptides; Obesity; Respiration; Sleep apnea.

Figures

Fig. 1
Fig. 1
Median NT-proBNP-levels (25–75 percentiles) at baseline and after gastric bypass surgery (n = 71) and lifestyle intervention (n = 62). p values indicate significant changes within and between the intervention groups. The grey background represents the 25–75 percentile for the NT-proBNP levels in the normal weight healthy reference group (n = 30)
Fig. 2
Fig. 2
Scatter plot demonstrating the correlations between changes in NT-proBNP and changes in BMI after gastric bypass surgery and intensive lifestyle intervention
Fig. 3
Fig. 3
Median NT-proBNP-levels (25–75 percentiles) levels at baseline in subjects with AHI

Fig. 4

Scatter plot demonstrating the correlations…

Fig. 4

Scatter plot demonstrating the correlations between changes in NT-proBNP levels and changes in…

Fig. 4
Scatter plot demonstrating the correlations between changes in NT-proBNP levels and changes in AHI after gastric bypass surgery and intensive lifestyle intervention
Fig. 4
Fig. 4
Scatter plot demonstrating the correlations between changes in NT-proBNP levels and changes in AHI after gastric bypass surgery and intensive lifestyle intervention

References

    1. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:1–253.
    1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on epidemiology and prevention; national heart, lung, and blood institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644.
    1. Naimark A, Cherniack RM. Compliance of the respiratory system and its components in health and obesity. J Appl Physiol. 1960;15:377–382.
    1. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67:968–977. doi: 10.1161/01.CIR.67.5.968.
    1. Fredheim JM, Rollheim J, Sandbu R, Hofsø D, Omland T, Røislien J, et al. Obstructive sleep apnea after weight loss: a clinical trial comparing gastric bypass and intensive lifestyle intervention. J Clin Sleep Med. 2013;9:427–432.
    1. Parameswaran K, Todd DC, Soth M. Altered respiratory physiology in obesity. Can Respir J. 2006;13:203–210. doi: 10.1155/2006/834786.
    1. Bickelmann AG, Burwell CS, Robin ED, Whaley RD. Extreme obesity associated with alveolar hypoventilation; a Pickwickian syndrome. Am J Med. 1956;21:811–818. doi: 10.1016/0002-9343(56)90094-8.
    1. Kress JP, Pohlman AS, Alverdy J, Hall JB. The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest. Am J Respir Crit Care Med. 1999;160:883–886. doi: 10.1164/ajrccm.160.3.9902058.
    1. Fall T, Hagg S, Magi R, Ploner A, Fischer K, Horikoshi M, et al. The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis. PLoS Med. 2013;10:e1001474. doi: 10.1371/journal.pmed.1001474.
    1. Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. Physiol Rev. 2008;88:389–419. doi: 10.1152/physrev.00017.2007.
    1. Santaguida PL, Don-Wauchope AC, Oremus M, McKelvie R, Ali U, et al. BNP and NT-proBNP as prognostic markers in persons with acute decompensated heart failure: a systematic review. Heart Fail Rev. 2014;19:453–470. doi: 10.1007/s10741-014-9442-y.
    1. Maisel A, Krishnaswamy P, Nowak R, McCord J, Hollander J, Duc P, et al. Breathing not properly multinational study investigators: rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–167. doi: 10.1056/NEJMoa020233.
    1. Januzzi JL, Camargo CA, Anwaruddin S, Baggish AL, Chen AA, Krauser DG, et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95:948–954. doi: 10.1016/j.amjcard.2004.12.032.
    1. McCord J, Mundy BJ, Hudson MP, Maisel AS, Hollander JE, Abraham WT, et al. Relationship between obesity and B-type natriuretic peptide levels. Arch Intern Med. 2004;164:2247–2252. doi: 10.1001/archinte.164.20.2247.
