Immersive Virtual Reality and Virtual Embodiment for Pain Relief

Marta Matamala-Gomez, Tony Donegan, Sara Bottiroli, Giorgio Sandrini, Maria V Sanchez-Vives, Cristina Tassorelli, Marta Matamala-Gomez, Tony Donegan, Sara Bottiroli, Giorgio Sandrini, Maria V Sanchez-Vives, Cristina Tassorelli

Abstract

A significant body of experimental evidence has demonstrated that it is possible to induce the illusion of ownership of a fake limb or even an entire fake body using multisensory correlations. Recently, immersive virtual reality has allowed users to experience the same sensations of ownership over a virtual body inside an immersive virtual environment, which in turn allows virtual reality users to have the feeling of being "embodied" in a virtual body. Using such virtual embodiment to manipulate body perception is starting to be extensively investigated and may have clinical implications for conditions that involve altered body image such as chronic pain. Here, we review experimental and clinical studies that have explored the manipulation of an embodied virtual body in immersive virtual reality for both experimental and clinical pain relief. We discuss the current state of the art, as well as the challenges faced by, and ideas for, future research. Finally, we explore the potentialities of using an embodied virtual body in immersive virtual reality in the field of neurorehabilitation, specifically in the field of pain.

Keywords: body illusion; embodiment; ownership illusion; pain; virtual reality.

Figures

FIGURE 1
FIGURE 1
Experimental setups for (A) the rubber hand illusion (RHI), (B) the virtual hand illusion in non-immersive virtual reality, and (C) the virtual hand illusion in immersive virtual reality. Part (C) taken from Martini et al. (2015), reprinted with permission from Springer Nature.
FIGURE 2
FIGURE 2
Experimental setup and results from Longo et al. (2009) in which vision of the body was shown to be analgesic, subjectively (using self-report pain ratings) and objectively using laser-evoked potentials. (A) The mirror box technique in which the subject has the experience of viewing their right hand, while in fact seeing their left hand reflected in a mirror. (B) Laser-evoked potentials (left) and peak-to-peak amplitudes (right) for the three experimental conditions. Error bars are one SEM. Reprinted from Copyright [2009] Society for Neuroscience. ∗p < 0.05, ∗∗p < 0.01.
FIGURE 3
FIGURE 3
(A) Experimental setup of co-location experiment by Nierula et al. (2017). The participant wore a head-mounted display that provided an immersive virtual environment including a virtual own body that was perceived from a first-person perspective. The transparent arm outlined with a white dashed line indicated the positions of the virtual arm. Position of participant during (left panel) co-location, where the virtual and real arm were co-located, and (middle panel) when there was a distance of 30 cm between the real and virtual arm (right panel). The virtual body from the participant’s point of view. Reprinted with permission from Elsevier. (B) Participant’s view of virtual arm in the experiment by Martini et al. (2013). The right arm is co-located with the virtual arm, with congruent finger movements, in order to induce embodiment of the virtual limb. Heat stimulation is provided to the wrist while the skin color changed. Pain threshold was increased in the blue arm condition (left) versus the red arm condition (right).
FIGURE 4
FIGURE 4
Experimental setup, and transparency and size tests for Matamala-Gomez et al. (2018). (A) Patients wore a head-mounted display (HMD) that immersed them in a virtual environment, which allowed participants to feel embodied in a virtual body viewed from a first-person perspective that was co-located with their real body. Virtual balls tapped the fingers during each stimulus presentation, which was accompanied by visuo-tactile stimulation to induce ownership over the virtual arm. (B) Transparency test including all four conditions: virtual arm transparency set at 0% (maximum opacity), 25, 50, and 75% (low opacity). (C) Size test including all three conditions: virtual arm presented in a big size, in its normal size, and in a small size. Reprinted with permission from Elsevier.