    1. Das SR, Drazner MH, Dries DL, Vega GL, Stanek HG, Abdullah SM, et al. Impact of body mass and body composition on circulating levels of natriuretic peptides results from the Dallas Heart Study. Circulation. 2005;112:2163–2168. doi: 10.1161/CIRCULATIONAHA.105.555573.
    1. Changchien EM, Ahmed S, Betti F, Higa J, Kiely K, Hernandez-Boussard T, et al. B-type natriuretic peptide increases after gastric bypass surgery and correlates with weight loss. Surg Endosc. 2011;25:2338–2343. doi: 10.1007/s00464-010-1565-1.
    1. Chen-Tournoux A, Khan AM, Baggish AL, Castro VM, Semigran MJ, McCabe EL, et al. Effect of weight loss after weight loss surgery on plasma N-terminal pro-B-type natriuretic peptide levels. Am J Cardiol. 2010;106:1450–1455. doi: 10.1016/j.amjcard.2010.06.076.
    1. Kistorp C, Bliddal H, Goetze JP, Christensen R, Faber J. Cardiac natriuretic peptides in plasma increase after dietary induced weight loss in obesity. BMC Obes. 2014;1:1–9. doi: 10.1186/s40608-014-0024-2.
    1. Dessì-Fulgheri P, Sarzani R, Tamburrini P, Moraca A, Espinosa E, Cola G, et al. Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J Hypertens. 1997;15:1695–1698. doi: 10.1097/00004872-199715120-00074.
    1. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial (PARADIGM-HF) Eur J Heart Fail. 2013;15:1062–1073. doi: 10.1093/eurjhf/hft052.
    1. Haufe S, Kaminski J, Utz W, Haas V, Mähler A, Daniels MA, et al. Differential response of the natriuretic peptide system to weight loss and exercise in overweight or obese patients. J Hypertens. 2015;33:1458–1464. doi: 10.1097/HJH.0000000000000573.
    1. Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122:1022–1036. doi: 10.1172/JCI59701.
    1. Beleigoli A, Diniz M, Nunes M, Barbosa M, Fernandes S, Abreu M, et al. Reduced brain natriuretic peptide levels in class III obesity: the role of metabolic and cardiovascular factors. Obes Facts. 2011;4:427–432. doi: 10.1159/000335174.
    1. Woodard GE, Rosado JA. Natriuretic peptides in vascular physiology and pathology. Int Rev Cell Mol Biol. 2008;268:59–93. doi: 10.1016/S1937-6448(08)00803-4.
    1. Moro C. Natriuretic peptides and fat metabolism. Curr Opin Clin Nutr Metab Care. 2013;16:645–649. doi: 10.1097/MCO.0b013e32836510ed.
    1. Moro C, Smith SR. Natriuretic peptides: new players in energy homeostasis. Diabetes. 2009;58:2726–2728. doi: 10.2337/db09-1335.
    1. Sengenes C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J. Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J. 2000;14:1345–1351. doi: 10.1096/fj.14.10.1345.
    1. Engeli S, Birkenfeld AL, Badin P-M, Bourlier V, Louche K, Viguerie N, et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Investig. 2012;122:4675. doi: 10.1172/JCI64526.
    1. Hulks G, Jardine A, Connell J, Thomson N. Bronchodilator effect of atrial natriuretic peptide in asthma. BMJ. 1989;299:1081–1082. doi: 10.1136/bmj.299.6707.1081.
    1. Hernandez TL, Ballard RD, Weil KM, Shepard TY, Scherzinger AL, Stamm ER, et al. Effects of maintained weight loss on sleep dynamics and neck morphology in severely obese adults. Obesity. 2009;17:84–91. doi: 10.1038/oby.2008.485.
    1. Gabrielsen AM, Lund MB, Kongerud J, Viken KE, Røislien J, Hjelmesæth J, et al. Pulmonary function and blood gases after gastric bypass and lifestyle intervention: a comparative study. Clin Obes. 2013;3:117–123.
    1. Hofsø D, Nordstrand N, Johnson LK, Karlsen TI, Hager H, Jenssen T, et al. Obesity-related cardiovascular risk factors after weight loss: a clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. Eur J Endocrinol. 2010;163:735–745. doi: 10.1530/EJE-10-0514.
    1. Nordstrand N, Hertel JK, Hofsø D, Sandbu R, Saltvedt E, Røislien J, et al. A controlled clinical trial of the effect of gastric bypass surgery and intensive lifestyle intervention on nocturnal hypertension and the circadian blood pressure rhythm in patients with morbid obesity. Surgery. 2012;151:674–680. doi: 10.1016/j.surg.2011.12.007.