References

    1. Aglioti S. M., Berlucchi G., Aglioti S., Berlucchi G. (2016). The body in the brain: neural bases of corporeal awareness. Trends Neurosci. 2236 560–564. 10.1016/S0166-2236(97)01136-3
    1. Armel K. C., Ramachandran V. S. (2003). Projecting sensations to external objects: evidence from skin conductance response. Proc. R. Soc. B Biol. Sci. 270 1499–1506. 10.1098/rspb.2003.2364
    1. Arzy S., Overney L. S., Landis T., Blanke O. (2006). Neural mechanisms of embodiment: asomatognosia due to premotor cortex damage. Arch. Neurol. 63 1022–1025. 10.1001/archneur.63.7.1022
    1. Banakou D., Groten R., Slater M. (2013). Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc. Natl. Acad. Sci. U.S.A. 110 12846–12851. 10.1073/pnas.1306779110
    1. Benuzzi F., Lui F., Ardizzi M., Ambrosecchia M., Ballotta D., Righi S., et al. (2018). Pain mirrors: neural correlates of observing self or others’ facial expressions of pain. Front. Psychol. 9:1825. 10.3389/fpsyg.2018.01825
    1. Bergström I., Kilteni K., Slater M. (2016). First-person perspective virtual body posture influences stress: a virtual reality body ownership study. PLoS One 11:e0148060. 10.1371/journal.pone.0148060
    1. Berlucchi G., Aglioti S. (1997). The body in the brain: neural bases of corporeal awareness. Trends Neurosci. 20 560–564. 10.1016/s0166-2236(97)01136-3
    1. Bermúdez J. L. (1998). The Paradox of Self-Consciousness (Representation and Mind). Bradford: MIT.
    1. Birklein F., Schlereth T. (2015). Complex regional pain syndrome-significant progress in understanding. Pain 156 S94–S103. 10.1097/01.j.pain.0000460344.54470.20
    1. Blanke O., Slater M., Serino A. (2015). Behavioral, neural, and computational principles of bodily self-consciousness. Neuron 88 145–166. 10.1016/j.neuron.2015.09.029
    1. Boesch E., Bellan V., Moseley G., Stanton T. (2016). The effect of bodily illusions on clinical pain: a systematic review and meta-analysis. Pain 157 516–529. 10.1097/j.pain.0000000000000423
    1. Boesch E., Bellan V., Moseley G. L., Stanton T. R. (2015). The effect of bodily illusions on clinical pain. Pain 157 516–529. 10.1097/j.pain.0000000000000423
    1. Bohil C. J., Alicea B., Biocca F. A. (2011). Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12 752–762. 10.1038/nrn3122
    1. Botvinick M., Cohen J. (1998). Rubber hands “feel” touch that eyes see. Nature 391:756. 10.1038/35784
    1. Campbell G., Bruno R., Darke S., Shand F., Hall W., Farrell M., et al. (2016). Prevalence and correlates of suicidal thoughts and suicide attempts in people prescribed pharmaceutical opioids for chronic pain. Clin. J. Pain 32 292–301. 10.1097/AJP.0000000000000283
    1. Cardini F., Longo M. R., Haggard P. (2011). Vision of the body modulates somatosensory intracortical inhibition. Cereb. Cortex 21 2014–2022. 10.1093/cercor/bhq267
    1. Carter G. T., Duong V., Ho S., Ngo K. C., Greer C. L., Weeks D. L. (2014). Side effects of commonly prescribed analgesic medications. Phys. Med. Rehabil. Clin. N. Am. 25 457–470. 10.1016/j.pmr.2014.01.007
    1. Cash T. F., Brown T. A. (1987). Body image in anorexia nervosa and bulimia nervosa: a review of the literature. Behav. Modif. 11 487–521. 10.1177/01454455870114005
    1. Cassam Q. (2012). Self and world. Bradley Stud. 9 93–100. 10.5840/bradley2003928
    1. Critchley M. (1953). Parietal lobes. G. Psichiatr. Neuropatol. 81 872–873. 10.1136/bmj.2.4851.1416
    1. Critchley M. (1979). The Divine Banquet of the Brain and Other Essays. New York: Raven Press.
    1. Damasio A. (2000). The Feeling of What Happens: Body and Emotion in the Making of Consciousness. Boston: Mariner Books.
    1. de Vignemont F. (2011). Embodiment, ownership and disownership. Conscious. Cogn. 20 82–93. 10.1016/j.concog.2010.09.004
    1. Diers M., Löffler A., Zieglgänsberger W., Trojan J. (2016). Watching your pain site reduces pain intensity in chronic back pain patients. Eur. J. Pain 20 581–585. 10.1002/ejp.765
    1. Diers M., Zieglgänsberger W., Trojan J., Drevensek A. M., Erhardt-Raum G., Flor H. (2013). Site-specific visual feedback reduces pain perception. Pain 154 890–896. 10.1016/j.pain.2013.02.022
    1. Doctor J. N., Carrougher G. J., Furness T. A., Patterson D. R., Hoffman H. G. (2002). Virtual reality as an adjunctive pain control during burn wound care in adolescent patients. Pain 85 305–309. 10.1016/s0304-3959(99)00275-4
    1. Edelman G. M. (2005). Wider Than the Sky: A Revolutionary View of Consciousness. London: Penguin.
    1. Ehrsson H., Petkova V. (2008). If I were you: perceptual illusion of body swapping. PLoS One 3:e3832. 10.1371/journal.pone.0003832
    1. Flor H., Braun C., Elbert T., Birbaumer N. (1997). Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci. Lett. 224 5–8. 10.1016/S0304-3940(97)13441-3
    1. Florence C. S., Zhou C., Luo F., Xu L. (2016). The economic burden of prescription opioid overdose, abuse, and dependence in the United States, 2013. Med. Care 54 901–906. 10.1097/MLR.0000000000000625
    1. Fuentes C. T., Pazzaglia M., Longo M. R., Scivoletto G., Haggard P. (2013). Body image distortions following spinal cord injury. J. Neurol. Neurosurg. Psychiatry 84 201–207. 10.1136/jnnp-2012-304001
    1. Fusaro M., Tieri G., Aglioti S. M. (2016). Seeing pain and pleasure on self and others: behavioral and psychophysiological reactivity in immersive virtual reality. J. Neurophysiol. 116 2656–2662. 10.1152/jn.00489.2016
    1. Gallagher S. (2001). Dimensions of embodiment: body image and body schema in medical contexts. Br. J. Clin. Pharmacol. 68 147–175. 10.1007/978-94-010-0536-4
    1. Gallagher S., Cole J. (1995). Body schema and body image in a deafferented subject. J. Mind Behav. 16 369–390. 10.1016/j.neuropsychologia.2009.09.022
    1. Gardner R. M., Moncrieff C. (1988). Body image distortion in anorexics as a non-sensory phenomenon: a signal detection approach. J. Clin. Psychol. 44 101–107. 10.1002/1097-4679(198803)44:2<101::aid-jclp2270440203>;2-u
    1. Gaskin D. J., Richard P. (2012). The economic costs of pain in the United States. J. Pain 13 715–724. 10.1016/j.jpain.2012.03.009
    1. Geneen L. J., Moore R. A., Clarke C., Martin D., Colvin L. A., Smith B. H. (2017). “Physical activity and exercise for chronic pain in adults: An overview of Cochrane Reviews,” in Cochrane Database of Systematic Reviews, ed. Geneen L. J. (Chichester: John Wiley & Sons, Ltd.).
    1. Gilpin H. R., Moseley G. L., Stanton T. R., Newport R. (2015). Evidence for distorted mental representation of the hand in osteoarthritis. Rheumatology 54 678–682. 10.1093/rheumatology/keu367
    1. González-Franco M., Peck T. C., Rodríguez-Fornells A., Slater M. (2014). A threat to a virtual hand elicits motor cortex activation. Exp. Brain Res. 232 875–887. 10.1007/s00221-013-3800-1
    1. Guariglia C., Antonucci G. (1992). Personal and extrapersonal space: a case of neglect dissociation. Neuropsychologia 30 1001–1009. 10.1016/0028-3932(92)90051-M
    1. Gwilym S. E., Filippini N., Douaud G., Carr A. J., Tracey I. (2010). Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: a longitudinal voxel-based morphometric study. Arthritis Rheum. 62 2930–2940. 10.1002/art.27585
    1. Halligan P. W., Marshall J. C., Wade D. T. (1993). Diminution and enhancement of visuo-spatial neglect with sequential trials. J. Neurol. 240 117–120. 10.1007/BF00858728
    1. Halligan P. W., Zeman A., Berger A. (1999). Phantoms in the brain. BMJ 319 587–588. 10.1136/bmj.319.7210.587
    1. Hoffman H. G., Chambers G. T., Meyer W. J., Arceneaux L. L., Russell W. J., Seibel E. J., et al. (2011). Virtual reality as an adjunctive non-pharmacologic analgesic for acute burn pain during medical procedures. Ann. Behav. Med. 41 183–191. 10.1007/s12160-010-9248-7
    1. Hoffman H. G., Doctor J. N., Patterson D. R., Carrougher G. J., Furness T. A., III (2000a). Use of virtual reality for adjunctive treatment of adolescent burn pain during wound care. Pain 85 305–309. 10.1016/s0304-3959(99)00275-4
    1. Hoffman H. G., Patterson D. R., Carrougher G. J. (2000b). Use of virtual reality for adjunctive treatment of adult burn pain during physical therapy: a controlled study. Clin. J. Pain 16 244–250. 10.1097/00002508-200009000-00010