    1. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176:532–555. doi: 10.1164/rccm.200703-456SO.
    1. Iber C, Ancoli-Israel S, Chesson A, Quan S, authors for the American Academy of Sleep Medicine. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. 2007.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–338. doi: 10.1183/09031936.05.00034805.
    1. Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CP, Brusasco V, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26:720–735. doi: 10.1183/09031936.05.00034905.
    1. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26:511–522. doi: 10.1183/09031936.05.00035005.
    1. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J. 1993;16:S5–S40. doi: 10.1183/09041950.005s1693.
    1. Bertoni AG, Wagenknecht LE, Kitzman DW, Marcovina SM, Rushing JT, Espeland MA. Impact of the look AHEAD intervention on NT-pro brain natriuretic peptide in overweight and obese adults with diabetes. Obesity. 2012;20:1511–1518. doi: 10.1038/oby.2011.296.
    1. Henegar JR, Bigler SA, Henegar LK, Tyagi SC, Hall JE. Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol. 2001;12:1211–1217.
    1. Schou M, Gustafsson F, Kistorp CN, Corell P, Kjaer A, Hildebrandt PR. Effects of body mass index and age on N-terminal pro brain natriuretic peptide are associated with glomerular filtration rate in chronic heart failure patients. Clin Chem. 2007;53:1928–1935. doi: 10.1373/clinchem.2006.084426.
    1. Grayburn RL, Kaka Y, Tang WH. Contemporary insights and novel treatment approaches to central sleep apnea syndrome in heart failure. Curr Treat Options Cardiovasc Med. 2014;16:322. doi: 10.1007/s11936-014-0322-5.
    1. Lyons OD, Bradley TD. Heart failure and sleep apnea. Can J Cardiol. 2015;31:898–908. doi: 10.1016/j.cjca.2015.04.017.
    1. Roca GQ, Redline S, Punjabi N, Claggett B, Ballantyne CM, Solomon SD, et al. Sleep apnea is associated with subclinical myocardial injury in the community: the ARIC-SHHS study. Am J Respir Crit Care Med. 2013;188:1460–1465. doi: 10.1164/rccm.201309-1572OC.
    1. Ljunggren M, Lindahl B, Theorell-Haglow J, Lindberg E. Association between obstructive sleep apnea and elevated levels of type B natriuretic peptide in a community-based sample of women. Sleep. 2012;35:1521–1527.
    1. Kita H, Ohi M, Chin K, Noguchi T, Otsuka N, Tsuboi T, et al. The nocturnal secretion of cardiac natriuretic peptides during obstructive sleep apnoea and its response to therapy with nasal continuous positive airway pressure. J Sleep Res. 1998;7:199–207. doi: 10.1046/j.1365-2869.1998.00109.x.
    1. Gottlieb JD, Schwartz AR, Marshall J, Ouyang P, Kern L, Shetty V, et al. Hypoxia, not the frequency of sleep apnea, induces acute hemodynamic stress in patients with chronic heart failure. J Am Coll Cardiol. 2009;54:1706–1712. doi: 10.1016/j.jacc.2009.08.016.
    1. Svatikova A, Shamsuzzaman AS, Wolk R, Phillips BG, Olson LJ, Somers VK. Plasma brain natriuretic peptide in obstructive sleep apnea. Am J Cardiol. 2004;94:529–532. doi: 10.1016/j.amjcard.2004.05.010.
    1. Nowatzke WL, Cole TG. Stability of N-terminal pro-brain natriuretic peptide after storage frozen for 1 year and after multiple freeze-thaw cycles. Clin Chem. 2003;49:1560–1562. doi: 10.1373/49.9.1560.
    1. Cauliez B, Guignery J, Marinier S, Mariau I, Lavoinne A. Two-year stability of NT-proBNP in frozen samples using the Roche Elecsys system. Ann Clin Biochem. 2008;45:318–319. doi: 10.1258/acb.2007.007187.
    1. Sabe MA, Jacob MS, Taylor DO. A new class of drugs for systolic heart failure: the PARADIGM-HF study. Cleve Clin J Med. 2015;82:693–701.
    1. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004. doi: 10.1056/NEJMoa1409077.

Source: PubMed

3
Subscribe