    1. Hoffman H. G., Meyer W. J., Ramirez M., Roberts L., Seibel E. J., Atzori B., et al. (2014). Feasibility of articulated arm mounted oculus rift virtual reality goggles for adjunctive pain control during occupational therapy in pediatric burn patients. Cyberpsychol. Behav. Soc. Netw. 17 397–401. 10.1089/cyber.2014.0058
    1. Hoffman H. G., Richards T. L., Coda B., Bills A. R., Blough D., Richards A. L., et al. (2004). Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI. Neuroreport 15 1245–1248. 10.1097/01.wnr.0000127826.73576.91
    1. Hoffman H. G., Richards T. L., Van Oostrom T., Coda B. A., Jensen M. P., Blough D. K., et al. (2007). The analgesic effects of opioids and immersive virtual reality distraction: evidence from subjective and functional brain imaging assessments. Anesth. Analg. 105 1776–1783. 10.1213/01.ane.0000270205.45146.db
    1. Hofmann S. G., Asnaani A., Vonk I. J. J., Sawyer A. T., Fang A. (2012). The efficacy of cognitive behavioral therapy: a review of meta-analyses. Cognit. Ther. Res. 36 427–440. 10.1007/s10608-012-9476-1
    1. James W. (1890). The Principles of Psychology. New York, NY: Holt.
    1. James W. (1905). The experience of activity. Psychol. Rev. 12 1–17. 10.1037/h0070340
    1. Janczyk M., Skirde S., Weigelt M., Kunde W. (2009). Visual and tactile action effects determine bimanual coordination performance. Hum. Mov. Sci. 28 437–449. 10.1016/j.humov.2009.02.006
    1. Jenkinson P. M., Haggard P., Ferreira N. C., Fotopoulou A. (2013). Body ownership and attention in the mirror: insights from somatoparaphrenia and the rubber hand illusion. Neuropsychologia 51 1453–1462. 10.1016/j.neuropsychologia.2013.03.029
    1. Kalckert A., Ehrsson H. (2012). Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Front. Hum. Neurosci. 6:40. 10.3389/fnhum.2012.00040
    1. Kant I. (1965). Critique of Pure Reason. Cambridge: Cambridge University Press.
    1. Kilteni K., Groten R., Slater M. (2012a). The sense of embodiment in virtual reality. Teleoperators Virtual Environ. 21 373–387. 10.1162/pres_a_00124
    1. Kilteni K., Normand J.-M., Sanchez-Vives M. V., Slater M. (2012b). Extending body space in immersive virtual reality: a very long arm illusion. PLoS One 7:e40867. 10.1371/journal.pone.0040867
    1. Lackner J. R. (1988). Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 111(Pt 2), 281–297. 10.1093/brain/111.2.281
    1. Lamm C., Decety J., Singer T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 54 2492–2502. 10.1016/j.neuroimage.2010.10.014
    1. Legrand D. (2006). The bodily self: the sensori-motor roots of pre-reflective self-consciousness. Phenom. Cogn. Sci. 5 89–118. 10.1007/s11097-005-9015-6
    1. Levine D. N., Calvanio R., Rinn W. E. (1991). The pathogenesis of anosognosia for hemiplegia. Neurology 41 1770–1770. 10.1212/WNL.41.11.1770
    1. Lewis J. S., Kersten P., McCabe C. S., McPherson K. M., Blake D. R. (2007). Body perception disturbance: a contribution to pain in complex regional pain syndrome (CRPS). Pain 133 111–119. 10.1016/j.pain.2007.03.013
    1. Llobera J., González-Franco M., Perez-Marcos D., Valls-Solé J., Slater M., Sanchez-Vives M. V. (2013). Virtual reality for assessment of patients suffering chronic pain: a case study. Exp. Brain Res. 225 105–117. 10.1007/s00221-012-3352-9
    1. Loetscher T., Regard M., Brugger P. (2006). Misoplegia: a review of the literature and a case without hemiplegia. J. Neurol. Neurosurg. Psychiatry 77 1099–1100. 10.1136/jnnp.2005.087163
    1. Longo M. R., Betti V., Aglioti S. M., Haggard P. (2009). Visually induced analgesia: seeing the body reduces pain. J. Neurosci. 29 12125–12130. 10.1523/JNEUROSCI.3072-09.2009
    1. Longo M. R., Iannetti G. D., Mancini F., Driver J., Haggard P. (2012). Linking pain and the body: neural correlates of visually induced analgesia. J. Neurosci. 32 2601–2607. 10.1523/JNEUROSCI.4031-11.2012
    1. Longo M. R., Schüür F., Kammers M. P. M., Tsakiris M., Haggard P. (2008). What is embodiment? a psychometric approach. Cognition 107 978–998. 10.1016/j.cognition.2007.12.004
    1. Lotze M., Moseley G. L. (2007). Role of distorted body image in pain. Curr. Rheumatol. Rep. 9 488–496. 10.1007/s11926-007-0079-x
    1. Macaluso E., Maravita A. (2010). The representation of space near the body through touch and vision. Neuropsychologia 48 782–795. 10.1016/j.neuropsychologia.2009.10.010
    1. Malloy K. M., Milling L. S. (2010). The effectiveness of virtual reality distraction for pain reduction: a systematic review. Clin. Psychol. Rev. 30 1011–1018. 10.1016/j.cpr.2010.07.001
    1. Mancini F., Longo M. R., Canzoneri E., Vallar G., Haggard P. (2013). Changes in cortical oscillations linked to multisensory modulation of nociception. Eur. J. Neurosci. 37 768–776. 10.1111/ejn.12080
    1. Mancini F., Longo M. R., Kammers M. P. M., Haggard P. (2011). Visual distortion of body size modulates pain perception. Psychol. Sci. 22 325–330. 10.1177/0956797611398496
    1. Martini M. (2016). Real, rubber or virtual: the vision of “one’s own” body as a means for pain modulation. a narrative review. Conscious. Cogn. 43 143–151. 10.1016/j.concog.2016.06.005
    1. Martini M., Kilteni K., Maselli A., Sanchez-Vives M. V. (2015). The body fades away: investigating the effects of transparency of an embodied virtual body on pain threshold and body ownership. Sci. Rep. 5:13948. 10.1038/srep13948
    1. Martini M., Perez-Marcos D., Sanchez-Vives M. V. (2013). What color is my arm? Changes in skin color of an embodied virtual arm modulates pain threshold. Front. Hum. Neurosci. 7:438. 10.3389/fnhum.2013.00438
    1. Martini M., Perez-Marcos D., Sanchez-Vives M. V. (2014). Modulation of pain threshold by virtual body ownership. Eur. J. Pain 18 1040–1048. 10.1002/j.1532-2149.2014.00451.x
    1. Maselli A. (2015). Allocentric and egocentric manipulations of the sense of self-location in full-body illusions and their relation with the sense of body ownership. Cogn. Process. 16 309–312. 10.1007/s10339-015-0667-z
    1. Maselli A., Slater M. (2013). The building blocks of the full body ownership illusion. Front. Hum. Neurosci. 7:1–15. 10.3389/fnhum.2013.00083
    1. Matamala-Gomez M., Gonzalez A. M. D., Slater M., Sanchez-Vives M. V. (2018). Decreasing pain ratings in chronic arm pain through changing a virtual body: different strategies for different pain types. J. Pain. 20 685–697. 10.1016/J.JPAIN.2018.12.001
    1. McGlynn S. M., Schacter D. L. (1989). Unawareness of deficits in neuropsychological syndromes. J. Clin. Exp. Neuropsychol. Off. J. Int. Neuropsychol. Soc. 11 143–205. 10.1080/01688638908400882
    1. Medina J., Coslett H. B. (2010). Neuropsychologia from maps to form to space: touch and the body schema. 48 645–654. 10.1016/j.neuropsychologia.2009.08.017
    1. Melzack R. (1990). Phantom limbs and the concept of a neuromatrix. Trends Neurosci. 13 88–92. 10.1016/0166-2236(90)90179-e
    1. Mohan R., Jensen K. B., Petkova V. I., Dey A., Barnsley N., Ingvar M., et al. (2012). No pain relief with the rubber hand illusion. PLoS One 7:e52400. 10.1371/journal.pone.0052400
    1. Moseley G. (2006). Graded motor imagery for pathologic pain. a randomized controlled trial. Neurology 67 2129–2134. 10.1212/01.wnl.0000249112.56935.32
    1. Moseley G., Flor H. (2012). Targeting cortical representations in the treatment of chronic pain a review. Neurorehabil. Neural Repair. 26 646–652. 10.1177/1545968311433209
    1. Moseley G., Parsons T., Spence C. (2008). Visual distortion of a limb modulates the pain and swelling evoked by movement. Curr. Biol. 18 R1047–R1048.
    1. Moseley G. L. (2004). Why do people with complex regional pain syndrome take longer to recognize their affected hand? Neurology 62 2182–2186. 10.1212/01.WNL.0000130156.05828.43
    1. Moseley G. L. (2008). I can’t find it! distorted body image and tactile dysfunction in patients with chronic back pain. Pain 140 167–171. 10.1016/j.pain.2008.08.001
    1. Moyer P. (2005). Distorted body image for patients with complex regional pain syndrome. Neurol. Today 5:52 10.1097/00132985-200510000-00015
    1. Nierula B., Martini M., Matamala-Gomez M., Slater M., Sanchez-Vives M. V. (2017). Seeing an embodied virtual hand is analgesic contingent on colocation. J. Pain 18 645–655. 10.1016/j.jpain.2017.01.003
    1. Osimo S. A., Pizarro R., Spanlang B., Slater M. (2015). Conversations between self and self as sigmund freud—a virtual body ownership paradigm for self counselling. Sci. Rep. 5:13899. 10.1038/srep13899
    1. Pavani F., Spence C., Driver J. (1999). Visual capture of touch (tactile ventriloquism); out-of-the-body experiences with rubber gloves. J. Cogn. Neurosci. 11:14.
    1. Peck T. C., Seinfeld S., Aglioti S. M., Slater M. (2013). Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious. Cogn. 22 779–787. 10.1016/j.concog.2013.04.016
    1. Perez-Marcos D., Martini M., Fuentes C. T., Bellido Rivas A. I., Haggard P., Sanchez-Vives M. V. (2018). Selective distortion of body image by asynchronous visuotactile stimulation. Body Image 24 55–61. 10.1016/j.bodyim.2017.11.002
    1. Petkova V. I., Khoshnevis M., Ehrsson H. H. (2011). The perspective matters! multisensory integration in ego-centric reference frames determines full-body ownership. Front. Psychol. 2:35. 10.3389/fpsyg.2011.00035
    1. Pleger B., Ragert P., Schwenkreis P., Förster A.-F., Wilimzig C., Dinse H., et al. (2006). Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome. Neuroimage 32 503–510. 10.1016/j.neuroimage.2006.03.045
    1. Powers P. S., Schulman R. G., Gleghorn A. A., Prange M. E. (1987). Perceptual and cognitive abnormalities in bulimia. Am. J. Psychiatry 144 1456–1460. 10.1176/ajp.144.11.1456
    1. Pozeg P., Palluel E., Ronchi R., Solcà M., Al-Khodairy A. W., Jordan X., et al. (2017). Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology 89 1894–1903. 10.1212/WNL.0000000000004585
    1. Preston C., Newport R. (2011). Analgesic effects of multisensory illusions in osteoarthritis. Rheumatology 50 2314–2315. 10.1093/rheumatology/ker104
    1. Ramachandran V. S., Altschuler E. L., Aglioti S., Bonazzi A., Cortese F., Aglioti S., et al. (2009a). The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 132 1693–1710. 10.1093/brain/awp135
    1. Ramachandran V. S., Brang D., McGeoch P. D. (2009b). Size reduction using mirror visual feedback (MVF) reduces phantom pain. Neurocase 15 357–360. 10.1080/13554790903081767
    1. Ramachandran V. S., Blakeslee S. (1999). Phantoms in the brain: probing the mysteries of the human mind. Am. J. Psychiatry 157 841–842. 10.1176/appi.ajp.157.5.841
    1. Riva G., Wiederhold B. K., Mantovani F. (2018). Neuroscience of virtual reality: from virtual exposure to embodied medicine. Cyberpsychol. Behav. Soc. Netw. 22 82–96. 10.1089/cyber.2017.29099.gri
    1. Romano D., Llobera J., Blanke O. (2015). Size and viewpoint of an embodied virtual body impact the processing of painful stimuli. J. Pain. 17 350–358. 10.1016/j.jpain.2015.11.005
    1. Romano D., Maravita A. (2014). The visual size of one’s own hand modulates pain anticipation and perception. Neuropsychologia 57 93–100. 10.1016/j.neuropsychologia.2014.03.002
    1. Sanchez-Vives M. V., Slater M. (2005). From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6 332–339. 10.1038/nrn1651
    1. Sanchez-Vives M. V., Spanlang B., Frisoli A., Bergamasco M., Slater M. (2010). Virtual hand illusion induced by visuomotor correlations. PLoS One 5:e10381. 10.1371/journal.pone.0010381
    1. Seinfeld S., Arroyo-Palacios J., Iruretagoyena G., Hortensius R., Zapata L. E., Borland D., et al. (2018). Offenders become the victim in virtual reality: impact of changing perspective in domestic violence. Sci. Rep. 8:2692. 10.1038/s41598-018-19987-7
    1. Senkowski D., Heinz A. (2016). Chronic pain and distorted body image: implications for multisensory feedback interventions. Neurosci. Biobehav. Rev. 69 252–259. 10.1016/j.neubiorev.2016.08.009
    1. Serino A., Haggard P. (2010). Touch and the body. Neurosci. Biobehav. Rev. 34 224–236. 10.1016/j.neubiorev.2009.04.004
    1. Slater M., Perez-Marcos D., Ehrsson H. H., Sanchez-Vives M. V. (2008). Towards a digital body: the virtual arm illusion. Front. Hum. Neurosci. 2:6. 10.3389/neuro.09.006.2008
    1. Slater M., Sanchez-Vives M. V. (2016). Enhancing our lives with immersive virtual reality. Front. Robot. AI 3:74 10.3389/FROBT.2016.00074
    1. Slater M., Spanlang B., Sanchez-Vives M. V., Blanke O., Botvinick M., Cohen J., et al. (2010). First person experience of body transfer in virtual reality. PLoS One 5:e10564. 10.1371/journal.pone.0010564
    1. Solcà M., Ronchi R., Bello-Ruiz J., Schmidlin T., Herbelin B., Luthi F., et al. (2018). Heartbeat-enhanced immersive virtual reality to treat complex regional pain syndrome. Neurology 91 e1–e11. 10.1212/WNL.0000000000005905
    1. Stanton T. R., Gilpin H. R., Edwards L., Moseley G. L., Newport R. (2018). Illusory resizing of the painful knee is analgesic in symptomatic knee osteoarthritis. PeerJ 6:e5206. 10.7717/peerj.5206
    1. Tarr M. J., Warren W. H. (2002). Virtual reality in behavioral neuroscience and beyond. Nat. Neurosci. 5 1089–1092. 10.1038/nn948
    1. Triberti S., Repetto C., Riva G. (2014). Psychological factors influencing the effectiveness of virtual reality–based analgesia: a systematic review. Cyberpsychol. Behav. Soc. Netw. 17 335–345. 10.1089/cyber.2014.0054
    1. Tsakiris M., Prabhu G., Haggard P. (2006). Having a body versus moving your body: how agency structures body-ownership. Conscious. Cogn. 15 423–432. 10.1016/j.concog.2005.09.004
    1. Valeriani M., Betti V., Le Pera D., De Armas L., Miliucci R., Restuccia D., et al. (2008). Seeing the pain of others while being in pain: a laser-evoked potentials study. Neuroimage 40 1419–1428. 10.1016/j.neuroimage.2007.12.056
    1. Vallar G., Ronchi R. (2009). Somatoparaphrenia: a body delusion. A review of the neuropsychological literature. Exp. Brain Res. 192 533–551. 10.1007/s00221-008-1562-y
    1. van Beers R. J., Sittig A. C., van der Gon J. J. D. (1999). Integration of proprioceptive and visual position-information: an experimentally supported model. J. Neurophysiol. 81 1355–1364. 10.1152/jn.1999.81.3.1355
    1. Vos T., Flaxman A. D., Naghavi M., Lozano R., Michaud C., Ezzati M., et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380 2163–2196. 10.1016/S0140-6736(12)61729-2
    1. Wesslein A. K., Spence C., Frings C. (2014). Vision affects tactile target and distractor processing even when space is task-irrelevant. Front. Psychol. 5:84. 10.3389/fpsyg.2014.00084
    1. Williams A. C., de C., Eccleston C., Morley S. (2012). Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst. Rev. 11:CD007407. 10.1002/14651858.CD007407.pub3

Source: PubMed

3
Subscribe